奥数植树问题四年级

时间:2019-05-14 18:58:37下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《奥数植树问题四年级》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《奥数植树问题四年级》。

第一篇:奥数植树问题四年级

《植树问题》教学设计

教学内容:义务教育课程标准实验教科书四年级数学下册第八单元《数学广角》第117~118页。

学习目标:

知识与技能方面:通过探索,发现两端都栽的植树问题的规律,并运用这一规律解决实际生活中的问题。过程与方法方面:通过尝试探索、实验、直观演示、观察、分析、讨论等方法经历和体验“复杂问题简单化”的解题策略。情感态度价值观方面:感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养应用意识和解决实际问题的能力,渗透环保教育。

教学重难点:发现植树的棵数和间隔数的关系,并运用发现的规律解决实际问题。教学流程:

一、直接揭示课题

1、这节课我们一起来研究植树问题。板书:植树问题

2、激发兴趣:植树是一项非常有意义的活动,它不仅能绿化环境,净化空气,使我们的身体在劳动中得到锻炼,而且在植树过程中还蕴含着许多有趣的数学问题。怎么样?有没有兴趣研究研究?

二、探究新知,发现规律。

1、教学例1

出示ppT1:问:看看,这是哪里?学校准备在操场北面的小路一边植树。在这条100米长的小路一边栽树,学校可是有要求的,看看有啥要求?(1)抽生读题(2)解读题中信息

你读懂了什么?5米指什么?板书:间隔间隔指什么?学校要求的间隔是多少?还有啥要求?板书:两端都栽“两端都栽”啥意思?比划一下。还有啥要求?小路全长100米,一边栽树。“一边栽树”啥意思?(只栽一边,只栽一行)比划。

过度:学校需要买多少棵树苗?能不能帮助解决?写在一号题卡上。

2、学生尝试简答问题,师巡视,收集资源,随机请生上台板书。

3、解读收集的资源:同学们,做完了没?看黑板 看看:同样的要求,出现了3种不同的结果。赞成第一种方案的举手?第二种呢?第三种呢?到底哪种结果是正确的呢?请四人小组探究这个问题。

4、四人小组探究,寻找发现规律。

听清楚要求,你们可以画一画、摆一摆或者模拟实际种一种。(生分小组探究,师巡视,发现资源。)

5、汇报交流:你们组是用什么方法探究的?上来展示。

注意:善于倾听是一种非常好的习惯,不仅表示尊重别人更加体现了自身的修养。所以,别的组在交流的时候,你们要认真听、仔细看、用心想,他们组的方法跟你们组的方法是否一样?

(1)画线段图:啥意思,跟大家说说。(先画一条线段,在最左边画一个端点,每隔5米画一个点。100÷5=20(个)间隔

20表示什么?数数看,是不是20个间隔,一起数。21棵树怎么来的?你把图中什么当成小树?

同学们,你们听明白了吗?有什么想问问他的?

过度:这种方法清楚、实在,但有些复杂。好像还有更简单的方法,哪一组来说一说?(抽生汇报:你们组用的什么方法?)

(2)摆火柴他们组只摆了5根火柴就有了结果,我们来验证验证。(摆2根火柴1个间隔,摆3根火柴2个间隔,5根火柴4个间隔

100÷5=20

20个间隔棵树比间隔数多1,20+1就得到21棵树。板书:间隔数棵数为什么加1.因为两端都栽,看来加1太重要了,只有加1才表示两端都栽。

小结:咱们以后在做这类两端都栽的植树问题时一定要加1.6、课件展示规律的探究过程

咱们再来看看规律的发现过程(出示ppT2)

这就是那条小路,先在最左端栽一棵,隔5米栽一棵,隔5米栽一棵,现在几棵树?几个间隔?

栽2棵树()间隔 栽3棵树()个间隔,栽4棵树()个间隔,栽5棵树()个间隔。

现在我不栽了,6棵树()个间隔?8棵树()个间隔?10棵树()个间隔?100棵树()个间隔?

15个间隔()棵树? 18个间隔()棵树? 20个间隔()棵树? 你发现了什么规律? 齐读两遍棵数=间隔数+1

7、看黑板总结规律

在两端都栽的情况下,棵树和间隔数有什么关系? 求间隔数怎么办? 谁再来说一说?

过度:数学家能发现的规律,你们也能发现,你们真棒!这个是哪两位同学做的,能不能上来改一改?

他们都改对了没?

我随机采访一下?小伙子,你刚才什么都没加,现在为什么加上1?不加1能符合两端都栽的要求吗?看来加1太要了,以后在做两端都栽的植树问题时,记得加上1.看到你们由不明白到明白,由不会到会,老师非常高兴,真棒!我们不仅要善于发现规律,更重要的是能运用规律解决实际问题。你能吗?

三、巩固练习

1、口答:(出示PPT3)请你口答:

(1)还是这条小路,如果每隔4米栽一棵,两端都栽,需要()棵树苗?

(2)假如这条小路延长到1000米,每隔5米栽一棵,两端都栽,需要()棵树苗?

(3)如果种了5棵树,每隔5米栽一棵,两端都栽,从第一棵到最后一棵,全长()米? 过度:运用植树问题的规律不仅能解决植树问题,还能解决生活中的实际问题,比如说安装路灯。

2、解决生活中实际问题:安装路灯。(1)出示PPT4,谁来读题

在一条长2千米的街道两旁安装路灯(两端都安),每隔50米安一座。一共要安装多少座路灯?(2)有啥要求?能解决问题吗?写在2号卡上。生独立解答,师巡视,收集资源,准备展示。

(2)汇报交流:投影仪展示:孩子们,看屏幕,对于这两种解答方案,你有什么想说的?你同意哪一种?为什么?如果不乘2,求的是什么?你们把题中什么当成了小树?

3、绵阳被评为全国文明城市后,名声越来越大,来绵阳旅游的人越来越多。不少游人喜欢到富乐山去游一游。12路公交车给游客们提供了方便。一起来看看这条公交线路上有什么数学问题?

(1)出示PPT5.读题:绵阳市12路公交车线路,从长青街出发,到富乐山国际大酒店,共有24站,相邻两个站的距离大约是700米。这条线路全长多少千米?(2)独立完成,坐在练习本上。师巡视(3)抽生汇报:你是怎样列式计算的? 你们同不同意他的方法? 同桌互相批阅。

4、同学们,坐好了。你们家有钟表吗?听到过钟声吗?你听•• 当当()时

当当当()时

()个间隔

在钟声里也有数学问题。一起去看看。(1)出示PPT6:大声读题 广场上的大钟5时敲响5下,敲响第1下到第5下用8秒。12时敲响12下,需要多长时间?(2)读得真流利,能试着解决吗?写在练习本上。有困难的小组合作解决。(3)汇报

8÷(5-1)=2 秒/个(12-1)×2=22(秒)

四、课堂小结

这么复杂的问题,你们都能解决,真厉害。这节课,孩子表现得都棒,积极思考,踊跃回答问题,学习热情不断高涨,这些都给了我很大快乐,孩子们你们快乐吗?你们有什么收获?

第二篇:奥数植树问题教案(精选)

《植树问题》教案一

教学目标:

1.经历将实际问题抽象出植树问题模型的过程,掌握种树棵树与间隔数之间的关系。

2.会解决在不封闭线路上植树(指线路首尾不相连)问题,培养运用植树问题解决实际问题的能力。

教学重点:

理解种树棵树与间隔数之间的关系,会应用植树问题的模型解决一些相关的实际问题。教学难点:

应用植树问题灵活解决一些相关的实际问题。

一、例题1:一根木头锯成4段要付锯费1.2元,如果要锯成12段,要付锯费多少元?

二、例题分析:把一根木头平均锯成4段,需据4-1=3次,属于两端都没有点。从而可求出锯1次的费用1.2÷3=0.4元。现要锯成12段,也就是要锯12-1=11次,这样就可以求出费用。解:1.2×(4-1)×(12-1)=0.4×11 =4.4元

三、同类练习

1、这条公路全长1000米,每隔5米种一棵树(两端要种)。一共需要多少棵树苗?

解:1000÷5=200(棵)200 +1=201(棵)(两端要种:棵树=段数+1)

2、在一条长2000米的路的一侧种树,每隔10米种一棵(两端不种)。一共需要多少棵树苗?(两端不种:棵树=段数—1)

3、学校有一条长60米的走道,计划在道路旁栽树。每隔3米栽一棵。如果只有一端栽树,那么共需多少棵树苗?(一段种树:棵树=段数)

4、运动会上,在笔直的跑道的一侧插彩旗,每隔10米插一面(两端要插)。这条跑道长100米,一共要插多少面彩旗?(学生独立完成。)5.一根木头长8米,每2米锯一段。一共要锯几次?(学生独立完成。)

6、在一条路的一侧种树,每隔6米种一棵,一共种了41棵树。从第1棵树到最后一棵树的距离是多少米?

四、变式练习:

1、在一条长600米的公路两旁各栽一行树,起点和终点都栽,一共栽302棵,每相邻两棵之间的距离都相等,相邻两棵之间的距离是多少?

2、一条路每隔5米有一根电线杆,连两端的电线杆在内共20根,算一算公路有多长?

3、把30米长的一条绳子分成3段,后一段总比前一段多3米,秋各段长度。

4、小英和小明同住在一幢大楼里,小英家住在6层,每天回家要走80个台阶,小明回家要走32个台阶,小明家住在几层?

5、一座桥长116米,在桥的两侧栏杆上,分别安装了16块花纹

图案,图案的横长为2米,两头的图案离桥端都是12米,且每相邻两块图案间的间隔都相等,相邻两块图案之间应间隔多少米? 《植树问题》教案二 教学目标:

1.经历将实际问题抽象出植树问题模型的过程,掌握种树棵树与间隔数之间的关系。

2.会解决在封闭线路上植树(指线路首尾相连)问题,培养运用植树问题解决实际问题的能力。

教学重点:

理解种树棵树与间隔数之间的关系,会应用植树问题的模型解决一些相关的实际问题。教学难点:

应用植树问题灵活解决一些相关的实际问题。

一、例题

2、有一个长方形的操场,长45米,宽30米,如果沿着它的周围每隔3米栽一棵树,一共要栽多少棵树?

二、例题分析:这是在一个封闭的长方形周长上植树。首先要求出长方形的周长(45+30)×2=150米,在平均用每段3米,求出种多少棵树。解:(45+30)×2÷3 =75×2÷3 50棵

三、同类习题:

1、一个圆形的跑道400米,如果每隔10米竖一块警示牌,共需要多少块警示牌?

2、一个湖泊的周长是1800米,沿湖泊周围每隔8米栽一棵柳树,每两棵柳树中间栽一个桃树,湖泊周围栽了多少棵柳树和桃树?

3、一个圆形花圃周围长40米,沿周围每隔4米插一面红旗,每两面红旗的中间插一面黄旗,花圃周围各插了多少面红旗和黄旗?

4、一个圆形水池周围每隔2米栽一棵柳树,共栽了40棵,水池的周长是多少?

四、变式练习:

1、一个圆形喷水池,周长62.8米,在距池岸边均为3米的池内圆周上安装28根喷水管,每相邻两个喷水管的距离是多少米?

2、学校图书馆前摆了一个方阵花坛,这个花坛的最外层每边各摆放12盆花,最外层共摆了多少盆花?这个花坛一共要多少盆花?

3、张大伯在承包的正方形池塘四周种上树,池塘边长为60米,每隔5米种一课,四个角上各种一棵,张大伯买了50棵树苗够吗?

第三篇:四年级奥数——鸡兔同笼问题

第6讲 鸡兔同笼问题与假设法

鸡兔同笼问题是按照题目的内容涉及到鸡与兔而命名的,它是一类有名的中国古算题。许多小学算术应用题,都可以转化为鸡兔同笼问题来加以计算。

【例题讲解及思维拓展训练题】

例1 小梅数她家的鸡与兔,数头有16个,数脚有44只。问:小梅家的鸡与兔各有多少只?

分析:假设16只都是鸡,那么就应该有2×16=32(只)脚,但实际上有44只脚,比假设的情况多了44-32=12(只)脚,出现这种情况的原因是把兔当作鸡了。如果我们以同样数量的兔去换同样数量的鸡,那么每换一只,头的数目不变,脚数增加了2只。因此只要算出12里面有几个2,就可以求出兔的只数。

解:有兔(44-2×16)÷(4-2)=6(只),有鸡16-6=10(只)。

答:有6只兔,10只鸡。

当然,我们也可以假设16只都是兔子,那么就应该有4×16=64(只)脚,但实际上有44只脚,比假设的情况少了64-44=20(只)脚,这是因为把鸡当作兔了。我们以鸡去换兔,每换一只,头的数目不变,脚数减少了4-2=2(只)。因此只要算出20里面有几个2,就可以求出鸡的只数。

有鸡(4×16-44)÷(4-2)=10(只),有兔16——10=6(只)。

由例1看出,解答鸡兔同笼问题通常采用假设法,可以先假设都是鸡,然后以兔换鸡;也可以先假设都是兔,然后以鸡换兔。因此这类问题也叫置换问题。

【思维拓展训练一】 1、100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍。问:大、小和尚各有多少人? 分析与解:本题由中国古算名题“百僧分馍问题”演变而得。如果将大和尚、小和尚分别看作鸡和兔,馍看作腿,那么就成了鸡兔同笼问题,可以用假设法来解。

假设100人全是大和尚,那么共需馍300个,比实际多300-140=160(个)。现在以小和尚去换大和尚,每换一个总人数不变,而馍就要减少3——1=2(个),因为160÷2=80,故小和尚有80人,大和尚有

100-80=20(人)。

同样,也可以假设100人都是小和尚,同学们不妨自己试试。

在下面的例题中,我们只给出一种假设方法。

2、彩色文化用品每套19元,普通文化用品每套11元,这两种文化用品共买了16套,用钱280元。问:两种文化用品各买了多少套?

分析与解:我们设想有一只“怪鸡”有1个头11只脚,一种“怪兔”有1个头19只脚,它们共有16个头,280只脚。这样,就将买文化用品问题转换成鸡兔同笼问题了。

假设买了16套彩色文化用品,则共需19×16=304(元),比实际多304——280=24(元),现在用普通文化用品去换彩色文化用品,每换一套少用19——11=8(元),所以

买普通文化用品 24÷8=3(套),买彩色文化用品 16-3=13(套)。

学习,就是努力争取获得自然没有赋予我们的东西。/ 4

例2 鸡、兔共100只,鸡脚比兔脚多20只。问:鸡、兔各多少只?

分析:假设100只都是鸡,没有兔,那么就有鸡脚200只,而兔的脚数为零。这样鸡脚比兔脚多200只,而实际上只多20只,这说明假设的鸡脚比兔脚多的数比实际上多200——20=180(只)。

现在以兔换鸡,每换一只,鸡脚减少2只,兔脚增加4只,即鸡脚比兔脚多的脚数中就会减少4+2=6(只),而180÷6=30,因此有兔子30只,鸡100——30=70(只)。解:有兔(2×100——20)÷(2+4)=30(只),有鸡100——30=70(只)。

答:有鸡70只,兔30只。

【思维拓展训练二】

1、现有大、小油瓶共50个,每个大瓶可装油4千克,每个小瓶可装油2千克,大瓶比小瓶共多装20千克。问:大、小瓶各有多少个?

分析:本题与例4非常类似,仿照例4的解法即可。解:小瓶有(4×50-20)÷(4+2)=30(个),大瓶有50-30=20(个)。

答:有大瓶20个,小瓶30个。

2、一批钢材,用小卡车装载要45辆,用大卡车装载只要36辆。已知每辆大卡车比每辆小卡车多装4吨,那么这批钢材有多少吨?

分析:要算出这批钢材有多少吨,需要知道每辆大卡车或小卡车能装多少吨。

利用假设法,假设只用36辆小卡车来装载这批钢材,因为每辆大卡车比每辆小卡车多装4吨,所以要剩下4×36=144(吨)。根据条件,要装完这144吨钢材还需要45-36=9(辆)小卡车。这样每辆小卡车能装144÷9=16(吨)。由此可求出这批钢材有多少吨。解:4×36÷(45-36)×45=720(吨)。

答:这批钢材有720吨。

例3 乐乐百货商店委托搬运站运送500只花瓶,双方商定每只运费0.24元,但如果发生损坏,那么每打破一只不仅不给运费,而且还要赔偿1.26元,结果搬运站共得运费115.5元。问:搬运过程中共打破了几只花瓶?

分析:假设500只花瓶在搬运过程中一只也没有打破,那么应得运费0.24×500=120(元)。实际上只得到115.5元,少得120-115.5=4.5(元)。搬运站每打破一只花瓶要损失0.24+1.26=1.5(元)。因此共打破花瓶4.5÷1.5=3(只)。

解:(0.24×500-115.5)÷(0.24+1.26)=3(只)。

答:共打破3只花瓶。

【思维拓展训练三】

1、小乐与小喜一起跳绳,小喜先跳了2分钟,然后两人各跳了3分钟,一共跳了780下。已知小喜比小乐每分钟多跳12下,那么小喜比小乐共多跳了多少下?

分析与解:利用假设法,假设小喜的跳绳速度减少到与小乐一样,那么两人跳的总数减少了

12×(2+3)=60(下)。

可求出小乐每分钟跳

(780——60)÷(2+3+3)=90(下),小乐一共跳了90×3=270(下),因此小喜比小乐共多跳

780——270×2=240(下)。

学习,就是努力争取获得自然没有赋予我们的东西。/ 4

【课堂巩固训练题】

1.鸡、兔共有头100个,脚350只,鸡、兔各有多少只?

2.学校有象棋、跳棋共26副,2人下一副象棋,6人下一副跳棋,恰好可供120个学生进行活动。问:象棋与跳棋各有多少副?

3.班级购买活页簿与日记本合计32本,花钱74元。活页簿每本1.9元,日记本每本3.1元。问:买活页簿、日记本各几本?

4.龟、鹤共有100个头,鹤腿比龟腿多20只。问:龟、鹤各几只?

5.小蕾花40元钱买了14张贺年卡与明信片。贺年卡每张3元5角,明信片每张2元5角。问:贺年卡、明信片各买了几张?

6.一个工人植树,晴天每天植树20棵,雨天每天植树12棵,他接连几天共植树112棵,平均每天植树14棵。问:这几天中共有几个雨天?

学习,就是努力争取获得自然没有赋予我们的东西。/ 4

7.振兴小学六年级举行数学竞赛,共有20道试题。做对一题得5分,没做或做错一题都要扣3分。小建得了60分,那么他做对了几道题?

8.有一批水果,用大筐80只可装运完,用小筐120只也可装运完。已知每只大筐比每只小筐多装运20千克,那么这批水果有多少千克?

9.蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀。现有三种小虫共18只,有118条腿和20对翅膀。问:每种小虫各有几只?

10.鸡、兔共有脚100只,若将鸡换成兔,兔换成鸡,则共有脚92只。问:鸡、兔各几只?

学习,就是努力争取获得自然没有赋予我们的东西。/ 4

第四篇:四年级奥数鸡兔同笼问题

鸡兔同笼问题

鸡兔同笼问题是按照题目的内容涉及到鸡与兔而命名的,它是一类有名的中国古算题。许多小学算术应用题,都可以转化为鸡兔同笼问题来加以计算。

【例题讲解及思维拓展训练题】

例1 小梅数她家的鸡与兔,数头有16个,数脚有44只。问:小梅家的鸡与兔各有多少只?

【思维拓展训练一】 1、100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍。问:大、小和尚各有多少人?

2、彩色文化用品每套19元,普通文化用品每套11元,这两种文化用品共买了16套,用钱280元。问:两种文化用品各买了多少套?

例2 鸡、兔共100只,鸡脚比兔脚多20只。问:鸡、兔各多少只?

【思维拓展训练二】

学习,就是努力争取获得自然没有赋予我们的东西。1 / 5

1、现有大、小油瓶共50个,每个大瓶可装油4千克,每个小瓶可装油2千克,大瓶比小瓶共多装20千克。问:大、小瓶各有多少个?

2、一批钢材,用小卡车装载要45辆,用大卡车装载只要36辆。已知每辆大卡车比每辆小卡车多装4吨,那么这批钢材有多少吨?

例3 乐乐百货商店委托搬运站运送500只花瓶,双方商定每只运费0.24元,但如果发生损坏,那么每打破一只不仅不给运费,而且还要赔偿1.26元,结果搬运站共得运费115.5元。问:搬运过程中共打破了几只花瓶?

【思维拓展训练三】

1、小乐与小喜一起跳绳,小喜先跳了2分钟,然后两人各跳了3分钟,一共跳了780下。已知小喜比小乐每分钟多跳12下,那么小喜比小乐共多跳了多少下?

【课堂巩固训练题】

1.鸡、兔共有头100个,脚350只,鸡、兔各有多少只?

学习,就是努力争取获得自然没有赋予我们的东西。2 / 5

2.学校有象棋、跳棋共26副,2人下一副象棋,6人下一副跳棋,恰好可供120个学生进行活动。问:象棋与跳棋各有多少副?

3.班级购买活页簿与日记本合计32本,花钱74元。活页簿每本1.9元,日记本每本3.1元。问:买活页簿、日记本各几本?

4.龟、鹤共有100个头,鹤腿比龟腿多20只。问:龟、鹤各几只?

5.小蕾花40元钱买了14张贺年卡与明信片。贺年卡每张3元5角,明信片每张2元5角。问:贺年卡、明信片各买了几张?

学习,就是努力争取获得自然没有赋予我们的东西。3 / 5

6.一个工人植树,晴天每天植树20棵,雨天每天植树12棵,他接连几天共植树112棵,平均每天植树14棵。问:这几天中共有几个雨天?

7.振兴小学六年级举行数学竞赛,共有20道试题。做对一题得5分,没做或做错一题都要扣3分。小建得了60分,那么他做对了几道题?

8.有一批水果,用大筐80只可装运完,用小筐120只也可装运完。已知每只大筐比每只小筐多装运20千克,那么这批水果有多少千克?

9.蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀。现有三种小虫共18只,有118条腿和20对翅膀。问:每种小虫各有几只?

学习,就是努力争取获得自然没有赋予我们的东西。4 / 5

10.鸡、兔共有脚100只,若将鸡换成兔,兔换成鸡,则共有脚92只。问:鸡、兔各几只?

学习,就是努力争取获得自然没有赋予我们的东西。/ 5

第五篇:奥数四年级鸡兔同笼问题

习题练习一

1、鸡兔同笼,共有头30个,足86只,求鸡兔各有多少只?

2、有20张5元和10元的人民币,一共是175元,5元和10元的人民币各有多少张?

3、王老师圆珠笔和钢笔共买了15枝,圆珠笔每枝1.5元,钢笔每枝4.5元,共花了49.5元,圆珠笔和钢笔各买了多少枝?

4、鸡兔同笼,鸡兔共35个头,94条腿,问鸡兔各多少只?

5、在一个停车场内,汽车、摩托车共停了48辆,其中每辆汽车有4个轮子,每辆摩托车有3个轮子,这些车共有172个轮子,停车场内有汽车摩托车各多少辆?

6、小刚买回8分邮票和4分邮票共100张,共付出6.8元,问,小刚买回这两种邮票各多少张?

7、在知识竞赛中,有10道判断题,评分规定:每答对一道题的两分,答错一道题要倒扣一分。小明答了全部题目,但最后只得了14分,他答错几题?

8、某运输队为超市运送暖瓶500箱,每箱装有6个暖瓶。已知每10个暖瓶的运费为5元,损坏一个不但不给运费还要赔10元,运后结算时,运输队共得1350元的运费。问损坏了多少暖瓶?

9、鸡兔同笼,头共20个,脚共62只,求鸡兔各有几只?

10、小华买了2元和5元邮票一共34张,用去98元钱。求小华买了2元和5元的邮票各多少张?

11、全班46人去划船,共乘12只船,其中大船每只坐5人,小船每只坐3人,求大船和小船各有多少只?

12、在一个停车场上,停了汽车和摩托车一共32辆。其中汽车有4个轮子,摩托车有3个轮子,总共有108个轮子,汽车和摩托车各多少辆?

13、红旗小学举行数学竞赛,共10题,做对一题10分,做错一题倒扣两分。小明得了52分,他做错了几道题? 14、100名师生绿化校园,老师每人栽3课,学生每两人栽1棵,共栽树100棵。求老师和同学各栽树多少棵?

15、东风小学有3名同学去参加数学竞赛,一份试卷共10道题,答对一题得10分,答错一题不但不得分还要扣去3分,这三名同学都答了全部题目,小明得74分,小华得22分,小红得87分,他们三人共答对多少题?

习题练习二

1.鸡兔同笼,鸡兔共35个头,94条腿,问鸡兔各多少只?

2.例题: 鸡兔同笼,鸡比兔多15只,鸡兔共有脚132只,问鸡兔各多少只?

3.例题:鸡兔同笼,鸡兔共40个头,鸡脚比兔脚共多32只,问鸡兔各多少只?

4.例题:鸡兔同笼,鸡比兔多10只,但脚却比兔子少60只,问鸡兔各多少只?

5.鸡兔同笼,鸡比兔多10只,鸡脚比兔脚多10只,问鸡兔各多少只?

6.在一个停车场内,汽车、摩托车共停了48辆,其中每辆汽车有4个轮子,每辆摩托车有3个轮子,这些车共有172个轮子,停车场内有汽车、摩托车各多少辆?

7.张大妈养鸡兔共200只,鸡兔足数共560只,求鸡兔各有多少只?

8.张大妈家养的鸡比兔多13只,兔足比鸡足少16只,求鸡兔各有多少只? 9.鹤龟同池,鹤比龟多12只,鹤龟足共72只,求鹤龟各有多少只?

10.小刚买回8分邮票和4分邮票共100张,共付出6.8元,问,小刚买回这两种邮票个多少张?各付出多少元?

11.东风小学有3名同学去参加数学竞赛,一份试卷共10道题,答对一题得10分,答错一道不但不得分,还要扣去3分,这3名同学都回答了所有的题目,小明得74分,小华得22分,小红得87分,他们三人共答对多少题?

12.在知识竞赛中,有10道判断题,评分规定:每答对一题得2分,答错一题要倒扣一分。小明同学虽然答了全部的题目,但最后只得了14分,请问,他答错了几题?

13.某运输队为超市运送暖瓶500箱,每箱装有6个暖瓶。已知每10个暖瓶的运费为5元,损坏一个的话不但不给运费还要陪成本10元,运后结算时,运输队共得1350元的运费。问、共损坏了多少只暖瓶?

14.在很久很久以前,传说有九头一尾的九头鸟和九尾一头的九尾鸟。有一次这两种鸟栖息在树林里,一位猎人经过此地数了数,这两种鸟头共268个,尾332个,那么有九头鸟和九尾鸟各多少只?

15.蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀。现在这三种小虫16只,共有110条腿和14对翅膀。问,每种小鸟各几只?

16.螃蟹有10条腿,螳螂有6条腿和1对翅膀,蜻蜓有6条腿和2对翅膀。现在这三种动物37只,共有250条腿和52对翅膀。每种动物各有多少只?

17.小东妈妈从单位领回奖金400元,其中有2元、5元、10元人民币共80张,且5元和10元的张数相等,试问,这三种人民币各有多少张?

18.小华有1分、2分、5分的硬币共38枚,合计9角2分,已知1分与2分的硬币的枚数相等。这三种硬币各有多少枚? 有鸡兔同笼,共有38头,116只脚。鸡和兔各多少只?稚兔同笼,上有28头,下有68只,稚兔几何?

习题练习三

1.班主任张老师带五年级(2)班50名同学栽树,张老师栽5棵,男生每人栽3棵,女生每人栽2棵,总共栽树120棵,问几名男生,几名女生?

2.大油瓶每瓶装4千克,小油瓶2瓶装1千克,现有100千克油装了共60个瓶子。问大小油瓶各多少个? 3.小毛参加数学竞赛,共做20道题,得64分,已知做对一道得5分,不做得0分,错一题扣1分,又知道他做错的题和没做的同样多。问小毛做对几道题?

4.有蜘蛛,蜻蜓,蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿;蜻蜓6条腿,2对翅膀;蝉6条腿,1对翅膀),三种动物各几只?

习题练习四

1.龟鹤共有100个头,350只脚.龟,鹤各多少只

2.学校有象棋,跳棋共26副,恰好可供120个学生同时进行活动.象棋2人下一副棋,跳棋6人下一副.象棋和跳棋各有几副

3.一些2分和5分的硬币,共值2.99元,其中2分硬币个数是5分硬币个数的4倍,问5分硬币有多少个

4.某人领得工资240元,有2元,5元,10元三种人民币,共50张,其中2元与5元的张数一样多.那么2元,5元,10元各有多少张

5.一件工程,甲单独做12天完成,乙单独做18天完成,现在甲做了若干天后,再由乙接着单独做完余下的部分,这样前后共用了16天.甲先做了多少天

6.摩托车赛全程长281千米,全程被划分成若干个阶段,每一阶段中,有的是由一段上坡路(3千米),一段平路(4千米),一段下坡路(2千米)和一段平路(4千米)组成的;有的是由一段上坡路(3千米),一段下坡路(2千米)和一段平路(4千米)组成的.已知摩托车跑完全程后,共跑了25段上坡路.全程中包含这两种阶段各几段

下载奥数植树问题四年级word格式文档
下载奥数植树问题四年级.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    四年级奥数鸡兔同笼问题

    鸡兔同笼问题 例【1】 鸡兔同笼,共有45个头,146只脚。笼中鸡兔各有多少只? 例【2】 盒子里有大、小两种钢珠共30个,共重266克,已知大钢珠每个11克,小钢珠每个7克。盒中大钢珠、小......

    四年级奥数

    一个木器厂要生产一批课桌,原计划每天生产60张,实际每天比原计划多生产4张,结果提前一天完成任务。原计划要生产多少张课桌? (1) 电视机厂接到一批生产任务,计划每天生产90太,可......

    四年级奥数盈亏问题练习

    四年级盈亏问题练习1、老师拿来一批树苗,分给一些同学去栽,每人每次分给一棵,一轮一轮往下分,当分剩下12棵时不够每人分一棵了,如果再拿来8棵,那么每个同学正好栽10棵。问参加栽......

    4.四年级奥数平均数问题

    第四讲平均数问题 教学目标 1、熟练的求平均数问题的基本数量关系:总数量÷总份数=平均数 教学重难点 1、找准已知量,未知量。准确的找到总数量,相应地份数,再求平均数。 2、......

    四年级奥数-平均数问题(含五篇)

    小学奥数培训教材程四年级全一册第十四讲平均数问题在生活和实际生产中,经常会遇到比较平均身高、平均气温等问题。求平均数问题的基本数量关系是: 总数量÷总份数=平均数; 由......

    小学四年级奥数-逻辑问题

    逻辑问题 例1 小王、小张和小李一位是工人,一位是农民,一位是教师,现在只知道:小李比教师年龄大;小王与农民不同岁;农民比小张年龄小。问:谁是工人?谁是农民?谁是教师?例2 刘刚、马辉......

    小学三年级奥数_植树问题_习题(含5篇)

    植树问题姓名 1,一条河堤长420米,从头到尾每隔3米栽一棵树,要栽多少棵树?2.肖林家门口到公路边有一条小路,长40米。肖林要在小路一旁每隔2米栽一棵树,一共要栽多少棵树?3,一个圆形水......

    四年级上册数学试题-奥数植树问题 冀教版 (无答案)

    植树问题【知识点拨】笔手指数和间隔数的关系:【例题1】两端都植树的问题(1)同学们在全长10米的小路一边植树,每间隔5米栽一棵。(两端要栽)一共要栽多少棵?(2)同学们在全长15米的小路......