第一篇:核心素养立意下的数学课堂教学实践研讨(模版)
《核心素养立意下的数学课堂教学实践研讨》学习心得
2017年10月27日星期五,我们应邀参加了云山中学第四期教学论坛,主题:核心素养立意下的数学课堂教学实践研讨,主讲老师是来自湖北省荆州市名师工作室的王用华专家。本次研讨活动分为二大部分:上午第二三节课一课两讲,四五节课研讨、评课。下午听取王用华老师关于核心素养立意下的数学课堂教学实践讲座。通过这次教学实例实践研讨学习,使我受益匪浅,对数学核心素养有了一定的认识。数学素养是指当前或未来的生活中为满足个人成为一个会关心、会思考的人的需要,而具备的认识、理解数学在自然、社会生活中的地位的能力,并能做出数学判断的能力、参与数学活动的能力。同时,数学素养也是人们通过数学的学习建立起来的认识、理解和处理周围事物时所具备的品质,通常是在人们与周围环境产生相互作用时所表现出来的思考方式和解决问题的策略。听了王老师的讲座,感悟深刻,现就我的学习情况谈谈自己的一点体会。
第一,“核心素养”是学生数学素养的重要标志。“数学素养”是人在先天基础上,受后天环境、数学教育等影响下,所获得的数学知识技能、数学思想方法、数学能力、数学观念和数学思维品质等融于身心的一种比较稳定的心理状态。所以在以后的数学教学设计时一定要注意:
1、站位要高、基点要低;
2、由浅入深、深入浅出;
3、融入思想、突出思考;
4、明暗交融、和谐统一。如:把数量和数建立起联系,让学生形成数感;把已有知识模型类比学习新的知识,培养学生对新知识的构建能力,等等。核心素养是与数学知识、解决问题的能力密切联系起来,共同构成学生的数学素养。
第二,“核心素养”体现数学课程的基本理念和总体目标,反映了数学的本质和价值。《义务教育数学课程标准(2011年版)》提出数学课程与教学中应当特别关注的10个“能力”,即 数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想、应用意识和创新意识。我们也可以将这10个“能力”理解为数学的核心素养。数学核心素养是学生数学素养的重要标志、体现数学课程的基本理念和总体目标、反映了数学的本质和价值。
第三,数学教学对学生“核心素养的培养”的提出为我们广大一线数学教师提出了更高的要求。我们不只要传授知识,更要传授方法。我们要教会学生用数学的视角看世界,也要用数学的思维思考问题,更要用数学的方法解决问题。我们要从学生已有的知识经验基础之上,结合教学内容渗透数学思想的培养,培养学生核心数学素养。
在今后的教学工作中,我们将根据民办学校的实际情况,努力转变教师的教学能力和教学方法。积极思考,精心设计教案,力求体现以学生为本,处处为学生考虑,并在教学过程中,不断学习,不断反思,提高自己各方面的综合能力,同时也提升自己的专业素养。今后的教学工作,我将把这场讲座中学到的教学方法借鉴到我们的教学活动中,提高学生学习数学的兴趣,培养学生数学核心素养,让学生能力得到全面发展。
2017-10-27 华明学校
第二篇:核心素养如何落地数学课堂教学
北师大五年级上册
《组合图形面积》教学设计
一、教学目标
1、复习巩固各种图形面积的计算方法,明确组合图形是由几个简单图形组合而成,求组合图形的面积就是求几个简单图形的面积的和或差的计算,提高学生的识图能力,分析综合能力和空间想象能力。
2、通过实践操作、练习,提高观察、分析能力和解题的灵活性;能正确地分析图形。
3、培养学生的合作、探究意识及创新精神,养成积极参与数学学习活动的习惯。
二、教材分析
组合图形面积是在长方形、正方形、平行四边形、三角形和梯形这五个基本图形的面积公式学习之后,进行的一种由形象到抽象的学习。解题的基本理念是将组合图形转化为基本图形进行计算,需要发散学生的思维,会分析图形的构成,能够正确分析图形的隐含数据条件,鼓励学生一题多解。
三、学生状况分析
组合图形面积是由直观走向抽象的一节内容,重在方法的挖掘。在教学中,不能以教师为中心来死搬硬套教材,应合理地利用了教材资源。使学生更广泛地理解什么是组合图形,更大限度地激活每个学生寻求组合图形面积计算的思维动力,然后逐步展开有层次的思维训练,开阔学生的思维空间,鼓励学生积极探索。
四、教学设计
(一)观察动画,复习旧知,引出新知
1、观察动画,分析引入
(媒体出示由基本图形拼成的太阳、狗、房子、小鸡、花草树木等)
师:观察这幅图画,你发现了什么?
生:很多的基本图形,组成了很多的图形。[板书:基本图形]
师:这些由基本图形组合而成的图形,就叫做组合图形。[板书:组合图形]
2、复习基本图形面积公式
师:还记得我们都学过哪些基本图形吗?
(随着学生回答,按学习的顺序贴各个基本图形)
问:那谁还记得这些基本图形的面积公式?
(随着学生回答,在各个基本图形后面写公式)
师:真不错,看来同学们对面积公式知识的掌握相当扎实。那像这些组合图形,怎么求面积呢?有同学已经有想法了。今天这节课,我们一起来探索组合图形面积的计算方法?【板书:在组合图形后面增加“面积” 】
(二)动手拼图,初探方法
1、自拼图形,分析要素
师:拿出你的学具袋和做题纸。请一位同学来给大家读读要求吧。
请你从学具中任选两个基本图形,拼出一个组合图形,粘在答题纸的方框内。
边做边思考:
师:你拼的组合图形由什么基本图形组成的?这些基本图形的要素是什么?
师:现在,就请你挑出你喜欢的基本图形,来拼一个组合图形,并和小组内的同学讨论一下,怎么求你这个组合图形的面积呢?
(学生活动,教师巡视,指导画高。)
2、展示图形,分析条件
(学生分别介绍所拼的组合图形后,教师选择其中的一个作重点分析。)
师:现在,我们来看右面的组合图形(见右下图),它是由一个三角形和一个长方形组成的。有一条边既做三角形的底又做长方形的长,是公共边。
(强调公共边:既做长方形的长,又作三角形的底。)
3、打开思路,探索面积
师:怎样求一个组合图形的面积?
生:分别计算三角形与长方形的面积,然后相加。
师:谁能说一说具体的计算过程?
(学生叙述,教师板书计算过程如下。)
师:下面,请每个小朋友试着求出自己所拼的组合图形的面积。
(学生分别计算自己所拼的图形组合的面积,并进行交流。)
师:刚才很多同学介绍了自己所拼组合图形的面积,那么,想一想这些图形的计算方法有什么共同的特点?
生:分别计算几个基本图形的面积,然后相加。
(三)拓展方法,发展思维
师:刚才同学们的回答特别精彩,想法也非常巧妙。现在,有个叫小华的同学他家里面要装修,计划在客厅铺地板(媒体出示课本第75页的客厅平面图)。
师:请你估计他家至少要买多大面积的地板。
(学生小组讨论、交流)
师:请哪个小组来介绍,小华家的客厅面积是怎样计算的?
(学生分别介绍不同的计算方法,见下图)
3、归纳提高
师:请同学们想一想,上述四种计算方法中,哪些是相同的,哪些是不同的?
生:前三个图形都是将组合图形进行分割,然后再进行计算。而第四个图形是补上去一块。
师:为什么要补上一块呢?
生:补一块就成基本图形了。
师:这种方法叫添补的方法,将原图形补充为基本图形,然后求出整个儿图形的面积,然后再减去补充的部分的面积。
(四)巩固训练,一题多解
师:这是学校教学楼占地的面积,你能用几种方法解决这个问题?(出示下图)
师:请先在练习纸上画出解题的思路,然后进行计算。
(学生画图分析,并计算。具体计算过程略)
(五)小结:这节课你有什么收获?
《组合图形面积》教学反思
在探索组合图形面积的过程中,我注重让学生通过动手操作、观察、推理等手段,分析探索组合图形,在发展了学生空间观念的同时,找出隐含的条件,是学生能够利用已有的知识解决问题。
1、注重方法的指导与总结。授人以鱼,不如授人以渔。在本课的教学过程中,十分注重分析、解题方法的指导,在层层深入,环环相扣的学习过程中,始终坚持为学生创设自主探索的情境,让学生体验成功的愉悦,学生在知识内在魅力的吸引和恰当指导下,主动投入到知识的发展过程中,自己悟出学习方法,学的主动积极、生动灵活。通过一题多解的训练,培养发散思维,启发学生多角度、多方向、多层次挖掘新奇思路、各自提出有价值的分割方法。
2、运用现代化的教学手段,向学生提供直观、多彩,、生动的形象,使学生多种感官同时受到刺激,激发了学生学习的积极性,同时把教学过程组织得更生动,形象,能启发学生进行总结归纳,抽象概括,主动参与知识的形成过程。
3、问题来源于学生,回归于学生。学生在拼图的过程中,放手让他们拼图,测量各个要素,解决提出的问题。让学生在活动中,亲自体验自己的成功,在初步形成对组合图形概念的基础上,对“组合”的意义有了更深一层的理解,获得更多的成功的愉悦。
4、出现未预想到的“移补”的方法解题。在预先备课时,只考虑到“割”和“补”,没想到学生在解决第(四)部分的图形时,应用了“移补”的方法,如图所示
想法很奇特,是预料之外的。虽然是因为数据的偶然性,但这种方法用起来比较简便,予以鼓励。
新课程理念强调:人人在数学学习中有成功的体验,人人都能得到发展。数学知识、数学思想和方法必须由学生在现实的数学实践活动中理解和发展。学生在自身的自主探索中或者在与同伴的合作交流中,放飞着思维,张扬着个性,在互补反思中得到共同的提高,充分体验到了成功的乐趣,从而真正意义上的成为了学习的主人。
《组合图形面积》教学点评
本节课采用了多媒体教学,充分调动了学生的积极性,学习气氛愉悦,学生的主体性得到充分的发挥,学生参与热情较高。老师的教学安排层层递进,学生思路逐渐开阔,在提高学生的空间能力的同时,也提高了对图形的分析能力。汪老师的教学十分注重培养学生对方法的归类和总结,提高了学生的抽象概括能力,使学生对图形由直观印象上升到抽象的归纳理解。
第三篇:数学核心素养
数学核心素养
上世纪60年代以来,在重视“双基教学”的口号下,一些学校大搞题海战术,只顾成绩,不管其它,加重了师生负担,造成应试教育和片面追求升学率的严重后果。为了改变这种情况,“三基教学”和“四基教学”的概念相继出现,目的是在继承双基教学传统的基础上,进一步适应和体现时代的要求。三基教学即在基础知识和基本能力技能之外,增加“基本思想和基本方法”,四基教学则指在三基之外再增加一项“基本活动经验”。
新一轮基础教育课程改革实施以来,新的思潮和观点不断涌现,其中影响较大的,一是素质教育的口号,二是情感态度价值观的培养。围绕这两个主题,多年来,教育工作者进行了艰苦的探索实践,取得了一定的成绩,推动了我国基础教育事业的发展。
然而,素质教育和情感态度价值观是较为宏观的概念,如何使其落到实处,便于操作,易于实施呢?学科核心素养的提出很好地解决了这个问题。2014年4月,教育部印发《关于全面深化课程改革落实立德树人根本任务的意见》,要求统筹各方面的力量,根据学生的成长规律和社会对人才的需求,把对学生德智体美全面发展总体要求和社会主义核心价值观的有关内容细化,研究制定各学段学生发展的核心素养体系。
各学科核心素养的内容和要求既相互区别又相互联系,不能截然分开。就数学学科而言,研究表明,数学核心素养包含数学抽象、逻辑推理、数学建模、数学运算、直观想象、数据分析等六个方面。数学学科核心素养的培养,要通过学科教学和综合实践活动课程来具体实施。
第一,数学学科教学活动是数学学科素养培养的主要途径。数学核心素养的六个方面在小学要仔细推敲,准确把握,切实贯穿到学科教学活动中去。
第二,研究性学习综合实践活动课程是数学学科素养培养的重要途径。由于研究性学习属于综合课程,所以必然包含数学学科的相关知识内容,又由于其实践活动课程的特点,对数学建模、数学抽象、数学推理等方面都有较高的要求。
第三,青少年科技创新活动是数学学科素养培养的很好途径。全国青少年科技创新大赛是一项具有20多年历史的全国性青少年科技创新成果和科学探究项目的综合性科技竞赛,是面向在校中小学生开展的具有示范性和导向性的科技教育活动之一,是目前我国中小学各类科技活动优秀成果集中展示的一种形式。大赛竞赛具有科学性、先进性、实用性的特点。在活动中培养和提高相关的数学学科素养,可以起到单纯的学科教学难以起到的作用。
从双基教学的产生,到素质教育、情感态度价值观、学生学科核心素养等一系列理念的提出、研究和实施,不难发现,在这个变化发展的过程中,教育教学目标的实施一步步具体、明确、可操作,充分体现了基础教育科学研究的不断深入,体现了教育研究水平的不断提高。我们要深刻体会这种变化,最大限度地提高教学效率和教育质量,为现代化建设事业培养全面发展的合格接班人。
第四篇:数学核心素养 - 副本
浅谈在数学教学中的一点做法和思考
所谓核心素养,主要是指学生在日常学习和生活中必须具备的适应终身发展和社会发展的品格和能力。各学科核心素养的内容和要求既相互区别又相互联系,不能截然分开。这种核心素养可以从下列两个维度来进行理解:一是指学生成长过程中所必须具备的基本素质;第二种是指学生为适应社会发展的素质条件,具有一定的社会性质。新的课程标准中,给出了数学学科核心素养的六个主要方面,即数学抽象、逻辑推理、数学建模、运算能力、直观想象和数据分析,并从概念的界定、及其在数学与生活中的作用和意义方面进行了描述。数学学科核心素养的培养,要通过学科教学和综合实践活动课程来具体实施。
基于对“数学本质”内涵的认识,要在课堂中呈现“数学本质”,提高初中数学课堂效果,我尝试从以下几个方面下功夫。
一、教材的领悟要透彻 数学的教学,最终要教师本人落实到课堂中去,要做到切实提高课堂教学效果,为求透彻,教师必须深钻教材,“沉下去”,理清知识发生的本原,把握教材中最主要、最本质的东西。回顾自己上过的许多的课,总感到有些许的憾意:课堂缺少耐人回味的东西,缺少引起学生思考的部分,对教材内容的领悟浅薄,缺少厚重感。本人认为要弥补这些憾意,教师对教材的领悟必须有自己的眼光,目光要深邃,看到的不能只是文字、图表和各种数学公式定理,而应是书中跳跃着的真实而鲜活的思想。这种思想就是对“数学本质”的认识,这种思想就是“不在书里,就在书里”,这种思想能让所有教材内容融入到教师的思维中,成为教学的能力源泉。“一个能思想的人,才是一个力量无边的人。”教师只有不断揣摩教材,才能对教材有独到的体悟,在课堂教学中也才能做到“精彩纷呈”。
让我们来看一则例子:
若E、F、G、H分别是四边形ABCD各边的中点,说明四边形EFGH是平行四边形的理由。这是初中数学中很典型的一道题目,连接AC,利用三角形的中位线定理,很容易证明。对此我们可以进一步思考,适当地替换它的条件,再考察它的结论的变化情况。
思考1:如果把条件中的四边形ABCD依次改变为矩形、菱形、正方形或梯形、等腰梯形,其它条件不变,那么所得的四边形EFGH是怎样的四边形呢?
思考2:如果把结论中的平行四边形EFGH依次改变为矩形、菱形或正方形,那么原四边形ABCD应具备什么条件呢?
思考3:如果条件中的中点替换为定比分点,那么四边形EFGH是怎样的四边形呢? 思考4:如果把条件中一组对边的中点改为两条对角线的中点,其它条件不变,则四边形EFGH是怎样的四边形呢?
二、呈现数学知识的本真
对许多初中学生来说,学数学难,但又必须学。在学生眼里,数学是一个又一个公式、符号、定理、习题的堆积,它们是如此的抽象、散乱、遥远、不可琢磨,它们就象石塑一般------充满着理性精神的美却显得冰冷和生硬。数学本来是这样,还是我们的数学教学的原因?翻看人类的数学思想史,在数学“冰冷的逻辑推理之中有一大堆生动的故事”,其“冰冷美丽”的外表下存在着“朴素而火热的思考”。数学教师的教学,就应拉近数学与学生的距离,让学生感受到它的火热,享受数学中生动的故事。把数学的形式化逻辑链条,恢复为当初数学家发明创新时的火热思考,做到返璞归真。
实践活动是教学活动重要形式之一,也是不同层次学生都愿参与的学习活动,通过动手实践,不仅可以发展每个同学的数学思维,培养学生的实践能力,而且也能体现每个学生的自身价值,增强学生的学习兴趣。
课堂上我经常能看到同学们在热烈的讨论着,争得面红耳赤,有的同学的结论被否定后,不服气,再动手实践,在实践中探索,再实践验证,营造出一个“人人有事做,人人要做事,事事有人做,人人有成功”的教学气氛。在上“机会的均等与不均等”的课时,有一个抢“30”的游戏,规定两个人,从1数到30,每个人只能说1个或2个数,谁先抢到30谁赢,我规定整个一列同学先数,另一列同学后数,放手让同桌两人玩游戏,看谁获胜。同学们快乐的玩着,有的沉浸在成功中,有的不甘失败,然后总结了获胜结果,让同学们交流讨论:“先数后数有无区别?”同学们热烈的讨论着,最后我让两名同学在全班同学面前玩,有个同学说到“27”,大家便开始议论说他一定赢,通过尝试、验证确实如此,接着又有人议论抢到“21“就会赢,同学们继续实践,这时有人又提出只要抢到3的倍数便能赢,还有人不服,两人又尝试。大家信服了,又有人又提出好办法,找3的倍数太麻烦,如果第一个人说1,第二个人就说2、3。如果第一个人说1、2,第二个人就说3就可以了,结果一节课老师只组织了玩游戏,而同学们却在娱乐中学习并掌握了知识,不同层次的学生都获得了知识,效果出人意料的好,下课后同学们对我说:“老师,数学真有趣,总是这样学多好。”
三、对学生原有知识要有准确认识
学生能接受新知识是建立在其原有的基础水平之上。教师应该以学生现有思维发展水平为依据,关注学生已有的知识和经验,选择与学生发展水平相适应的学习材料,为学生设置恰当的教学情境,使学生对新知识进行充分的思维加工,通过新知识与已有认知结构之间的相互作用,使新知识同化到已有认知结构中去,达到对新知识的相应理解和主动建构。
例如,在学习“平行四边形的性质”这部分内容时,老师则可以组织学生自主动手,通过两个完全相同的三角形去拼成一个平行四边形。通过观察、对比、旋转,结合实际操作将平行四边形问题转化为三角形的全等,化四边形问题为三角形问题,让学生学会利用拼接三角形时的公共边(即四边形的对角线),添加辅助线将四边形合理地分割成两个全等的三角形。将新知和学生已有的知识体系完美的结合起来,从而帮助学生在实验几何教学到推理几何教学过程中有效拓展自己的数学思维。然后,老师再引导学生更加深入地探究数学知识,充分利用辅助线,灵活运用不同的转化方式,促使学生正确认识到几何证明中的变和不变性。同时,老师在课堂教学过程中,还可以结合教学内容,巧妙设计问题来培养学生的数学思维。但是,所设计的问题需要立足于新旧知识的连接点,不仅需要关注新知识的延伸,而且还需要保证知识问题的启发性、引导性和思考性。因此,在初中数学课程教学过程中,老师应该以数学知识为主要载体,注重培养学生的数学思维,从而为提升学生的核心素养奠定坚实的基础。
再比如在讲授“距离”这一块内容。初中阶段学过的距离有“两点之间的距离”,“直线外一点到已知直线的距离”“两平行线之间的距离”,这些概念学生往往很容易混淆,对于基础较弱的学生来说理解起来有一定的困难。如果我们这样向学生解释几何中关于两个图形间的距离的概念:图形P内的任一点与图形Q内的任一点间的距离中的最小值,叫做图形P与图形Q的距离。由此,学生对“两点之间的距离”,“直线外一点到已知直线的距离”“两平行线之间的距离”的定义会有更深一步的理解与体会,也能从本质上深刻地认识到两个图形之间的距离最终“化归”为点与点的距离。掌握了这一点,即便是学生以后到高中段学习“点到平面的距离、直线到它平行的平面的距离、两个平行平面的距离、异面直线的距离”的概念时学生也能做到不教自明。
由此,高境界的数学课堂教学必须呈现“数学本质”。“持之以恒,贵在变通”,在数学的教学过程中,在领会知识的同时,要让学生理解数学最本质的方法,朴素的思想,同时又要重视基础知识,基本技能和基本思想方法。重视通性通法,注重数学问题解决过程中的挖掘,提炼与渗透,挖掘数学知识本身的内在本质,增强运用数学思想方法解决问题的意识和自觉性,重视运用所学知识分析问题和解决问题的能力,而不是简单的掌握知识,解决“会”与“对”的矛盾。只有这样,就一定会让学生在学习数学和教师在教的的过程中都找到乐趣,提高学生的数学素养和能力。
四、让活动成为丰富学生生活的乐园。
(1)形式各异的作业,丰富了同学们的生活。
以往单调乏味的作业,被代之以趣味盎然、千姿百态的可供学生自主选择的创新型和实践型作业,为了让作业适合不同的学生,让学生在选择中学会选择,在选择中形成个性,激发潜能,我设计了内容灵活,形式多样的作业,扩展学生选择的空间,满足不同层次学生的发展要求。例如让学生根据所学内容自由编题,解答,或编较难的题或编基础性题,也可创新,再共同来探究完成。
(2)丰富多彩的课外生活,是同学们津津乐道的。
数学课上以生活实例为主,让同学们针对铺地砖,撰写数学小论文,经常搞一些社会实践活动,例如调查利润问题,打折销售问题,储蓄问题,并上交调查报告,调查环保问题,并绘制统计图表,收集同学们身高数据,买零食的零花钱数据,设计统计方式,并进行交流总结,课外时间同学们收集了生活中的地砖图案,收集轴对称图形,并设计轴对称图案,同学们感到新鲜、有趣,使生活丰富多彩的同时开发同学们的创新能力。
总而言之,在初中数学课程的实际教学过程中,老师在进行教学设计的过程中,应该紧密结合数学教学内容,坚持以数学知识为主要载体,有效增强学生的数学核心素养。同时,在初中数学课程的实际教学过程中,还需要组织学生积极参加探究活动,有效增强学生的综合能力,以便能够更好地适应社会的发展。
第五篇:数学核心素养
数学核心素养
数学核心素养,是指把所的数学知识都排除或忘掉后剩下的东西,即能从数学的角度看问题,有条理地进行理性思维、严密求证、逻辑推理和清晰准确地表达的意识与能力。从教学过程的维度看,数学核心素养的培养应从教学设计、课堂教学、教学评价等方面展开:教学设计,应体现“数学文化背景下的思维活动”的价值取向;课堂教学,应追求思维与能力的提升;教学评价,应立足维度、梯度和相关度进行最优化设计。
什么是数学素养?什么又是数学核心素养呢?
一、数学素养的培养
数学核心素养,就是把所学的数学知识都排除或忘掉后剩下的东西。具体说来,就是能从数学的角度看问题,有条理地进行理性思维、严密求证、逻辑推理和清晰准确地表达的意识与能力。从专业 的角度讲,指的是:主动探寻并善于抓住数学问题的背景和本质的素养;熟练地运用准确、简明、规范的数学语言表达自己的数学思想的素养;以良好的科学态度和创新精神,合理地提出新思想、新概念、新方法的素养;对各种问题以“数学方式”的理性思维,从多个角度探寻解决问题的方法的素养;善于对现实世界中的现象和过程进行合理的简化和量化,建立数学模型的素养。
二、数学核心素养的培养
教学设计的价值取向,一般指知识取向(这里的知识是“与时俱进的双基”,包括一般意义上的基础知识与基本技能)与文化取向。知识取向的教学设计,是以知识为中心的教学设计。其所关注的,是如何采用有效的方法使学生准确无误地获取知识――教师的职责是最有效地向学生传递知识,学生的任务是最大限度地从教师和教材那里获得知识。文化
取向的教学设计关注的不仅是知识,而且是包括知识在内的整个文化。数学教学应适当反映数学的历史、应用和发展趋势,数学的思想体系,数学的美学价值,数学家的创新精神,等等。数学教学应帮助学生了解数学在人类文明发展中的作用,逐步形成正确的数学观。事实上,知识取向与文化取向是相互融合的,知识是部分,文化是整体,文化教育涵盖了知识教育,两者本身并没有根本的冲突。“数学课程对于认识数学与自然界、数学与人类社会的关系,认识数学的科学价值、文化价值,提高提出、分析和解决问题的能力,形成理性思维,发展智力和创新意识都具有基础性的作用。”因此,数学教学应当是以知识教学为核心的文化教学,是数学文化背景下的思维活动。
2.课堂教学:追求思维与能力的提升
数学是思维的体操,思维是数学的灵魂。没有思维,数学就失去了生命与活力。以思维为基础,能力提升才能得到有效的落实。
3.教学评价:立足维度、梯度和相关度进行最优化设计
(作业)是教学评价的基本形式(当然还有课堂表现性评价等),如何设计,才能比较准确地测试与评价学生的数学核心素养,进而有利于形成正确的数学核心素养导向?(作业)设计要遵循课程标准的要求,准确地反映该学科对学生知识、技能的要求,立足维度、梯度和相关度进行最优化设计。维度,是指要考查哪些知识、技能;梯度,是指要有递进性,对不同的解答能给出相应的具有阶梯性的合理评价;相关度,是指要在知识的交汇处,既可以是章节内的知识点的交汇处,也可以是学科内的知识点的交汇处,甚至可以是跨学科的知识点的交汇处以及与实际生产、生活的交汇处等。