学习一次函数的感想

时间:2019-05-13 02:17:31下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《学习一次函数的感想》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《学习一次函数的感想》。

第一篇:学习一次函数的感想

学习一次函数的感想

“函数”这个词,在我眼中就好比是一个正常人,有幼年,成年,老年,三个阶段。我第一次学习它的时候,一点都不明白,不论老师换多少种方法,就是丈二的和尚——摸不着头脑,经过一番苦练,最终手到擒来了。

在初学的过程中,要通过实际应用分析,认识常量和变量,了解用运动的观点,变化的观点去分析一些问题的思想方法。老师在给我们讲的时候就着重强调一次函数是很重要的内容,有较强的综合性,让我们好好学习。它也是今后学习其他类型的函数时一个重要基础,不要低估了它。

最让我头疼的地方就是结合图像和一次函数共同解题,这所谓难上加难,用函数观点去分析一元一次方程,一元一次不等式,用图像求一元一次方程的解。我每一次看到这种类型的题,就有点晕,不知从哪个地方下手。那是没有正确理解一次函数,图像和性质。例如,在通过看一次函数的图像分析一元一次不等式时,我逐渐发现一元一次不等式可以通过一次函数本身在图像上的位置体现出来,这样我们就把数学这种“数形结合”的思想有机地结合起来,如果没有正确认识很难理解透彻。认识函数,它是量与量之间互相依存,相互制约,一种对应关系,描点法作图像更能清晰地反应这种对应关系。我慢慢抓住了关键和重要点就不觉得难了,因而心中高兴极了。

一次函数能使我们在数学的海洋中寻找通往前方的大门,能让我们在知识的奥秘中茁壮成长,探索数学奥秘,能让我们感受到快乐和幸福。“学海无涯苦作舟”今后的数学学习中我会努力克服一切困难,认真学好每一课。

第二篇:一次函数

十九章

1、正比例函数和一次函数的概念

一般地,如果ykxb(k,b是常数,k0),那么y叫做x的一次函数。特别地,当一次函数ykxb中的b为0时,ykx(k为常数,k0)。这时,y叫做x的正比例函数。

2、一次函数的图像:所有一次函数的图像都是一条直线

3、一次函数、正比例函数图像的主要特征:一次函数ykxb的图像是经过点(0,b)的直线;正比例函数ykx的图像是经过原点(0,0)的直线。

4、正比例函数的性质

一般地,正比例函数ykx有下列性质:

(1)当k>0时,图像经过第一、三象限,y随x的增大而增大;

(2)当k<0时,图像经过第二、四象限,y随x的增大而减小。

5、一次函数的性质

一般地,一次函数ykxb有下列性质:

(1)当k>0时,y随x的增大而增大

(2)当k<0时,y随x的增大而减小

6、正比例函数和一次函数解析式的确定

确定一个正比例函数,就是要确定正比例函数定义式ykx(k0)中的常数k。确定一个一次函数,需要确定一次函数定义式ykxb(k0)中的常数k和b。解这类问题的一般方法是待定系数法。

1、反比例函数的概念 k一般地,函数y(k是常数,k0)叫做反比例函数。反比例函数的解x析式也可以写成ykx1的形式。自变量x的取值范围是x0的一切实数,函数的取值范围也是一切非零实数。

2、反比例函数的图像

反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。由于反比例函数中自变量x0,函数y0,所以,它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。

3、反比例函数的性质

k>0时,①x的取值范围是x0,y的取值范围是y0;

②当k>0时,函数图像的两个分支分别在第一、三象限。在每个象限内,y随x 的增大而减小。

k<0时,①x的取值范围是x0,y的取值范围是y0;

②当k<0时,函数图像的两个分支分别在第二、四象限。在每个象限内,y随x 的增大而增大。

4、反比例函数解析式的确定 k确定及诶是的方法仍是待定系数法。由于在反比例函数y中,只有一个x

待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k的值,从而确定其解析式。

习题(中考真题)

5.图4是广州市某一天内的气温变化图,根据图4,下列说法

中错误的是()..

(A)这一天中最高气温是24℃

(B)这一天中最高气温与最低气温的差为16℃

(C)这一天中2时至14时之间的气温在逐渐升高

(D)这一天中只有14时至24时之间的气温在逐渐降低

7.下列函数中,自变量x的取值范围是x≥3的是()

(A)y1(B)yx31x3(C)yx3(D)yx

33.下列各点中,在函数y2x7的图像上的是()

A.(2,3)B.(3,1)C.(0,-7)D.(-1,9)

5.下列函数中,当x>0时,y值随x值增大而减小的是()

2A.yxB.yx1C.y31xD.y 4x6、一次函数y3x4的图象不经过()

A第一象限B 第二象限C第三象限D 第四象限

11.已知函数y

13、函数y2,当x=1时,y的值是________ xx自变量x的取值范围是x

1y14.一次函数y(m2)x1,若随x的增大而增大,则m的取值范围是___________

15、已知广州市的土地总面积是7434km,人均占有的土地面积S(单位:km/人),随全市人口n(单位:人)的变化而变化,则S与n的函数关系式是.23.为了拉动内需,广东启动“家电下乡”活动。某家电公司销售给农户的Ⅰ型冰箱和Ⅱ型

冰箱在启动活动前一个月共售出960台,启动活动后的第一个月销售给农户的Ⅰ型和Ⅱ型冰箱的销量分别比启动活动前一个月增长30%、25%,这两种型号的冰箱共售出

12282

2台。(1)在启动活动前的一个月,销售给农户的Ⅰ型冰箱和Ⅱ型冰箱分别为多少台?

(2)若Ⅰ型冰箱每台价格是2298元,Ⅱ型冰箱每台价格是1999元,根据“家电下乡”的有关政策,政府按每台冰箱价格的13%给购买冰箱的农户补贴,问:启动活动后的第一个月销售给农户的1228台Ⅰ型冰箱和Ⅱ型冰箱,政府共补贴了多少元(结果保留2个有效数字)?

25.现计划把甲种货物1240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂有

A、B两种不同规格的货车厢共40节,使用A型车厢每节费用为6000元,使用B型车厢每节费用为8000元.

(1)设运送这批货物的总费用为y万元,这列货车挂A型车厢x节,试写出y与x之间的函数关系式;

(2)如果每节A型车厢最多可装甲种货物35吨和乙种货物15吨,每节B型车厢最多可装甲种货物25吨和乙种货物35吨,装货时按此要求安排A、B两种车厢的节数,那么共有哪几种安排车厢的方案?

(3)在上述方案中,哪个方案运费最省?最少运费为多少元?

21、(12分)如图8,一次函数ykxb的图象与反比例函数y

两点

(1)根据图象,分别写出A、B的坐标;

(2)求出两函数解析式;

(3)根据图象回答:当x为何值时,一次函数的函数值大于反比例函数的函

数值

图8 m的图象相交于A、Bx

23.某城市居民用水实行阶梯收费,每户每月用水量如果未超过20吨,按每吨

1.9元收费;每户每月用水量如果超过20吨,未超过的部分仍按每吨1.9元收费,超过部分则按每吨2.8元收费。设某户每月用水量为x吨,应收水费为y元。

(1)分别写每月用水量未超过20吨和超过20吨时,x与y 的函数关系式。

(2)若该城市某户5月份水费平均为每吨2.2元,求该户5月份用水多少吨?

答案

23.(本小题满分12分)

解:(1)在启动活动前的一个月,销售给农户的Ⅰ型冰箱和Ⅱ型冰箱分别为x、y台,得xy960x560,解得经检验,符合题意。1.3x1.25y1228y400

答:在启动活动前的一个月,销售给农户的Ⅰ型冰箱和Ⅱ型冰箱分别为560台、400台。

(2)(2298×560×1.3+1999×400×1.25)×13%=3.5×10

525.解:⑴设用A型车厢x节,则用B型车厢(40-x)节,总运费为y万元 .

依题意,得y=0.6 x+0.8(40-x)

=-0.2 x+

32⑵依题意,得

35x25(40x)≥1240,15x35(40x)≥880.

化简,得x≥240,x≥24,520≥20 x;x≤26.

∴24≤x≤26.

∵x取整数,故A型车厢可用24节或25节或26节.相应有三种装车方案:①24节A型车厢和16节B型车厢;②25节A型车厢和15节B型车厢;③26节A型车厢和14节B型车厢.

⑶由函数y=-0.2 x+32知,x越大,y越少,故当x=26时,运费最省. 这时 y=-0.2×26+32=26.8(万元)

答:安排A型车厢26节、B型车厢14节运费最省.最小运费为26.8万元.

1221.(1)A(-6,-2)B(4,3)(2)y=0.5x+1,y=(3)-64 x

23.(1)y=1.9x ,x≤20

y=38+2.8(20-x),x>20

(2)30

第三篇:一次函数教案

一、要点解读

1,知识总揽

一次函数是函数大家族中的主要成员之一,是研究两个变量和学习其它函数的基础,它的表达式简单,性质也不复杂,但在我们的日常生活中的应用却十分广泛,与其它函数的联系也十分密切,许多实际问题只要我们注意细心观察,认真分析,及时将问题转化为一次函数模型,再得用一次函数的性质即可求解.2,疑点、易错点

(1)若两个变量x、y间的关系式可以表示成y=kx+b(k≠0),则称y是x的一次函数.特别地,当b=0时,称y是x的正比例函数,就是说,正比例函数是一次函数的特例,而一次函数包含正比例函数,是正比例函数一定是一次函数,但一次函数不一定是正比例函数.如y=-x是正比例函数,也是一次函数,而y=-2x-3是一次函数,但并不是正比例函数.因此,同学们在复习时一定要注意正确理解正比例函数和一次函数的概念,注意掌握它们之间的区别和联系.(2)一次函数的图象是一条直线,它所经过的象限是由k与b决定的,所以在复习巩固一次函数的性质时可以通过函数图象来巩固,从而可以避免因k与b的符号的干扰.如,在如图中,表示一次函数y=mx+n与正比例函数y=mnx(m、n是常数且mn≠0)图象是()对于两不同函数图象共存同一坐标系问题,常假设某一图象正确而后根据字母系数所表示的实际意义来判定另一图象是否正确来解决问题.例如,假设选项B中的直线y=mx+n正确则m<0,n>0,mn<0则正比例函数y=mnx则应过第二、四象限,而实际图象则过第一、三象限,所以选项B错误.同理可得A正确.故应选A.(3)虽然一次函数的表达式简单,性质也并不复杂,且一次函数y=kx+b(k≠0)的图象是一条直线,它的位置由k、b的符号确定.但是,涉及实际问题的一次函数图象与自变量的取值范围,画出来的图象不一定是直线,可能是线段或其他图形,这一点既是学习一次函数的疑点,也是难点,更是解题量的易错点.如,拖拉机开始工作时,油箱中有油40L,如果每小时耗油5L,那么工作时,油箱中的余油量Q(L)与工作时间t(h)的函数关系用图象可表示为()依题意可以得到油箱中的余油量Q(L)与工作时间t(h)的函数关系为Q=40-5t,就这个一次函数的解析式而言,它的图象是一条直线,所以不少同学就会选择A,而事实上,自变量t有一个取值范围,即0≤t≤8,所以正确的答案应该选择C.二、思想方法

复习一次函数这一章的知识一定注意数学思想方法的巩固.具体地说,一次函数的知识涉及常见的思想方法有:(1)函数思想

所谓的函数思想就是用一个表达式将两个变量表示出来其两个变量之间是一个对应的关系.确定两个变量之间的关系和列一元一次方程解应用题基本相似,即弄清题意和题目中的数量关系,找到能够表示应用题全部含义的一个相等的关系,根据这个相等的数量关系式,列出所需的代数式,从而列出两个变量之间的关系式.例1 长方形的长是20,宽是x,周长是y.写出x和y之间的关系式.简析(1)由长方形的周长公式,得y=2(x+20)=2x+40;说明 在依据题意写出两个变量之间的关系式时,会经常用到以前学到的各种公式,所以对以前常用的公式我们要熟练掌握,分析每一个公式的结构特征,做到运用自如,方可避免常见错误.(2)数形结合思想

数形结合就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义,使问题的数量关系巧妙、和谐地结合起来,通过数与形的相互转化来解决数学问题的思想.例2 某博物馆每周都吸引大量中外游客前来参观.如果游客过多,对馆中的珍贵文物会产生不利影响.但同时考虑到文物的修缮和保存等费用问题,还要保证一定的门票收入.因此,博物馆采取了涨浮门票价格的方法来控制参观人数.在该方法实施过程中发现:每周参观人数与票价之间存在着如图2所示的一次函数关系.在这样的情况下,如果确保每周4万元的门票收入,那么每周应限定参观人数是多少?门票价格应是多少元? 解 设每周参观人数与票价之间的一次函数关系式为y=kx+b.由题意,得 解得

所以y=-500x+12 000.而根据题意,得xy=40 000,即x(-500x+12 000)=40 000,x2-24x+80=0, 所以方程变形为(x-12)2=64,两边开平方求得x1=20,x2=4.把x1=20,x2=4分别代入y=-500x+12 000中得y1=2 000,y2=10 000.因为控制参观人数,所以取x=20,y=2 000.即每周应限制参观人数是2 000人,门票价格应是20元.说明 本题中得到方程x2-24x+80=0,虽然没有学过不会解,但通过适当变形还是可以求解的.(3)待定系数法

待定系数法是确定代数式中某项系数的数学方法.它是方程思想的具体运用.例3 为了学生的身体健康,学校课桌、凳的高度都是按一定的关系科学设计的.小明对学校所添置的一批课桌、凳进行观察研究,发现它们可以根据人的身长调节高度.于是,他测量了一套课桌、凳上相对应的四档高度,得到如下数据: 第一档 第二档 第三档 第四档

凳高x(cm)37.0 40.0 42.0 45.0 桌高y(cm)70.0 74.8 78.0 82.8(1)小明经过对数据探究,发现:桌高y是凳高x的一次函数,请你求出这个一次函数的关系式(不要求写出x的取值范围);(2)小明回家后,测量了家里的写字台和凳子,写字台的高度为77cm,凳子的高度为43.5cm,请你判断它们是否配套,说明理由.解(1)设y=kx+b(k≠0),依题意得 解得

所以这个一次函数的关系式y=1.6x+10.8;(2)当小明家写字台的高度y=77cm时,由(1)中的一次函数的关系式y=1.6x+10.8得77=1.6x+10.8,解得x=41.375<凳子的高度43.5cm,所以小明家的写字台和凳子的高度是不配套的.说明 对于(2)中的问题也可以利用凳子的高度x,求出写字台的高度y,再与77cm比较.由此,用待定系数法求一次函数的解析式的方法可归纳为:“一设二列三解四还原”.就是说,一设:设出一次函数解析式的一般形式y=kx+b(k≠0);二列:根据已知两点或已知图象上的两个点坐标列出关于k、b的二元一次方程组;三解:解这个方程组,求出k、b的值;四还原:将已求得

(4)方程思想

方程思想即将问题中的数量关系运用数学语言转化为方程模型加以解决.方程思想是最重要的一种数学思想,在数学解题中所占比重较大,综合知识强、题型广、应用技巧灵活.从例

1、例2和例3中,我们都可以看出用到了方程思想求解.三、考点解密

(所选例题均出自2006年全国部分省市中考试卷)考点1 确定自变量的取值范围

确定函数解析式中的自变量的取值范围,只需保证其函数有意义即可.例1(盐城市)函数y= 中,自变量x的取值范围是.分析 由于函数的表达式是分式型的,因此必需保证分母不等于0即可.解 要使函数y= 有意义,只需分母x-1≠0,即x≠1.说明 确定一个函数的自变量的取值范围,对于函数是整式型的可以取任何数,若是分数型,只需使分母不为0,对于从实际问题中求出的解析式必须保证使实际问题有意义.考点2 函数图象

把一个函数的自变量x与对应因变量y的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做函数函数图象.例2(泉州市)小明所在学校离家距离为2千米,某天他放学后骑自行车回家,行驶了5分钟后,因故停留10分钟,继续骑了5分钟到家.如图1中,哪一个图象能大致描述他回家过程中离家的距离s(千米)与所用时间t(分)之间的关系()分析 依据题意,并观察分析每一个图象的特点,即可作出判断.解 依题意小明所在学校离家距离为2千米,先行驶了5分钟后,因故停留10分钟,继续骑了5分钟到家,即能大致描述他回家过程中离家的距离s(千米)与所用时间t(分)之间的关系只有D图符合,故应选D.说明 求解时要充分发挥数形结合的作用,及时从图象中捕捉求解有用的信息,并依据函数图象的概念对图象作出正确判断.考点3 判断图象经过的象限

对于一次函数y=kx+b:①当k>0,b>0时,图象在第一、二、三象限内;②当k>0,b<0时,图象在第一、三、四象限内;③当k<0,b>0时,图象在第一、二、四象限内;④当k<0,b<0时,图象在第二、三、四象限内.特别地,b=0即正比例函数y=kx有:①当k>0时,图象在第一、三象限内;②当k<0时,图象在第二、四象限内.例3(十堰市)已知直线l经过第一、二、四象限,则其解析式可以为___(写出一个即可).分析 由题意直线l经过第一、二、四象限,此时满足条件的解析式有无数个.解 经过第一、二、四象限的直线有无数条,所以本题是一道开放型问题,答案不唯一.如:y=-x+2,y=-3x+1.等等.说明 处理这种开放型的问题,只要选择一个方便而又简单的答案即可.考点4 求一次函数的表达式,确定函数值

要确定一次函数的解析式,只需找到满足k、b的两个条件即可.一般地,根据条件列出关于k、b的二元一次方程组,解出k与b的值,从而就确定了一次函数的解析式.另外,对于实际问题可妨照列方程解应用题那样,但应注意自变量的取值范围应受实际条件的制约.例4(衡阳市)为了鼓励市民节约用水,自来水公司特制定了新的用水收费标准,每月用水量,x(吨)与应付水费(元)的函数关系如图2.(1)求出当月用水量不超过5吨时,y与x之间的函数关系式;(2)某居民某月用水量为8吨,求应付的水费是多少?

分析 观察函数图象我们可以发现是一条分段图象,因此只要分0≤x≤5和x≥5求解.解(1)由图象可知:当0≤x≤5时是一段正比例函数,设y=kx,由x=5时,y=5,得5=5k,即k=1.所以0≤x≤5时,y=x.(2)当x≥5时可以看成是一条直线,设y=k1x+ b由图象可知 解得 所以当x≥5时,y=1.5x-2.5;当x=8时,y=1.5×8-2.5=9.5(元).说明 确定正比例函数的表达式需要一个独立的条件;确定一次函数的表达式需要两个独立的条件.对于在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y值.在处理本题的问题时,只需利用待定系数法,构造出相应的二元一次方程组求解.另外,在处理这类问题时,一定要从图形中获取信息,并把所得到的信息进行联系处理.考点5 比较大小 利用一次函数的性质可以比较函数值的大小,具体地应由k的符号决定.例5(青岛市)点P1(x1,y1),点P2(x2,y2)是一次函数y=-4x+3 图象上的两个点,且 x1y2 B.y1>y2 >0 C.y1y2.故应选A.说明 在一次函数y=kx+b中,①当k>0,y随x的增大而增大;②当k<0,y随x的增大而减小.考点6 图象与坐标轴围成的面积问题

对于一次函数y=kx+b与坐标轴的两个交点坐标分别是(0,b)和(-,0),由此与坐标轴围成的三角形的面积为 =.例6(日照市)已知直线y=mx-1上有一点B(1,n),它到原点的距离是 ,则此直线与两坐标轴围成的三角形的面积为()A.B.或 C.或 D.或

分析 若能利用直线y=mx-1上有一点B(1,n),它到原点的距离是 求出n,则可以进一步求出了m,从而可以求出直线与两坐标轴围成的三角形的面积.解 因为点B(1,n)到原点的距离是 ,所以有12+ n2=10,即n=±3,则点B的坐标为(1,3)或(1,-3).分别代入y=mx-1,得m=4,或m=-2.所以直线的表达式为y=4x-1或y=-2x-1,即易求得直线与坐标轴围成的三角形的面积为 或.故应选C.说明 要求直线与两坐标轴围成的三角形的面积,只要能求出直线与坐标轴的交点坐标即可,这里的分类讨论是正确求解的关键.考点7 利用一次函数解决实际问题

利用一次函数解决实际问题可妨照列方程解应用题那样,但应注意自变量的取值范围应受实际条件的制约.例7(长沙市)我市某乡A、B两村盛产柑桔,A村有柑桔200吨,B村有柑桔300吨.现将这些柑桔运到C、D两个冷藏仓库,已知C仓库可储存240吨,D仓库可储存260吨;从A村运往C、D两处的费用分别为每吨20元和25元,从B村运往C、D两处的费用分别为每吨15元和18元.设从A村运往C仓库的柑桔重量为x吨,A,B两村运往两仓库的柑桔运输费用分别为yA元和yB元.(1)请填写下表,并求出yA、yB与x之间的函数关系式;C D 总计

A x吨 200吨

B 300吨

总计 240吨 260吨 500吨

(2)试讨论A,B两村中,哪个村的运费较少;(3)考虑到B村的经济承受能力,B村的柑桔运费不得超过4830元.在这种情况下,请问怎样调运,才能使两村运费之和最小?求出这个最小值.分析 依题意可以知道从A村运往C仓库的柑桔重量、从A村运往D仓库的柑桔重量、从B村运往C仓库的柑桔重量和从B村运往D仓库的柑桔重量,这样就可以求得yA、yB与x之间的函数关系式,进而利用不等式和一次函数的性质求解.解(1)依题意,从A村运往C仓库的柑桔重量为x吨,则从A村运往D仓库的柑桔重量应为(200-x)吨,同样从B村运往C仓库的柑桔重量为(240-x)吨,从B村运往D仓库的柑桔重量应为(300-240+x)吨,即(60+x)吨.所以表中C栏中填上(240-x)吨,D栏中人上到下依次填(200-x)吨、(60+x)吨.从而可以分别求得yA=-5x+5000(0≤x≤200),yB=3x+4680(0≤x≤200).(2)当yA=yB时,-5x+5000=3x+4680,即x=40;当yA>yB时,-5x+5000>3x+4680,即x<40;当yA40;所以当x=40时,yA=yB即两村运费相等;当0≤x≤40时,yA>yB即 村运费较少;当40

1,(衡阳市)函数y= 中自变量劣的取值范围是___.2,(攀枝花市)如图,直线y=-x+4与y轴交于点A,与直线y= x+ 交于点B,且直线y= x+ 与x轴交于点C,则△ABC的面积为___.3,(海淀区)打开某洗衣机开关,在洗涤衣服时(洗衣机内无水),洗衣机经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间满足某种函数关系,其函数图象大致为()4,(江西省)如图,已知直线l1经过点A(-1,0)与点B(2,3),另一条直线l2经过点B,且与x轴交于点P(m,0).(1)求直线l1的解析式;(2)若△APB的面积为3,求m的值.5,(南安市)近两年某地外向型经济发展迅速,一些着名跨国公司纷纷落户该地新区,对各类人才需求不断增加,现一公司面向社会招聘人员,其信息如下: [信息一]招聘对象:机械制造类和规划设计类人员共150名.[信息二]工资待遇:机械类人员工资为600元/月,规划设计类人员为1000元/月.设该公司招聘机械制造类和规划设计类人员分别为x人、y人.(1)用含x的代数式表示y;(2)若公司每月付给所招聘人员的工资为p元,要使本次招聘规划设计人员不少于机械制造人员的2倍,求p的取值范围.参考答案: 1,≥1;2,4;3,D;

4,(1)设直线l1的解析式为 y=kx + b,由题意,得 解得 所以,直线l1的解析式为 y=x +1.(2)当点P在点A的右侧时,AP=m-(-1)=m +1,有.解得 m=1,此时,点P的坐标为(1,0);当点P在点A的左侧时,AP=-1-m,有.解得 m =-3,此时,点P的坐标为(-3,0).综上所述,m的值为1或-3;5,(1)y=150-x.(2)根据题意,得:y≥2x,所以150-x≥2x,解得:x≤50,又x≥0,150-x≥0,即0≤x≤50,所以p=600x+1000(150-x)=-400x+150000;又因为p随x的增大而减小,并且0≤x≤50,所

-400×50+150000≤p≤-400×0+150000,即130000≤p≤150000

第四篇:一次函数教案

一次函数(1)

知识技能目标

1.理解一次函数和正比例函数的概念;

2.根据实际问题列出简单的一次函数的表达式.

过程性目标

1.经历由实际问题引出一次函数解析式的过程,体会数学与现实生活的联系; 2.探求一次函数解析式的求法,发展学生的数学应用能力.

教学过程

一、创设情境

问题1 小明暑假第一次去北京.汽车驶上A地的高速公路后,小明观察里程碑,发现汽车的平均车速是95千米/小时.已知A地直达北京的高速公路全程为570千米,小明想知道汽车从A地驶出后,距北京的路程和汽车在高速公路上行驶的时间有什么关系,以便根据时间估计自己和北京的距离.

分析 我们知道汽车距北京的路程随着行车时间而变化,要想找出这两个变化着的量的关系,并据此得出相应的值,显然,应该探求这两个变量的变化规律.为此,我们设汽车在高速公路上行驶时间为t小时,汽车距北京的路程为s千米,根据题意,s和t的函数关系式是

s=570-95t.

说明 找出问题中的变量并用字母表示是探求函数关系的第一步,这里的s、t是两个变量,s是t的函数,t是自变量,s是因变量.

问题2 小张准备将平时的零用钱节约一些储存起来.他已存有50元,从现在起每个月节存12元.试写出小张的存款与从现在开始的月份之间的函数关系式. 分析 我们设从现在开始的月份数为x,小张的存款数为y元,得到所求的函数关系式为:y=50+12x.

问题3 以上问题1和问题2表示的这两个函数有什么共同点?

二、探究归纳

上述两个问题中的函数解析式都是用自变量的一次整式表示的.函数的解析式都是用自变量的一次整式表示的,我们称它们为一次函数(linear function).一次函数通常可以表示为y=kx+b的形式,其中k、b是常数,k≠0.

特别地,当b=0时,一次函数y=kx(常数k≠0)出叫正比例函数(direct proportional function).正比例函数也是一次函数,它是一次函数的特例.

三、实践应用

例1 下列函数关系中,哪些属于一次函数,其中哪些又属于正比例函数?(1)面积为10cm2的三角形的底a(cm)与这边上的高h(cm);(2)长为8(cm)的平行四边形的周长L(cm)与宽b(cm);

(3)食堂原有煤120吨,每天要用去5吨,x天后还剩下煤y吨;(4)汽车每小时行40千米,行驶的路程s(千米)和时间t(小时).

分析 确定函数是否为一次函数或正比例函数,就是看它们的解析式经过整理后是否符合y=kx+b(k≠0)或y=kx(k≠0)形式,所以此题必须先写出函数解析式后解答.

20解(1)a,不是一次函数.

h(2)L=2b+16,L是b的一次函数.(3)y=150-5x,y是x的一次函数.

(4)s=40t,s既是t的一次函数又是正比例函数.

例2 已知函数y=(k-2)x+2k+1,若它是正比例函数,求k的值.若它是一次函数,求k的值.

分析 根据一次函数和正比例函数的定义,易求得k的值.

1解 若y=(k-2)x+2k+1是正比例函数,则2k+1=0,即k=.

2若y=(k-2)x+2k+1是一次函数,则k-2≠0,即k≠2.

例3 已知y与x-3成正比例,当x=4时,y=3.(1)写出y与x之间的函数关系式;(2)y与x之间是什么函数关系;(3)求x=2.5时,y的值.

解(1)因为 y与x-3成正比例,所以y=k(x-3). 又因为x=4时,y=3,所以3= k(4-3),解得k=3,所以y=3(x-3)=3x-9.(2)y是x的一次函数.

(3)当x=2.5时,y=3×2.5=7.5.

例4 若直线y=-kx+b与直线y=-x平行,且与y轴交点的纵坐标为-2;求直线的表达式.分析 直线y=-kx+b与直线y=-x平行,可求出k的值,与y轴交点的纵坐标为-2,可求出b的值.解 因为直线y=-kx+b与直线y=-x平行,所以k=-1,又因为直线与y轴交点的纵坐标为-2,所以b=-2,因此所求的直线的表达式为y=-x-2.3例5求函数yx3与x轴、y轴的交点坐标,并求这条直线与两坐标轴围成2的三角形的面积.3分析 求直线yx3与x轴、y轴的交点坐标,根据x轴、y轴上点的纵坐标2和横坐标分别为0,可求出相应的横坐标和纵坐标;结合图象,易知直线3yx3与x轴、y轴围成的三角形是直角三角形,两条直角边就是直线23yx3与x轴、y轴的交点与原点的距离.2

解 当y=0时,x=2,所以直线与x轴的交点坐标是A(2,0);当x=0时,y=-3,所以直线与y轴的交点坐标是B(0,-3).11SOABOAOB233.22

例6 画出第一节课中问题(1)中小明距北京的路程s(千米)与在高速公路上行驶的时间t(时)之间函数s=570-95t的图象.分析 这是一题与实际生活相关的函数应用题,函数关系式s=570-95t中,自变量t是小明在高速公路上行驶的时间,所以0≤t≤6,画出的图象是直线的一部分.再者,本题中t和s取值悬殊很大,故横轴和纵轴所选取的单位长不一致.讨论 1.上述函数是否是一次函数?这个函数的图象是什么? 2.在实际问题中,一次函数的图象除了直线和本题的图形外,还有没有其他的情形?你能不能找出几个例子加以说明.例7 旅客乘车按规定可以免费携带一定重量的行李.如果所带行李超过了规定的重量,就要按超重的千克收取超重行李费.已知旅客所付行李费y(元)可以

1看成他们携带的行李质量x(千克)的一次函数为yx5.画出这个函数的6图象,并求旅客最多可以免费携带多少千克的行李?

分析 求旅客最多可以免费携带多少千克的行李数,即行李费为0元时的行李数.为此只需求一次函数与x轴的交点横坐标的值.即当y=0时,x=30.由此可知这个函数的自变量的取值范围是x≥30. 解 函数y1x5(x≥30)图象为: 6

当y=0时,x=30.所以旅客最多可以免费携带30千克的行李.例8 今年入夏以来,全国大部分地区发生严重干旱.某市自来水公司为了鼓励市民节约用水,采取分段收费标准,若某户居民每月应交水费y(元)是用水量x(吨)的函数,当0≤x≤5时,y=0.72x,当x>5时,y=0.9x-0.9.(1)画出函数的图象;

(2)观察图象,利用函数解析式,回答自来水公司采取的收费标准.分析 画函数图象时,应就自变量0≤x≤5和x>5分别画出图象,当0≤x≤5时,是正比例函数,当x>5是一次函数,所以这个函数的图象是一条折线.解(1)函数的图象是:

(2)自来水公司的收费标准是:当用水量在5吨以内时,每吨0.72元;当用水量在5吨以上时,每吨0.90元.四、交流反思

b1.一次函数y=kx+b,当x=0时,y=b;当y=0时,x.所以直线y=kx+

kbb与y轴的交点坐标是(0,b),与x轴的交点坐标是,0;

k2.在画实际问题中的一次函数图象时,要考虑自变量的取值范围,画出的图象往往不再是一条直线.

第五篇:一次函数教案

教案示例

6.2一次函数

一、教学目标

1、理解一次函数和正比例函数的概念,以及它们之间的关系。

2、能根据所给条件写出简单的一次函数表达式。

二、能力目标

1、经历一般规律的探索过程、发展学生的抽象思维能力。

2、通过由已知信息写一次函数表达式的过程,发展学生的数学应用能力。

三、情感目标

1、通过函数与变量之间的关系的联系,一次函数与一次方程的联系,发展学生的数学思维。

2、经历利用一次函数解决实际问题的过程,发展学生的数学应用能力。

四、教学重难点

1、一次函数、正比例函数的概念及关系。

2、会根据已知信息写出一次函数的表达式。

五、教学过程

1、新课导入

有关函数问题在我们日常生活中随处可见,如弹簧秤有自然长度,在弹性限度内,随着所挂物体的重量的增加,弹簧的长度相应的会拉长,那么所挂物体的重量与弹簧的长度之间就存在某种关系,究竟是什么样的关系,请看:

某弹簧的自然长度为 3厘米,在弹性限度内,所挂物体的质量x每增加 1千克、弹簧长度y增加 0.5厘米。

(1)计算所挂物体的质量分别为 1千克、2千克、3千克、4千克、5千克时弹簧的长度,并填入下表:

(2)你能写出x与y之间的关系式吗?

分析:当不挂物体时,弹簧长度为 3厘米,当挂 1千克物体时,增加 0.5厘米,总长度为 3.5厘米,当增加 1千克物体,即所挂物体为 2千克时,弹簧又增加 0.5厘米,总共增加 1厘米,由此可见,所挂物体每增加 1千克,弹簧就伸长 0.5厘米,所挂物体为x千克,弹簧就伸长0.5x厘米,则弹簧总长为原长加伸长的长度,即y=3+0.5x。

2、做一做

某辆汽车油箱中原有汽油 100升,汽车每行驶 50千克耗油 9升。

(1)完成下表:

你能写出x与y之间的关系吗?(y=100−0.18x或y=100−x)

接着看下面这些函数,你能说出这些函数有什么共同的特点吗?

上面的几个函数关系式,都是左边是因变量,右边是含自变量的代数式,并且自变量和因变量的指数都是一次。

3、一次函数,正比例函数的概念

若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称y是x的正比例函数。

4、例题讲解

5、课堂练习

补充练习。。。

六、课后小节

1、一次函数、正比例函数的概念及关系。

2、能根据已知简单信息,写出一次函数的表达式。

下载学习一次函数的感想word格式文档
下载学习一次函数的感想.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    一次函数教案

    一次函数教案 (一) 教学目标 (一)教学知识点 1.掌握一次函数解析式的特点及意义.2.知道一次函数与正比例函数关系. 3.理解一次函数图象特征与解析式的联系规律.4.会用简单方法画一次函......

    一次函数课题学习、_选择方案__教案

    19.3 课题学习选择方案 (第1课时) 一、教学目标 (1)进一步了解一次函数的解析式和图象在解决简单实际中的应用. (2)尝试解决最佳方案设计问题.建立函数模型解决实际问题. 二、教学......

    学习感想

    学习感想 作为一名参加公司工作两个月的新员工,仔细阅读完了赵步长教授和赵涛董事长的谈话,让我切身感受到了步长公司与其他企业的不同;也坚定了我一定要在步长公司干出一番业......

    学习感想

    学习感想——思路决定出路人的学习是无止境的,只有不断的学习,才能给自己更丰富,更开阔的思路,经过两天的学习,让我感悟到很多事情,都是有两面性的,穷则变,变则通,出路在于变通,当目前......

    学习感想(★)

    赣州学习心得体会4月初行里组织我们赴赣参观学习,回来之后不禁感慨万分,在此我就个人的一些感受付之笔端与大家分享。 此次学习本人感受最深的是从 外在看他行,环境优美,干净整......

    学习感想

    学贵在“精” 这里的“精”不指精湛,而是精明。或许很多人马上有异议:精明?我就不是聪明人,怎么精明学习?错,精明学习不是只有聪明人能做到,而是任何有心学习的人都可以做到。 为什......

    学习感想

    2012年3月22-25日,我有幸到北京参加了由中国教师教育视频网组织的“第四届名师论坛暨语、数、英特级教师现场课观摩会”,听取了魏书生、龚正行、李红旗、季燕等教育专家的报告......

    学习感想

    学习感想 今天,我有幸聆听了陈老师以高效课堂为主题的专业报告。与以往的讲座和报告不同的是,陈老师亲自示范了一节五年级的阅读课,随后通过对自己的讲课进行剖析,提出了自己对......