教师考编小学数学教育教学方法总结

时间:2019-05-13 03:40:19下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《教师考编小学数学教育教学方法总结》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《教师考编小学数学教育教学方法总结》。

第一篇:教师考编小学数学教育教学方法总结

“数学为其他科学提供了语言、思想和方法”,“初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题”。(小学数学课程标准)

数学思维方法分为两种,形象思维方法和抽象思维方法。小学数学要培养学生的形象思维能力,并在此基础上,为发展抽象思维能力打下坚实的基础。

一、形象思维方法

形象思维方法是指人们用形象思维来认识、解决问题的方法。它的思维基础是具体形象,并从具体形象展开来的思维过程。

形象思维的主要手段是实物、图形、表格和典型等形象材料。它的认识特点是以个别表现一般,始终保留着对事物的直观性。它的思维过程表现为表象、类比、联想、想象。它的思维品质表现为对直观材料进行积极想象,对表象进行加工、提炼进而提示出本质、规律,或求出对象。它的思维目标是解决实际问题,并且在解决问题当中提高自身的思维能力。

1、实物演示法

利用身边的实物来演示数学题目的条件和问题,及条件与条件,条件与问题之间的关系,在此基础上进行分析思考、寻求解决问题的方法。

这种方法可以使数学内容形象化,数量关系具体化。比如:数学中的相遇问题。通过实物演示不仅能够解决“同时、相向而行、相遇”等术语,而且为学生指明了思维方向。再如,在一个圆形(方形)水塘周围栽树问题,如果能进行一个实际操作,效果要好得多。

二年级数学教材中,“三个小朋友见面握手,每两人握一次,共要握几次手”与“用三张不同的数字卡片摆成两位数,共可以摆成多少个两位数”。像这样的有关排列、组合的知识,在小学教学中,如果实物演示的方法,是很难达到预期的教学目标的。

特别是一些数学概念,如果没有实物演示,小学生就不能真正掌握。长方形的面积、长方体的认识、圆柱的体积等的学习,都依赖于实物演示作思维的基础。所以,小学数学教师应尽可能多地制作一些数学教(学)具,而且这些教(学)具用过后要好好保存,可以重复使用。这样可以有效地提高课堂教学效率,提升学生的学习成绩。

2、图示法

借助直观图形来确定思考方向,寻找思路,求得解决问题的方法。

图示法直观可靠,便于分析数形关系,不受逻辑推导限制,思路灵活开阔,但图示依赖于人们对表象加工整理的可靠性上,一旦图示与实际情况不相符,易使在此基础上的联想、想象出现谬误或走入误区,最后导致错误的结果。比如有的数学教师爱徒手画数学图形,难免造成不准确,使学生产生误解。

在课堂教学当中,要多用图示的方法来解决问题。有的题目,图画出来了,结果也就出来的;有的题,图画好了,题意学生也就明白了;有的题,画图则可以帮助分析题意、启迪思路,作为其他解法的辅助手段。

例1.把一根木头锯成3段需要24分钟,锯成6段需要多少分钟?(图略)思维方法是:图示法。

思维方向是:锯几次,每次用几分钟。

思路是:锯3段锯了几次,每次用几分钟,锯6段锯了几次,需要多少分钟。例2.判断:等腰三角形中,点D是底边BC的中点,图甲的面积比图乙的面积大,图甲的周长比图乙的周长长。(图略)

思维方法:图示法。

思维方向:先比较面积,再比较周长。

思路:作条辅助线。图甲占的面积大,图乙所占面积小,所以“图甲的面积比图乙的面积大”是正确的。线段AD比曲线AD短,所以“图甲的周长比图乙的周长长”是错误的。

3、列表法 运用列出表格来分析思考、寻找思路、求解问题的方法叫做列表法。列表法清晰明了,便于分析比较、提示规律,也有利于记忆。它的局限性在于求解范围小,适用题型狭窄,大多跟寻找规律或显示规律有关。比如,正、反比例的内容,整理数据,乘法口诀,数位顺序等内容的教学大都采用“列表法”。

用列表法解决传统数学问题:鸡兔同笼问题。制作三个表格:第一张表格是逐一举例法,根据鸡与兔共20只的条件,假设鸡只有1只,那么兔就有19只,腿共有78条„„这样逐一列举,直至寻找到所求的答案;第二张表格是列举了几个以后发现了只数与腿数的规律,从而减少了列举的次数;第三张表格是从中间开始列举,由于鸡与兔共20只,所以各取10只,接着根据实际的数据情况确定列举的方向。

4、探索法

按照一定方向,通过尝试来摸索规律、探求解决问题思路的方法叫做探究法。我国著名数学家华罗庚说过,在数学里,“难处不在于有了公式去证明,而在于没有公式之前,怎样去找出公式来。”苏霍姆林斯基说过:在人的心灵深处,都有一种根深蒂固的需要,这就是希望自己是一个发现者、研究者、探索者,而在儿童的精神世界中,这种需要特别强烈。“学习要以探究为核心”,是新课程的基本理念之一。人们在难以把问题转化为简单的、基本的、熟悉的、典型的问题时,常常采取的一种好方法就是探究、尝试。

第一、探究方向要准确,兴趣要高涨,切忌胡乱尝试或形式主义的探究。例如,教学“比例尺”时,教师创设“学生出题考老师”的教学情境,师:“现在我们考试好不好?”学生一听:很奇怪,正当学生疑惑之时,教师说:“今天改变过去的考试方法,由你们出题考老师,愿意吗?”学生听后很感兴趣。教师说:“这里有一幅地图,你们用直尺任意量出两地的距离,我都能很快地告诉你们这两地之间的实际距离,相信吗?”于是学生纷纷上台度量、报数,教师都一个接一个地回答对应的实际距离。学生这时更感到奇怪,异口同声地说:“老师您快告诉我们吧,您是怎样算的?”教师说:“其实呀,有一位好朋友在暗中帮助老师,你们知道它是谁吗?想认识它吗?”于是引出所要学习的内容“比例尺”。

第二、定向猜测,反复实践,在不断分析、调整中寻找规律。例3.找规律填数。

(1)1、4、、10、13、、19;(2)2、8、18、32、、72、。

第三,独立探究与合作探究结合。独立,有自由的思维时空;合作,可以知识上互补,方法上互相借鉴,不时还能碰撞出智慧的火花。小学数学教学活动中,教师应尽量创设让学生去探究的情景,创造让学生去探究的机会,鼓励有探究精神和习惯的学生。

5、观察法

通过大量具体事例,归纳发现事物的一般规律的方法叫做观察法。巴浦洛夫说:"应当先学会观察,不学会观察永远当不了科学家.”

小学数学“观察”的内容一般有:①数字的变化规律及位置特点;②条件与结论之间的关系;③题目的结构特点;④图形的特点及大小、位置关系。

如:观察一组算式:25×4=4×25,62×11=11×62,100×6=6×100„„归纳出乘法交换率:在乘法算式里,交换两个因数的位置,积不变。

“观察”的要求:

第一、观察要细致、准确。

例4.找出下列各题错在哪里,并改正。(1)25×16=25×(4×4)=(25×4)×(25×4);(2)18×36+18×64=(18+18)×(36+64)例5.直接写出下列各题的得数:(1)3.6+6.4(2)3.6+6.04

(3)125×57×0.04(4)(351-37-13)÷5

第二、科学观察。科学观察渗透了更多的理性因素,它是有目的,有计划地察看研究对象。比如,在教学长方体的认识时,要做到“有序”观察:(1)面——形状、个数、面与面之间的关系;(2)棱——棱的形成、条数、棱与棱之间的关系(相对的棱相等;相对的棱有四条;长方体的棱可以分为三组);(3)顶点——顶点的形成、个数,认识顶点的一个重要作用是引出长方体长、宽、高的概念。

第三,观察必定与思考结合。

例6:这是一年级下学期的一道思考题,如果只观察不思考,这道题目让干什么就不知道。

6、典型法

针对题目去联想已经解过的典型问题的解题规律,从而找出解题思路的方法叫做典型法。典型是相对于普遍而言的。解决数学问题,有些需要用一般方法,有些则需要用特殊(典型)方法。比如,归

一、倍比和归总算法、行程、工程、消同求异、平均数等。

运用典型法必须注意:

(1)要掌握典型材料的关键及规律。

例7.已知爸爸比儿子大30岁,爸爸今年的年龄正好是儿子的7倍。爸爸、儿子今年分别是多少岁?关键点在:爸爸比儿子大30岁,爸爸的年龄比儿子多几倍。典型题都有典型解法,要想真正学好数学,即要理解和掌握一般思路和解法,还要学会典型解法。

(2)熟悉典型材料,并能敏捷地联想到所适用的典型,从而确定所需要的解题方法。例8.见到“某城市有一条公共汽车线路,长16500米,平均每隔500米设一个车站。这条线路需要设多少个车站?”这样题目,就应该联想到上面所讲到的“锯木头用多少分钟”的典型问题。

(3)典型和技巧相联系。

例9.甲乙两个工程队共有82人,如果从乙队调8人到甲队,两队人数正好相等。甲乙两队原来各有多少人?这题目的技巧:调前、调后两队总人数没变。先算调后各队人数,再算原来各队人数。

7、放缩法

通过对被研究对象的放缩估计来解决问题的方法叫做放缩法。放缩法灵活、巧妙,但有赖于知识的拓展能力及其想象能力。

例16.求12和9的最小公倍数。

求两个数的最小公倍数一般的方法是“短除式”方法,它是根据这两个数的质因数情况来求出它们的最小公倍数的。但也有两个典型方法:一是“如果两个数是互质数,那么这两个数的最小公倍数就是它们的乘积”;二是“如果大数是小数的倍数,那么这两个数的最小公倍数就是大数”。现在我们根据典型方法二,进行扩展运用,放大“大数”来求12和9的最小公倍数。

12不是9的倍数,就把它放大2倍,得24,仍然不是9的倍数,放大3倍,得36,36是9的倍数,那么,12和9的最小公倍数就是36。这种方法的关键点在于,如果大数不是小数的倍数,就把大数翻倍,但一定从2倍开始,如果一下子扩大6倍,得数是它们的公倍数,而不是最小的了。

例17.期末考试,小刚的语文成绩和英语成绩的和是197分;语文和数学成绩加起来是199分;数学和英语成绩加起来是196分。想一想,小刚的哪科成绩最高?你能算出小刚的各科成绩吗? 思路一:“放大”。通过观察发现,语、数、外三科成绩在题目中各出现两次,我们求197+199+196的和,这个和是“语数外成绩的2倍”,除以2得三科成绩之和,再减去任意两科的成绩,就得到第三科的成绩。

思路二:“缩小”。我们用语数成绩的和减去语外的成绩,199-197=2(分),这是数学减英语成绩的差。数学和英语的和是196分,再求数学的分数就不难了。放缩法有时运用在估算和验算上。

例18.检验下列计算结果是否正确?

(1)18.7×6.9=137.3;(2)17485÷6.6=3609.对于(1)用总体估计,放大至19×7=133,估计得数要小于133,所以本题结果错误。对于(2)用最高位估计,把17看作18,把6.6看作6,18÷6=3,显然答数的最高位不会是3,故本题结果也不正确。

例19.把鸡和兔放在一起,共有48个头,114只足,问鸡、兔各有几只。

这是一道鸡兔同笼的典型问题,我们也用放缩法,不妨把鸡和兔的足数缩小2倍,那么,鸡的足数和它的头数一样,而兔的足数是它的只数的2倍。所以,总的足数缩小2倍后,鸡和兔的总足数与它们的总只数相差数就是兔的只数。

8、验证法

你的结果正确吗?不能只等教师的评判,重要的是自己心里要清楚,对自己的学习有一个清楚的评价,这是优秀学生必备的学习品质。验证法应用范围比较广泛,是需要熟练掌握的一项基本功。应当通过实践训练及其长期体验积累,不断提高自己的验证能力和逐步养成严谨细致的好习惯。

(1)用不同的方法验证。教科书上一再提出:减法用加法检验,加法用减法检验,除法用乘法验算,乘法用除法验算。

(2)代入检验。解方程的结果正确吗?用代入法,看等号两边是否相等。还可以把结果当条件进行逆向推算。

(3)是否符合实际。“千教万教教人求真,千学万学学做真人”陶行知先生的话要落实在教学中。比如,做一套衣服需要4米布,现有布31米,可以做多少套衣服?有学生这样做:31÷4≈8(套)

按照“四舍五入法”保留近似数无疑是正确的,但和实际不符合,做衣服的剩余布料只能舍去。教学中,常识性的东西予以重视。做衣服套数的近似计算要用“去尾法”。

(4)验证的动力在猜想和质疑。牛顿曾说过:“没有大胆的猜想,就做不出伟大的发现。”“猜”也是解决问题的一种重要策略。可以开拓学生的思维、激发“我要学”的愿望。为了避免瞎猜,一定 学会验证。验证猜测结果是否正确,是否符合要求。如不符合要求,及时调整猜想,直到解决问题。

二、抽象思维方法

运用概念、判断、推理来反映现实的思维过程,叫抽象思维,也叫逻辑思维。

抽象思维又分为:形式思维和辩证思维。客观现实有其相对稳定的一面,我们就可以采用形式思维的方式;客观存在也有其不断发展变化的一面,我们可以采用辩证思维的方式。形式思维是辩证思维的基础。

形式思维能力:分析、综合、比较、抽象、概括、判断、推理。

辩证思维能力:联系、发展变化、对立统一律、质量互变律、否定之否定律。

小学数学要培养学生初步的抽象思维能力,重点突出在:(1)思维品质上,应该具备思维的敏捷性、灵活性、联系性和创造性。(2)思维方法上,应该学会有条有理,有根有据地思考。(3)思维要求上,思路清晰,因果分明,言必有据,推理严密。(4)思维训练上,应该要求:正确地运用概念,恰当地下判断,合乎逻辑地推理。

9、对照法

如何正确地理解和运用数学概念?小学数学常用的方法就是对照法。根据数学题意,对照概念、性质、定律、法则、公式、名词、术语的含义和实质,依靠对数学知识的理解、记忆、辨识、再现、迁移来解题的方法叫做对照法。这个方法的思维意义就在于,训练学生对数学知识的正确理解、牢固记忆、准确辨识。

例20.个连续自然数的和是18,则这三个自然数从小到大分别是多少?

对照自然数的概念和连续自然数的性质可以知道:三个连续自然数和的平均数就是这三个连续自然数的中间那个数。

例21.判断:能被2除尽的数一定是偶数。

这里要对照“除尽”和“偶数”这两个数学概念。只有这两个概念全理解了,才能做出正确判断。

10、公式法

运用定律、公式、规则、法则来解决问题的方法。它体现的是由一般到特殊的演绎思维。公式法简便、有效,也是小学生学习数学必须学会和掌握的一种方法。但一定要让学生对公式、定律、规则、法则有一个正确而深刻的理解,并能准确运用。

例22.计算59×37+12×59+59 59×37+12×59+59

=59×(37+12+1)„„„„运用乘法分配律 =59×50

„„„„运用加法计算法则 =(60-1)×50

„„„„运用数的组成规则 =60×50-1×50 „„„„运用乘法分配律 =3000-50

„„„„运用乘法计算法则 =2950

„„„„运用减法计算法则 11.比较法

通过对比数学条件及问题的异同点,研究产生异同点的原因,从而发现解决问题的方法,叫比较法。

比较法要注意:

(1)找相同点必找相异点,找相异点必找相同点,不可或缺,也就是说,比较要完整。(2)找联系与区别,这是比较的实质。

(3)必须在同一种关系下(同一种标准)进行比较,这是“比较”的基本条件。

(4)要抓住主要内容进行比较,尽量少用“穷举法”进行比较,那样会使重点不突出。(5)因为数学的严密性,决定了比较必须要精细,往往一个字,一个符号就决定了比较结论的对或错。

例23.填空:0.75的最高位是(),这个数小数部分的最高位是();十分位的数4与十位上的数4相比,它们的()

相同,()不同,前者比后者小了()。

这道题的意图就是要对“一个数的最高位和小数部分的最高位的区别”,还有“数位和数值”的区别等。

例24.六年级同学种一批树,如果每人种5棵,则剩下75棵树没有种;如果每人种7棵,则缺少15棵树苗。六年级有多少学生?

这是两种方案的比较。相同点是:六年级人数不变;相异点是:两种方案中的条件不一样。

找联系:每人种树棵数变化了,种树的总棵数也发生了变化。找解决思路(方法):每人多种7-5=2(棵),那么,全班就多种了75+15=90(棵),全班人数为90÷2=45(人)。

12、分类法

俗语:物以类聚,人以群分。

根据事物的共同点和差异点将事物区分为不同种类的方法,叫做分类法。分类是以比较为基础的。依据事物之间的共同点将它们合为较大的类,又依据差异点将较大的类再分为较小的类。

分类即要注意大类与小类之间的不同层次,又要做到大类之中的各小类不重复、不遗漏、不交叉。

例25.自然数按约数的个数来分,可分成几类?

答:可分为三类。(1)只有一个约数的数,它是一个单位数,只有一个数1;(2)有两个约数的,也叫质数,有无数个;(3)有三个约数的,也叫合数,也有无数个。

第二篇:19种小学数学教学方法总结

这是一个段子,段子是逗人开心。但这个段子在逗人开心的同时,也对我们的数学教育很有启发。事实上,土豪的思维是一种直观思维,是解决问题的最优办法,是没有受污染的简洁思维。他可能说不出来什么数学规律,也可能说不出其思维规律,但这种思维也是非常有规律、有效的。他解决问题的思维是什么呢?那就是把复杂问题简单化。因为原问题中至少有两个变量(鸡、兔的脚不一样),那就要想办法消除一个变量(通过吹哨让鸡兔举脚两次,从而把鸡这个变量化没了),从而解决了问题。事实上,二元方程组的解题方法也是通过代入法进行消元。解决鸡兔同笼的问题固然重要,但这样去思维的意识更有价值。

19种小学数学教学方法总结

良好的方法能使我们更好地发挥运用天赋的才能,而拙劣的方法则可能阻碍才能的发挥。------[英]贝尔纳

“数学为其他科学提供了语言、思想和方法”,“初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题”。(小学数学课程标准)数学思维方法分为两种,形象思维方法和抽象思维方法。

小学数学要培养学生的形象思维能力,并在此基础上,为发展抽象思维能力打下坚实的基础。

一、形象思维方法

形象思维方法是指人们用形象思维来认识、解决问题的方法。它的思维基础是具体形象,并从具体形象展开来的思维过程。

形象思维的主要手段是实物、图形、表格和典型等形象材料。它的认识特点是以个别表现一般,始终保留着对事物的直观性。它的思维过程表现为表象、类比、联想、想象。它的思维品质表现为对直观材料进行积极想象,对表象进行加工、提炼进而提示出本质、规律,或求出对象。它的思维目标是解决实际问题,并且在解决问题当中提高自身的思维能力。

1、实物演示法

利用身边的实物来演示数学题目的条件和问题,及条件与条件,条件与问题之间的关系,在此基础上进行分析思考、寻求解决问题的方法。这种方法可以使数学内容形象化,数量关系具体化。比如:数学中的相遇问题。通过实物演示不仅能够解决“同时、相向而行、相遇”等术语,而且为学生指明了思维方向。再如,在一个圆形(方形)水塘周围栽树问题,如果能进行一个实际操作,效果要好得多。二年级数学教材中,“三个小朋友见面握手,每两人握一次,共要握几次手”与“用三张不同的数字卡片摆成两位数,共可以摆成多少个两位数”。像这样的有关排列、组合的知识,在小学教学中,如果实物演示的方法,是很难达到预期的教学目标的。

特别是一些数学概念,如果没有实物演示,小学生就不能真正掌握。长方形的面积、长方体的认识、圆柱的体积等的学习,都依赖于实物演示作思维的基础。

所以,小学数学教师应尽可能多地制作一些数学教(学)具,而且这些教(学)具用过后要好好保存,可以重复使用。这样可以有效地提高课堂教学效率,提升学生的学习成绩。绩。

2、图示法

借助直观图形来确定思考方向,寻找思路,求得解决问题的方法。

图示法直观可靠,便于分析数形关系,不受逻辑推导限制,思路灵活开阔,但图示依赖于人们对表象加工整理的可靠性上,一旦图示与实际情况不相符,易使在此基础上的联想、想象出现谬误或走入误区,最后导致错误的结果。比如有的数学教师爱徒手画数学图形,难免造成不准确,使学生产生误解。

在课堂教学当中,要多用图示的方法来解决问题。有的题目,图画出来了,结果也就出来的;有的题,图画好了,题意学生也就明白了;有的题,画图则可以帮助分析题意、启迪思路,作为其他解法的辅助手段。

例1 把一根木头锯成3段需要24分钟,锯成6段需要多少分钟?(图略)思维方法是:图示法。

思维方向是:锯几次,每次用几分钟。

思路是:锯3段锯了几次,每次用几分钟,锯6段锯了几次,需要多少分钟。

例2

判断

等腰三角形中,点D是底边BC的中点,图甲的面积比图乙的面积大,图甲的周长比图乙的周长长。(图略)思维方法:图示法。

思维方向:先比较面积,再比较周长。

思路:作条辅助线。图甲占的面积大,图乙所占面积小,所以“图甲的面积比图乙的面积大”是正确的。线段AD比曲线AD短,所以“图甲的周长比图乙的周长长”是错误的。

3、列表法

运用列出表格来分析思考、寻找思路、求解问题的方法叫做列表法。列表法清晰明了,便于分析比较、提示规律,也有利于记忆。它的局限性在于求解范围小,适用题型狭窄,大多跟寻找规律或显示规律有关。比如,正、反比例的内容,整理数据,乘法口诀,数位顺序等内容的教学大都采用“列表法”。

用列表法解决传统数学问题:鸡兔同笼问题。制作三个表格:第一张表格是逐一举例法,根据鸡与兔共20只的条件,假设鸡只有1只,那么兔就有19只,腿共有78条……这样逐一列举,直至寻找到所求的答案;第二张表格是列举了几个以后发现了只数与腿数的规律,从而减少了列举的次数;第三张表格是从中间开始列举,由于鸡与兔共20只,所以各取10只,接着根据实际的数据情况确定列举的方向。

4、探索法

按照一定方向,通过尝试来摸索规律、探求解决问题思路的方法叫做探究法。我国著名数学家华罗庚说过,在数学里,“难处不在于有了公式去证明,而在于没有公式之前,怎样去找出公式来。”苏霍姆林斯基说过:在人的心灵深处,都有一种根深蒂固的需要,这就是希望自己是一个发现者、研究者、探索者,而在儿童的精神世界中,这种需要特别强烈。“学习要以探究为核心”,是新课程的基本理念之一。人们在难以把问题转化为简单的、基本的、熟悉的、典型的问题时,常常采取的一种好方法就是探究、尝试。

第一、探究方向要准确,兴趣要高涨,切忌胡乱尝试或形式主义的探究。例如,教学“比例尺”时,教师创设“学生出题考老师”的教学情境,师:“现在我们考试好不好?”学生一听:很奇怪,正当学生疑惑之时,教师说:“今天改变过去的考试方法,由你们出题考老师,愿意吗?”学生听后很感兴趣。教师说:“这里有一幅地图,你们用直尺任意量出两地的距离,我都能很快地告诉你们这两地之间的实际距离,相信吗?”于是学生纷纷上台度量、报数,教师都一个接一个地回答对应的实际距离。学生这时更感到奇怪,异口同声地说:“老师您快告诉我们吧,您是怎样算的?”教师说:“其实呀,有一位好朋友在暗中帮助老师,你们知道它是谁吗?想认识它吗?”于是引出所要学习的内容“比例尺”。第二、定向猜测,反复实践,在不断分析、调整中寻找规律。例3

找规律填数。

(1)1、4、、10、13、、19;(2)2、8、18、32、、72、。

第三,独立探究与合作探究结合。独立,有自由的思维时空;合作,可以知识上互补,方法上互相借鉴,不时还能碰撞出智慧的火花。

小学数学教学活动中,教师应尽量创设让学生去探究的情景,创造让学生去探究的机会,鼓励有探究精神和习惯的学生。

5、观察法

通过大量具体事例,归纳发现事物的一般规律的方法叫做观察法。巴浦洛夫说:"应当先学会观察,不学会观察永远当不了科学家.”

小学数学“观察”的内容一般有:①数字的变化规律及位置特点;②条件与结论之间的关系;③题目的结构特点;④图形的特点及大小、位置关系。

如:观察一组算式:25×4=4×25,62×11=11×62,100×6=6×100……归纳出乘法交换率:在乘法算式里,交换两个因数的位置,积不变。“观察”的要求:

第一、观察要细致、准确。

例4

找出下列各题错在哪里,并改正。(1)25×16=25×(4×4)=(25×4)×(25×4);(2)18×36+18×64=(18+18)×(36+64)例5 直接写出下列各题的得数:(1)3.6+6.4

(2)3.6+6.04

(3)125×57×0.04

(4)(351-37-13)÷5 第二、科学观察。科学观察渗透了更多的理性因素,它是有目的,有计划地察看研究对象。比如,在教学长方体的认识时,要做到“有序”观察:(1)面——形状、个数、面与面之间的关系;(2)棱——棱的形成、条数、棱与棱之间的关系(相对的棱相等;相对的棱有四条;长方体的棱可以分为三组);(3)顶点——顶点的形成、个数,认识顶点的一个重要作用是引出长方体长、宽、高的概念。第三,观察必定与思考结合。例6

6 18

这是一年级下学期的一道思考题,如果只观察不思考,这道题目让干什么就不知道。

6、典型法

针对题目去联想已经解过的典型问题的解题规律,从而找出解题思路的方法叫做典型法。典型是相对于普遍而言的。解决数学问题,有些需要用一般方法,有些则需要用特殊(典型)方法。比如,归

一、倍比和归总算法、行程、工程、消同求异、平均数等。运用典型法必须注意:

(1)要掌握典型材料的关键及规律。

例7 已知爸爸比儿子大30岁,爸爸今年的年龄正好是儿子的7倍。爸爸、儿子今年分别是多少岁?关键点在:爸爸比儿子大30岁,爸爸的年龄比儿子多几倍。典型题都有典型解法,要想真正学好数学,即要理解和掌握一般思路和解法,还要学会典型解法。

(2)熟悉典型材料,并能敏捷地联想到所适用的典型,从而确定所需要的解题方法。例8 见到“某城市有一条公共汽车线路,长16500米,平均每隔500米设一个车站。这条线路需要设多少个车站?”这样题目,就应该联想到上面所讲到的“锯木头用多少分钟”的典型问题。

(3)典型和技巧相联系。

例9 甲乙两个工程队共有82人,如果从乙队调8人到甲队,两队人数正好相等。甲乙两队原来各有多少人?这题目的技巧:调前、调后两队总人数没变。先算调后各队人数,再算原来各队人数。

7、放缩法

通过对被研究对象的放缩估计来解决问题的方法叫做放缩法。放缩法灵活、巧妙,但有赖于知识的拓展能力及其想象能力。例16 求12和9的最小公倍数。求两个数的最小公倍数一般的方法是“短除式”方法,它是根据这两个数的质因数情况来求出它们的最小公倍数的。但也有两个典型方法:一是“如果两个数是互质数,那么这两个数的最小公倍数就是它们的乘积”;二是“如果大数是小数的倍数,那么这两个数的最小公倍数就是大数”。现在我们根据典型方法二,进行扩展运用,放大“大数”来求12和9的最小公倍数。

12不是9的倍数,就把它放大2倍,得24,仍然不是9的倍数,放大3倍,得36,36是9的倍数,那么,12和9的最小公倍数就是36。这种方法的关键点在于,如果大数不是小数的倍数,就把大数翻倍,但一定从2倍开始,如果一下子扩大6倍,得数是它们的公倍数,而不是最小的了。

例17 期末考试,小刚的语文成绩和英语成绩的和是197分;语文和数学成绩加起来是199分;数学和英语成绩加起来是196分。想一想,小刚的哪科成绩最高?你能算出小刚的各科成绩吗?

思路一:“放大”。通过观察发现,语、数、外三科成绩在题目中各出现两次,我们求197+199+196的和,这个和是“语数外成绩的2倍”,除以2得三科成绩之和,再减去任意两科的成绩,就得到第三科的成绩。

思路二:“缩小”。我们用语数成绩的和减去语外的成绩,199-197=2(分),这是数学减英语成绩的差。数学和英语的和是196分,再求数学的分数就不难了。放缩法有时运用在估算和验算上。例18 检验下列计算结果是否正确?

(1)18.7×6.9=137.3;

(2)17485÷6.6=3609.对于(1)用总体估计,放大至19×7=133,估计得数要小于133,所以本题结果错误。对于(2)用最高位估计,把17看作18,把6.6看作6,18÷6=3,显然答数的最高位不会是3,故本题结果也不正确。

例19 把鸡和兔放在一起,共有48个头,114只足,问鸡、兔各有几只。

这是一道鸡兔同笼的典型问题,我们也用放缩法,不妨把鸡和兔的足数缩小2倍,那么,鸡的足数和它的头数一样,而兔的足数是它的只数的2倍。所以,总的足数缩小2倍后,鸡和兔的总足数与它们的总只数相差数就是兔的只数。

8、验证法

你的结果正确吗?不能只等教师的评判,重要的是自己心里要清楚,对自己的学习有一个清楚的评价,这是优秀学生必备的学习品质。

验证法应用范围比较广泛,是需要熟练掌握的一项基本功。应当通过实践训练及其长期体验积累,不断提高自己的验证能力和逐步养成严谨细致的好习惯。

(1)用不同的方法验证。教科书上一再提出:减法用加法检验,加法用减法检验,除法用乘法验算,乘法用除法验算。

(2)代入检验。解方程的结果正确吗?用代入法,看等号两边是否相等。还可以把结果当条件进行逆向推算。

(3)是否符合实际。“千教万教教人求真,千学万学学做真人”陶行知先生的话要落实在教学中。比如,做一套衣服需要4米布,现有布31米,可以做多少套衣服?有学生这样做:31÷4≈8(套)

按照“四舍五入法”保留近似数无疑是正确的,但和实际不符合,做衣服的剩余布料只能舍去。教学中,常识性的东西予以重视。做衣服套数的近似计算要用“去尾法”。

(4)验证的动力在猜想和质疑。牛顿曾说过:“没有大胆的猜想,就做不出伟大的发现。”“猜”也是解决问题的一种重要策略。可以开拓学生的思维、激发“我要学”的愿望。为了避免瞎猜,一定学会验证。验证猜测结果是否正确,是否符合要求。如不符合要求,及时调整猜想,直到解决问题。

二、抽象思维方法

运用概念、判断、推理来反映现实的思维过程,叫抽象思维,也叫逻辑思维。

抽象思维又分为:形式思维和辩证思维。客观现实有其相对稳定的一面,我们就可以采用形式思维的方式;客观存在也有其不断发展变化的一面,我们可以采用辩证思维的方式。形式思维是辩证思维的基础。

形式思维能力:分析、综合、比较、抽象、概括、判断、推理。

辩证思维能力:联系、发展变化、对立统一律、质量互变律、否定之否定律。

小学数学要培养学生初步的抽象思维能力,重点突出在:(1)思维品质上,应该具备思维的敏捷性、灵活性、联系性和创造性。(2)思维方法上,应该学会有条有理,有根有据地思考。(3)思维要求上,思路清晰,因果分明,言必有据,推理严密。(4)思维训练上,应该要求:正确地运用概念,恰当地下判断,合乎逻辑地推理。

9、对照法

如何正确地理解和运用数学概念?小学数学常用的方法就是对照法。根据数学题意,对照概念、性质、定律、法则、公式、名词、术语的含义和实质,依靠对数学知识的理解、记忆、辨识、再现、迁移来解题的方法叫做对照法。

这个方法的思维意义就在于,训练学生对数学知识的正确理解、牢固记忆、准确辨识。例20、三个连续自然数的和是18,则这三个自然数从小到大分别是多少?

对照自然数的概念和连续自然数的性质可以知道:三个连续自然数和的平均数就是这三个连续自然数的中间那个数。

21、判断:能被2除尽的数一定是偶数。

这里要对照“除尽”和“偶数”这两个数学概念。只有这两个概念全理解了,才能做出正确判断。

10、公式法

运用定律、公式、规则、法则来解决问题的方法。它体现的是由一般到特殊的演绎思维。公式法简便、有效,也是小学生学习数学必须学会和掌握的一种方法。但一定要让学生对公式、定律、规则、法则有一个正确而深刻的理解,并能准确运用。例

22、计算59×37+12×59+59 59×37+12×59+59 =59×(37+12+1)…………运用乘法分配律 =59×50

…………运用加法计算法则 =(60-1)×50

…………运用数的组成规则 =60×50-1×50

…………运用乘法分配律 =3000-50

…………运用乘法计算法则 =2950

…………运用减法计算法则

11、比较法

通过对比数学条件及问题的异同点,研究产生异同点的原因,从而发现解决问题的方法,叫比较法。比较法要注意:

(1)找相同点必找相异点,找相异点必找相同点,不可或缺,也就是说,比较要完整。(2)找联系与区别,这是比较的实质。

(3)必须在同一种关系下(同一种标准)进行比较,这是“比较”的基本条件。(4)要抓住主要内容进行比较,尽量少用“穷举法”进行比较,那样会使重点不突出。(5)因为数学的严密性,决定了比较必须要精细,往往一个字,一个符号就决定了比较结论的对或错。

23、填空:0.75的最高位是(),这个数小数部分的最高位是();十分位的数4与十位上的数4相比,它们的()

相同,()不同,前者比后者小了()。

这道题的意图就是要对“一个数的最高位和小数部分的最高位的区别”,还有“数位和数值”的区别等。

23、六年级同学种一批树,如果每人种5棵,则剩下75棵树没有种;如果每人种7棵,则缺少15棵树苗。六年级有多少学生?

这是两种方案的比较。相同点是:六年级人数不变;相异点是:两种方案中的条件不一样。找联系:每人种树棵数变化了,种树的总棵数也发生了变化。

找解决思路(方法):每人多种7-5=2(棵),那么,全班就多种了75+15=90(棵),全班人数为90÷2=45(人)。

12、分类法

俗语:物以类聚,人以群分。

根据事物的共同点和差异点将事物区分为不同种类的方法,叫做分类法。分类是以比较为基础的。依据事物之间的共同点将它们合为较大的类,又依据差异点将较大的类再分为较小的类。

分类即要注意大类与小类之间的不同层次,又要做到大类之中的各小类不重复、不遗漏、不交叉。

24、自然数按约数的个数来分,可分成几类?

答:可分为三类。(1)只有一个约数的数,它是一个单位数,只有一个数1;(2)有两个约数的,也叫质数,有无数个;(3)有三个约数的,也叫合数,也有无数个。

13、分析法

把整体分解为部分,把复杂的事物分解为各个部分或要素,并对这些部分或要素进行研究、推导的一种思维方法叫做分析法。依据:总体都是由部分构成的。

思路:为了更好地研究和解决总体,先把整体的各部分或要素割裂开来,再分别对照要求,从而理顺解决问题的思路。

也就是从求解的问题出发,正确选择所需要的两个条件,依次推导,一直到问题得到解决为止,这种解题模式是“由果溯因”。分析法也叫逆推法。常用“枝形图”进行图解思路。例

25、玩具厂计划每天生产200件玩具,已经生产了6天,共生产1260件。问平均每天超过计划多少件?

思路:要求平均每天超过计划多少件,必须知道:计划每天生产多少件和实际每天生产多少件。计划每天生产多少件已知,实际每天生产多少件,题中没有告诉,还得求出来。要求实际每天生产多少件玩具,必须知道:实际生产多少天,和实际生产多少件,这两个条件题中都已知。枝形图:(略)

14、综合法

把对象的各个部分或各个方面或各个要素联结起来,并组合成一个有机的整体来研究、推导和一种思维方法叫做综合法。

用综合法解数学题时,通常把各个题知看作是部分(或要素),经过对各部分(或要素)相互之间内在联系一层层分析,逐步推导到题目要求,所以,综合法的解题模式是执因导果,也叫顺推法。这种方法适用于已知条件较少,数量关系比较简单的数学题。

26、两个质数,它们的差是小于30的合数,它们的和即是11的倍数又是小于50的偶数。写出适合上面条件的各组数。

思路:11的倍数同时小于50的偶数有22和44。两个数都是质数,而和是偶数,显然这两个质数中没有2。

和是22的两个质数有:3和19,5和17。它们的差都是小于30的合数吗? 和是44的两个质数有:3和41,7和37,13和31。它们的差是小于30的合数吗? 这就是综合法的思路。

15、方程法

用字母表示未知数,并根据等量关系列出含有字母的表达式(等式)。列方程是一个抽象概括的过程,解方程是一个演绎推导的过程。方程法最大的特点是把未知数等同于已知数看待,参与列式、运算,克服了算术法必须避开求知数来列式的不足。有利于由已知向未知的转化,从而提高了解题的效率和正确率。

27、一个数扩大3倍后再增加100,然后缩小2倍后再减去36,得50。求这个数。例

28、一桶油,第一次用去40%,第二次比第一次多用10千克,还剩余6千克。这桶油重多少千克?

这两题用方程解就比较容易。

16、参数法

用只参与列式、运算而不需要解出的字母或数表示有关数量,并根据题意列出算式的一种方法叫做参数法。参数又叫辅助未知数,也称中间变量。参数法是方程法延伸、拓展的产物。例

29、汽车爬山,上山时平均每小时行15千米,下山时平均每小时行驶10千米,问汽车的平均速度是每小时多少千米?

上下山的平均速度不能用上下山的速度和除以2。而应该用上下山的路程÷2。例30、一项工作,甲单独做要4天完成,乙单独做要5天完成。两人合做要多少天完成? 其实,把总工作量看作“1”,这个“1”就是参数,如果把总工作量看作“2、3、4……”都可以,只不过看作“1”运算最方便。

17、排除法

排除对立的结果叫做排除法。

排除法的逻辑原理是:任何事物都有其对立面,在有正确与错误的多种结果中,一切错误的结果都排除了,剩余的只能是正确的结果。这种方法也叫淘汰法、筛选法或反证法。这是一种不可缺少的形式思维方法。

31、为什么说除2外,所有质数都是奇数?

这就要用反证法:比2大的所有自然数不是质数就是合数。假设:比2大的质数有偶数,那么,这个偶数一定能被2整除,也就是说它一定有约数2。一个数的约数除了1和它本身外,还有别的约数(约数2),这个数一定是合数而不是质数。这和原来假定是质数对立(矛盾)。所以,原来假设错误。

32、判断:(1)同一平面上两条直线不平行,就一定相交。(错)(2)分数的分子和分母同乘以或同除以一个相同的数,分数大小不变。(错)

18、特例法

对于涉及一般性结论的题目,通过取特殊值或画特殊图或定特殊位置等特例来解题的方法叫做特例法。特例法的逻辑原理是:事物的一般性存在于特殊性之中。

33、大圆半径是小圆半径的2倍,大圆周长是小圆周长的()倍,大圆面积是小圆面积的()倍。

可以取小圆半径为1,那么大圆半径就是2。计算一下,就能得出正确结果。例

33、正方形的面积和边长成正比例吗?

如果正方形的边长为a,面积为s。那么,s:a=a(比值不定)所以,正方形的面积和边长不成正比例。

19、化归法

通过某种转化过程,把问题归结到一类典型问题来解题的方法叫做化归法。化归是知识迁移的重要途径,也是扩展、深化认知的首要步骤。化归法的逻辑原理是,事物之间是普遍联系的。化归法是一种常用的辩证思维方法。

34、某制药厂生产一批防“非典”药,原计划25人14天完成,由于急需,要提前4天完成,需要增加多少人?

这就需要在考虑问题时,把“总工作日”化归为“总工作量”。

35、超市运来马铃薯、西红柿、豇豆三种蔬菜,马铃薯占25%,西红柿和豇豆的重量比是4:5,已知豇豆比马铃薯多36千克,超市运来西红柿多少千克?

需要把“西红柿和豇豆的重量比4:5”化归为“各占总重量的百分之几”,也就是把比例应用题化归、用新颖有趣的教法诱发学习兴趣

苏霍姆林斯基说过:“兴趣并不在于认识一眼就能看见的东西,而在于认识深藏的奥秘”。小学生好奇心强,求知欲强烈,容易被新奇的事物吸引。这就要先在学生面前揭示出一种新的东西,激发起他们的惊奇感。这种情感越能抓住学生的心,他们就越迫切地想要知道、思考和理解。这就需要我们要善于用新颖的教学方法引起他们对于学习内容的好奇感,从而神情专注、兴趣盎然地投入到学习活动中来。例如果在教学“乘法的初步认识”时,我是这样导入的,我说:“今天老师要和小朋友们开展计算比赛,比一比谁算的又对又快,接着我出示了如下题目:3+3+3,7+7+7+7+7,8+8+8+8……+8(100个8)。看了题目以后,小朋友们马上投入到紧张的计算比赛中去,正在兴致勃勃的把数字一个一个的加,我却立即说出了得数。小朋友们一个个你看看我,我看看你觉得很奇怪。这时我说:”其实,老师做加法的本领并不比你们强,只是我掌握了一种新的运算方法,掌握了这种方法以后,算几个相同加数的加法时,速度就会快多了。这种运算叫乘法,你们想学吗?“正是这一举措,展示了乘法这一教学内容的内在魅力和巨大作用,无疑把学生紧紧地吸引住了,从而诱发了学生急切学习乘法的需要和强烈的学习兴趣。让学生对数学充满兴趣

我们每个人从事各种活动,都是由一定的动机、兴趣所引起的,有了动机、兴趣才能去从事各种活动,从而达到一定的目的。学习兴趣是学生学习的强化剂,在学生的认识过程与学习活动中起着巨大的推动和内驱作用。我国古代教育心理学家说过:“知之者不如好知者,好知者不如乐知者。”就非常形象、生动地说明了兴趣在学习中的作用,古往今来,许多发明家之所以能取得令人瞩目的成绩,更是与他们浓厚的学习兴趣和强烈的求知欲望有关。

传统的数学课堂把丰富复杂、动态变化的教学过程简约化归为“明算理,重练习”的特殊认识活动,导致数学课堂变得机械、沉闷和程序化,缺乏生机与乐趣,缺乏对智慧的挑战。学生学习起来觉得枯燥、乏味,没有激情。那么怎样才能使课堂气氛活跃,使学生拥有浓厚的学习兴趣呢?我觉得可以从以下几个方面着手:

一、用新颖有趣的教法诱发学习兴趣

苏霍姆林斯基说过:“兴趣并不在于认识一眼就能看见的东西,而在于认识深藏的奥秘”。小学生好奇心强,求知欲强烈,容易被新奇的事物吸引。这就要先在学生面前揭示出一种新的东西,激发起他们的惊奇感。这种情感越能抓住学生的心,他们就越迫切地想要知道、思考和理解。这就需要我们要善于用新颖的教学方法引起他们对于学习内容的好奇感,从而神情专注、兴趣盎然地投入到学习活动中来。例如果在教学“乘法的初步认识”时,我是这样导入的,我说:“今天老师要和小朋友们开展计算比赛,比一比谁算的又对又快,接着我出示了如下题目:3+3+3,7+7+7+7+7,8+8+8+8……+8(100个8)。看了题目以后,小朋友们马上投入到紧张的计算比赛中去,正在兴致勃勃的把数字一个一个的加,我却立即说出了得数。小朋友们一个个你看看我,我看看你觉得很奇怪。这时我说:”其实,老师做加法的本领并不比你们强,只是我掌握了一种新的运算方法,掌握了这种方法以后,算几个相同加数的加法时,速度就会快多了。这种运算叫乘法,你们想学吗?“正是这一举措,展示了乘法这一教学内容的内在魅力和巨大作用,无疑把学生紧紧地吸引住了,从而诱发了学生急切学习乘法的需要和强烈的学习兴趣。

二、用数学本身的内在力量唤起学习兴趣

布鲁纳说过:“最好的学习动机莫过于学生对所学材料本身具有内在的兴趣。”数学知识严密的逻辑性和系统性,各种数学材料之间的有机联系,解决数学问题时思路的开阔和敏捷,数学思维的各种特殊而巧妙的形式……构成了数学这门学科的潜在的吸引力。所以在数学教学中,要努力把数学这种内在力量显示出来,使学生看到一个“快乐的数学王国”,使学生潜移默化的对数学产生深刻的兴趣。如在教学“20以内个数的认识”时,我出了这样一道题:同学们排队做操,小华的前面有5个同学,后面有8个同学,这一队一共有多少同学?让学生解答,结果学生们不假思索的告诉我:5+8=13(个)。看着学生们一个个神气的神态,我并没有急于表态,而是讲了一个故事:兔妈妈带小兔们到草地上去做游戏。天黑了,兔妈妈让小兔们把队伍整理好准备回家。她认认真真的数了数,大吃一惊:“不好,丢了一只小兔”。她又仔仔细细数了一次,小兔却一只都没少。为什么14只兔子变成了13只呢?这时学生们顿有所悟,边笑边喊:“兔妈妈把自己都忘了数了。”也正是此时,学生们马上意识到刚才那道题存在的错误。纷纷表示怎么把小华给忘了。如此妙趣横生的数学内容,当然深深的吸引了学生。此外,还可以组织一题多变,一题多解,一题多问,一题多算,一题多编等活动,显示出数学特有的内在力量,唤起学生对之产生深刻的兴趣。

三、用数学的应用价值调动学习兴趣

数学是一门应用非常广泛的学科。小学数学中的许多知识,也都直接或间接的应用于人们的生活领域和生产实际。因此,在教学中,对教学内容要讲来源,讲用处,通过联系实际,解决学习、生活中的问题,让学生感到生活中处处有数学,这样学起来自然有亲切感、真实感,从而激发学生学习数学的积极动机,产生学习兴趣。如教学“11-20”各数的认识,可设计让学生很快翻书找到指定页码的练习;应用题的练习,要尽量设计解决生活实际中遇到的一些具体问题,又如在教学“认识人民币”时,我设计了这样一个活动:在教室里布置了一家超市,里面摆了好多商品,琳琅满目,选一位小朋友扮演售货员,其他小朋友先仔细观察这些商品的价格,一方面使学生进一步认识了人民币,使课内的数学知识得以巩固。另一方面也让学生真正认识到数学就在我们生活中间。既看得见也摸得着,不再觉得数学是脱离实际的海市蜃楼。而且培养了学生分析问题和解决问题的能力,调动学生学习数学的兴趣。

四、用学习的成功感增添学习兴趣

心理学家盖兹说过:“没有什么东西比成功更能增强满足的感觉;也没有什么东西让每个学生都体验到成功的喜悦,更能激发学生的求知欲望。”学生对于数学的兴趣是在自身的活动中形成和发展的。当学生通过努力获得某种成功时,就会表现出强烈的学习兴趣。教师的责任在于相机鼓励、诱导点拨、帮助学生学习获得成功。当学生想独立的去探索某个新知时,要十分注意情绪鼓舞:“你一定能自己解决这个问题”、“你一定能行!”等。当学生的学习停留于一定的水平时,要注意设“跳板”引渡,使他们成功的到达知识的彼岸。当学生的学习活动遇到困难,特别是后进生泄气自卑时,要特别注意给予及时的点拨诱导,使他们“跳一下也能摘到果子吃”。这样,各种不同水平的学生就会在探究中获得成功的喜悦,满足感油然而生,进一步增添了对数学知识的学习兴趣。

五、用数学课外活动发展学习兴趣

学生在学到一定的数学知识,并激发了学习兴趣后,就会不满足于课堂内所学的

知识。这时,教师应组织各种数学课外活动,为其创造一个非常自由的、宽松的、生动活泼的学习环境。使枯燥的数学知识更加趣味化,实践化。例如,在低年级组织全班性的数学表演会,通过讲数学故事、猜数学谜语、做数学游戏等活动,发展学习兴趣;在中、高年级可以结合教材内容,介绍国内外数学家的故事、现代科学技术的发展、数学小常识,出数学墙报等活动。这样不仅能扩大学生的视野,拓宽知识,而且可以通过多种形式启发学生学习的兴趣,最大限度地调动学生学习的积极性和主动性,使学生的学习兴趣不断地得到发展。

总之,要使课堂气氛活跃焕发生机,就要从培养学生的学习兴趣入手,科学的设计学习活动,使学生不仅爱学、会学,而且学得积极主动,学得活泼,实现从“要我学”到“我要学”的转变,让数学成为孩子们自觉追求的东西。

第三篇:19种小学数学教学方法总结

19种小学数学教学方法总结

良好的方法能使我们更好地发挥运用天赋的才能,而拙劣的方法则可能阻碍才能的发挥.------[英]贝尔纳

“数学为其他科学提供了语言、思想和方法”,“初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题”.(小学数学课程标准)数学思维方法分为两种,形象思维方法和抽象思维方法.小学数学要培养学生的形象思维能力,并在此基础上,为发展抽象思维能力打下坚实的基础.一、形象思维方法

形象思维方法是指人们用形象思维来认识、解决问题的方法.它的思维基础是具体形象,并从具体形象展开来的思维过程.形象思维的主要手段是实物、图形、表格和典型等形象材料.它的认识特点是以个别表现一般,始终保留着对事物的直观性.它的思维过程表现为表象、类比、联想、想象.它的思维品质表现为对直观材料进行积极想象,对表象进行加工、提炼进而提示出本质、规律,或求出对象.它的思维目标是解决实际问题,并且在解决问题当中提高自身的思维能力.1、实物演示法

利用身边的实物来演示数学题目的条件和问题,及条件与条件,条件与问题之间的关系,在此基础上进行分析思考、寻求解决问题的方法.这种方法可以使数学内容形象化,数量关系具体化.比如:数学中的相遇问题.通过实物演示不仅能够解决“同时、相向而行、相遇”等术语,而且为学生指明了思维方向.再如,在一个圆形(方形)水塘周围栽树问题,如果能进行一个实际操作,效果要好得多.二年级数学教材中,“三个小朋友见面握手,每两人握一次,共要握几次手”与“用三张不同的数字卡片摆成两位数,共可以摆成多少个两位数”.像这样的有关排列、组合的知识,在小学教学中,如果实物演示的方法,是很难达到预期的教学目标的.特别是一些数学概念,如果没有实物演示,小学生就不能真正掌握.长方形的面积、长方体的认识、圆柱的体积等的学习,都依赖于实物演示作思维的基础.所以,小学数学教师应尽可能多地制作一些数学教(学)具,而且这些教(学)具用过后要好好保存,可以重复使用.这样可以有效地提高课堂教学效率,提升学生的学习成绩.绩.2、图示法

借助直观图形来确定思考方向,寻找思路,求得解决问题的方法.图示法直观可靠,便于分析数形关系,不受逻辑推导限制,思路灵活开阔,但图示依赖于人们对表象加工整理的可靠性上,一旦图示与实际情况不相符,易使在此基础上的联想、想象出现谬误或走入误区,最后导致错误的结果.比如有的数学教师爱徒手画数学图形,难免造成不准确,使学生产生误解.在课堂教学当中,要多用图示的方法来解决问题.有的题目,图画出来了,结果也就出来的;有的题,图画好了,题意学生也就明白了;有的题,画图则可以帮助分析题意、启迪思路,作为其他解法的辅助手段.例1 把一根木头锯成3段需要24分钟,锯成6段需要多少分钟?(图略)思维方法是:图示法.思维方向是:锯几次,每次用几分钟.思路是:锯3段锯了几次,每次用几分钟,锯6段锯了几次,需要多少分钟.例2 判断 等腰三角形中,点D是底边BC的中点,图甲的面积比图乙的面积大,图甲的周长比图乙的周长长.(图略)思维方法:图示法.思维方向:先比较面积,再比较周长.思路:作条辅助线.图甲占的面积大,图乙所占面积小,所以“图甲的面积比图乙的面积大”是正确的.线段AD比曲线AD短,所以“图甲的周长比图乙的周长长”是错误的.3、列表法

运用列出表格来分析思考、寻找思路、求解问题的方法叫做列表法.列表法清晰明了,便于分析比较、提示规律,也有利于记忆.它的局限性在于求解范围小,适用题型狭窄,大多跟寻找规律或显示规律有关.比如,正、反比例的内容,整理数据,乘法口诀,数位顺序等内容的教学大都采用“列表法”.用列表法解决传统数学问题:鸡兔同笼问题.制作三个表格:第一张表格是逐一举例法,根据鸡与兔共20只的条件,假设鸡只有1只,那么兔就有19只,腿共有78条……这样逐一列举,直至寻找到所求的答案;第二张表格是列举了几个以后发现了只数与腿数的规律,从而减少了列举的次数;第三张表格是从中间开始列举,由于鸡与兔共20只,所以各取10只,接着根据实际的数据情况确定列举的方向.4、探索法

按照一定方向,通过尝试来摸索规律、探求解决问题思路的方法叫做探究法.我国著名数学家华罗庚说过,在数学里,“难处不在于有了公式去证明,而在于没有公式之前,怎样去找出公式来.”苏霍姆林斯基说过:在人的心灵深处,都有一种根深蒂固的需要,这就是希望自己是一个发现者、研究者、探索者,而在儿童的精神世界中,这种需要特别强烈.“学习要以探究为核心”,是新课程的基本理念之一.人们在难以把问题转化为简单的、基本的、熟悉的、典型的问题时,常常采取的一种好方法就是探究、尝试.第一、探究方向要准确,兴趣要高涨,切忌胡乱尝试或形式主义的探究.例如,教学“比例尺”时,教师创设“学生出题考老师”的教学情境,师:“现在我们考试好不好?”学生一听:很奇怪,正当学生疑惑之时,教师说:“今天改变过去的考试方法,由你们出题考老师,愿意吗?”学生听后很感兴趣.教师说:“这里有一幅地图,你们用直尺任意量出两地的距离,我都能很快地告诉你们这两地之间的实际距离,相信吗?”于是学生纷纷上台度量、报数,教师都一个接一个地回答对应的实际距离.学生这时更感到奇怪,异口同声地说:“老师您快告诉我们吧,您是怎样算的?”教师说:“其实呀,有一位好朋友在暗中帮助老师,你们知道它是谁吗?想认识它吗?”于是引出所要学习的内容“比例尺”.第二、定向猜测,反复实践,在不断分析、调整中寻找规律.例3 找规律填数.(1)1、4、、10、13、、19;(2)2、8、18、32、、72、.第三,独立探究与合作探究结合.独立,有自由的思维时空;合作,可以知识上互补,方法上互相借鉴,不时还能碰撞出智慧的火花.小学数学教学活动中,教师应尽量创设让学生去探究的情景,创造让学生去探究的机会,鼓励有探究精神和习惯的学生.5、观察法

通过大量具体事例,归纳发现事物的一般规律的方法叫做观察法.巴浦洛夫说:"应当先学会观察,不学会观察永远当不了科学家.” 小学数学“观察”的内容一般有:①数字的变化规律及位置特点;②条件与结论之间的关系;③题目的结构特点;④图形的特点及大小、位置关系.如:观察一组算式:25×4=4×25,62×11=11×62,100×6=6×100……归纳出乘法交换率:在乘法算式里,交换两个因数的位置,积不变.“观察”的要求:

第一、观察要细致、准确.例4 找出下列各题错在哪里,并改正.(1)25×16=25×(4×4)=(25×4)×(25×4);(2)18×36+18×64=(18+18)×(36+64)例5 直接写出下列各题的得数:(1)3.6+6.4(2)3.6+6.04

(3)125×57×0.04(4)(351-37-13)÷5 第二、科学观察.科学观察渗透了更多的理性因素,它是有目的,有计划地察看研究对象.比如,在教学长方体的认识时,要做到“有序”观察:(1)面——形状、个数、面与面之间的关系;(2)棱——棱的形成、条数、棱与棱之间的关系(相对的棱相等;相对的棱有四条;长方体的棱可以分为三组);(3)顶点——顶点的形成、个数,认识顶点的一个重要作用是引出长方体长、宽、高的概念.第三, 观察必定与思考结合.例6 7 10 6 18 这是一年级下学期的一道思考题,如果只观察不思考,这道题目让干什么就不知道.6、典型法

针对题目去联想已经解过的典型问题的解题规律,从而找出解题思路的方法叫做典型法.典型是相对于普遍而言的.解决数学问题,有些需要用一般方法,有些则需要用特殊(典型)方法.比如,归

一、倍比和归总算法、行程、工程、消同求异、平均数等.运用典型法必须注意:

(1)要掌握典型材料的关键及规律.例7 已知爸爸比儿子大30岁,爸爸今年的年龄正好是儿子的7倍.爸爸、儿子今年分别是多少岁?关键点在:爸爸比儿子大30岁,爸爸的年龄比儿子多几倍.典型题都有典型解法,要想真正学好数学,即要理解和掌握一般思路和解法,还要学会典型解法.(2)熟悉典型材料,并能敏捷地联想到所适用的典型,从而确定所需要的解题方法.例8 见到“某城市有一条公共汽车线路,长16500米,平均每隔500米设一个车站.这条线路需要设多少个车站?”这样题目,就应该联想到上面所讲到的“锯木头用多少分钟”的典型问题.(3)典型和技巧相联系.例9 甲乙两个工程队共有82人,如果从乙队调8人到甲队,两队人数正好相等.甲乙两队原来各有多少人?这题目的技巧:调前、调后两队总人数没变.先算调后各队人数,再算原来各队人数.7、放缩法

通过对被研究对象的放缩估计来解决问题的方法叫做放缩法.放缩法灵活、巧妙,但有赖于知识的拓展能力及其想象能力.例16 求12和9的最小公倍数.求两个数的最小公倍数一般的方法是“短除式”方法,它是根据这两个数的质因数情况来求出它们的最小公倍数的.但也有两个典型方法:一是“如果两个数是互质数,那么这两个数的最小公倍数就是它们的乘积”;二是“如果大数是小数的倍数,那么这两个数的最小公倍数就是大数”.现在我们根据典型方法二,进行扩展运用,放大“大数”来求12和9的最小公倍数.12不是9的倍数,就把它放大2倍,得24,仍然不是9的倍数,放大3倍,得36,36是9的倍数,那么,12和9的最小公倍数就是36.这种方法的关键点在于,如果大数不是小数的倍数,就把大数翻倍,但一定从2倍开始,如果一下子扩大6倍,得数是它们的公倍数,而不是最小的了.例17 期末考试,小刚的语文成绩和英语成绩的和是197分;语文和数学成绩加起来是199分;数学和英语成绩加起来是196分.想一想,小刚的哪科成绩最高?你能算出小刚的各科成绩吗? 思路一:“放大”.通过观察发现,语、数、外三科成绩在题目中各出现两次,我们求197+199+196的和,这个和是“语数外成绩的2倍”,除以2得三科成绩之和,再减去任意两科的成绩,就得到第三科的成绩.思路二:“缩小”.我们用语数成绩的和减去语外的成绩,199-197=2(分),这是数学减英语成绩的差.数学和英语的和是196分,再求数学的分数就不难了.放缩法有时运用在估算和验算上.例18 检验下列计算结果是否正确?(1)18.7×6.9=137.3;(2)17485÷6.6=3609.对于(1)用总体估计,放大至19×7=133,估计得数要小于133,所以本题结果错误.对于(2)用最高位估计,把17看作18,把6.6看作6,18÷6=3,显然答数的最高位不会是3,故本题结果也不正确.例19 把鸡和兔放在一起,共有48个头,114只足,问鸡、兔各有几只.这是一道鸡兔同笼的典型问题,我们也用放缩法,不妨把鸡和兔的足数缩小2倍,那么,鸡的足数和它的头数一样,而兔的足数是它的只数的2倍.所以,总的足数缩小2倍后,鸡和兔的总足数与它们的总只数相差数就是兔的只数.8、验证法

你的结果正确吗?不能只等教师的评判,重要的是自己心里要清楚,对自己的学习有一个清楚的评价,这是优秀学生必备的学习品质.验证法应用范围比较广泛,是需要熟练掌握的一项基本功.应当通过实践训练及其长期体验积累,不断提高自己的验证能力和逐步养成严谨细致的好习惯.(1)用不同的方法验证.教科书上一再提出:减法用加法检验,加法用减法检验,除法用乘法验算,乘法用除法验算.(2)代入检验.解方程的结果正确吗?用代入法,看等号两边是否相等.还可以把结果当条件进行逆向推算.(3)是否符合实际.“千教万教教人求真,千学万学学做真人”陶行知先生的话要落实在教学中.比如,做一套衣服需要4米布,现有布31米,可以做多少套衣服?有学生这样做:31÷4≈8(套)按照“四舍五入法”保留近似数无疑是正确的,但和实际不符合,做衣服的剩余布料只能舍去.教学中,常识性的东西予以重视.做衣服套数的近似计算要用“去尾法”.(4)验证的动力在猜想和质疑.牛顿曾说过:“没有大胆的猜想,就做不出伟大的发现.”“猜”也是解决问题的一种重要策略.可以开拓学生的思维、激发“我要学”的愿望.为了避免瞎猜,一定学会验证.验证猜测结果是否正确,是否符合要求.如不符合要求,及时调整猜想,直到解决问题.二、抽象思维方法

运用概念、判断、推理来反映现实的思维过程,叫抽象思维,也叫逻辑思维.抽象思维又分为:形式思维和辩证思维.客观现实有其相对稳定的一面,我们就可以采用形式思维的方式;客观存在也有其不断发展变化的一面,我们可以采用辩证思维的方式.形式思维是辩证思维的基础.形式思维能力:分析、综合、比较、抽象、概括、判断、推理.辩证思维能力:联系、发展变化、对立统一律、质量互变律、否定之否定律.小学数学要培养学生初步的抽象思维能力,重点突出在:(1)思维品质上,应该具备思维的敏捷性、灵活性、联系性和创造性.(2)思维方法上,应该学会有条有理,有根有据地思考.(3)思维要求上,思路清晰,因果分明,言必有据,推理严密.(4)思维训练上,应该要求:正确地运用概念,恰当地下判断,合乎逻辑地推理.9、对照法

如何正确地理解和运用数学概念?小学数学常用的方法就是对照法.根据数学题意,对照概念、性质、定律、法则、公式、名词、术语的含义和实质,依靠对数学知识的理解、记忆、辨识、再现、迁移来解题的方法叫做对照法.这个方法的思维意义就在于,训练学生对数学知识的正确理解、牢固记忆、准确辨识.例20、三个连续自然数的和是18,则这三个自然数从小到大分别是多少? 对照自然数的概念和连续自然数的性质可以知道:三个连续自然数和的平均数就是这三个连续自然数的中间那个数.例

21、判断:能被2除尽的数一定是偶数.这里要对照“除尽”和“偶数”这两个数学概念.只有这两个概念全理解了,才能做出正确判断.10、公式法

运用定律、公式、规则、法则来解决问题的方法.它体现的是由一般到特殊的演绎思维.公式法简便、有效,也是小学生学习数学必须学会和掌握的一种方法.但一定要让学生对公式、定律、规则、法则有一个正确而深刻的理解,并能准确运用.例

22、计算59×37+12×59+59 59×37+12×59+59 =59×(37+12+1)…………运用乘法分配律 =59×50

…………运用加法计算法则 =(60-1)×50

…………运用数的组成规则 =60×50-1×50

…………运用乘法分配律 =3000-50

…………运用乘法计算法则 =2950

…………运用减法计算法则

11、比较法

通过对比数学条件及问题的异同点,研究产生异同点的原因,从而发现解决问题的方法,叫比较法.比较法要注意:

(1)找相同点必找相异点,找相异点必找相同点,不可或缺,也就是说,比较要完整.(2)找联系与区别,这是比较的实质.(3)必须在同一种关系下(同一种标准)进行比较,这是“比较”的基本条件.(4)要抓住主要内容进行比较,尽量少用“穷举法”进行比较,那样会使重点不突出.(5)因为数学的严密性,决定了比较必须要精细,往往一个字,一个符号就决定了比较结论的对或错.例

23、填空:0.75的最高位是(),这个数小数部分的最高位是();十分位的数4与十位上的数4相比,它们的()

相同,()不同,前者比后者小了().这道题的意图就是要对“一个数的最高位和小数部分的最高位的区别”,还有“数位和数值”的区别等.例

23、六年级同学种一批树,如果每人种5棵,则剩下75棵树没有种;如果每人种7棵,则缺少15棵树苗.六年级有多少学生? 这是两种方案的比较.相同点是:六年级人数不变;相异点是:两种方案中的条件不一样.找联系:每人种树棵数变化了,种树的总棵数也发生了变化.找解决思路(方法):每人多种7-5=2(棵),那么,全班就多种了75+15=90(棵),全班人数为90÷2=45(人).12、分类法

俗语:物以类聚,人以群分.根据事物的共同点和差异点将事物区分为不同种类的方法,叫做分类法.分类是以比较为基础的.依据事物之间的共同点将它们合为较大的类,又依据差异点将较大的类再分为较小的类.分类即要注意大类与小类之间的不同层次,又要做到大类之中的各小类不重复、不遗漏、不交叉.例

24、自然数按约数的个数来分,可分成几类? 答:可分为三类.(1)只有一个约数的数,它是一个单位数,只有一个数1;(2)有两个约数的,也叫质数,有无数个;(3)有三个约数的,也叫合数,也有无数个.13、分析法

把整体分解为部分,把复杂的事物分解为各个部分或要素,并对这些部分或要素进行研究、推导的一种思维方法叫做分析法.依据:总体都是由部分构成的.思路:为了更好地研究和解决总体,先把整体的各部分或要素割裂开来,再分别对照要求,从而理顺解决问题的思路.也就是从求解的问题出发,正确选择所需要的两个条件,依次推导,一直到问题得到解决为止,这种解题模式是“由果溯因”.分析法也叫逆推法.常用“枝形图”进行图解思路.例

25、玩具厂计划每天生产200件玩具,已经生产了6天,共生产1260件.问平均每天超过计划多少件? 思路:要求平均每天超过计划多少件,必须知道:计划每天生产多少件和实际每天生产多少件.计划每天生产多少件已知,实际每天生产多少件,题中没有告诉,还得求出来.要求实际每天生产多少件玩具,必须知道:实际生产多少天,和实际生产多少件,这两个条件题中都已知.枝形图:(略)

14、综合法

把对象的各个部分或各个方面或各个要素联结起来,并组合成一个有机的整体来研究、推导和一种思维方法叫做综合法.用综合法解数学题时,通常把各个题知看作是部分(或要素),经过对各部分(或要素)相互之间内在联系一层层分析,逐步推导到题目要求,所以,综合法的解题模式是执因导果,也叫顺推法.这种方法适用于已知条件较少,数量关系比较简单的数学题.例

26、两个质数,它们的差是小于30的合数,它们的和即是11的倍数又是小于50的偶数.写出适合上面条件的各组数.思路:11的倍数同时小于50的偶数有22和44.两个数都是质数,而和是偶数,显然这两个质数中没有2.和是22的两个质数有:3和19,5和17.它们的差都是小于30的合数吗? 和是44的两个质数有:3和41,7和37,13和31.它们的差是小于30的合数吗? 这就是综合法的思路.15、方程法

用字母表示未知数,并根据等量关系列出含有字母的表达式(等式).列方程是一个抽象概括的过程,解方程是一个演绎推导的过程.方程法最大的特点是把未知数等同于已知数看待,参与列式、运算,克服了算术法必须避开求知数来列式的不足.有利于由已知向未知的转化,从而提高了解题的效率和正确率.例

27、一个数扩大3倍后再增加100,然后缩小2倍后再减去36,得50.求这个数.例

28、一桶油,第一次用去40%,第二次比第一次多用10千克,还剩余6千克.这桶油重多少千克? 这两题用方程解就比较容易.16、参数法

用只参与列式、运算而不需要解出的字母或数表示有关数量,并根据题意列出算式的一种方法叫做参数法.参数又叫辅助未知数,也称中间变量.参数法是方程法延伸、拓展的产物.例

29、汽车爬山,上山时平均每小时行15千米,下山时平均每小时行驶10千米,问汽车的平均速度是每小时多少千米? 上下山的平均速度不能用上下山的速度和除以2.而应该用上下山的路程÷2.例30、一项工作,甲单独做要4天完成,乙单独做要5天完成.两人合做要多少天完成? 其实,把总工作量看作“1”,这个“1”就是参数,如果把总工作量看作“2、3、4……”都可以,只不过看作“1”运算最方便.17、排除法

排除对立的结果叫做排除法.排除法的逻辑原理是:任何事物都有其对立面,在有正确与错误的多种结果中,一切错误的结果都排除了,剩余的只能是正确的结果.这种方法也叫淘汰法、筛选法或反证法.这是一种不可缺少的形式思维方法.例

31、为什么说除2外,所有质数都是奇数? 这就要用反证法:比2大的所有自然数不是质数就是合数.假设:比2大的质数有偶数,那么,这个偶数一定能被2整除,也就是说它一定有约数2.一个数的约数除了1和它本身外,还有别的约数(约数2),这个数一定是合数而不是质数.这和原来假定是质数对立(矛盾).所以,原来假设错误.例

32、判断:(1)同一平面上两条直线不平行,就一定相交.(错)

(2)分数的分子和分母同乘以或同除以一个相同的数,分数大小不变.(错)

18、特例法

对于涉及一般性结论的题目,通过取特殊值或画特殊图或定特殊位置等特例来解题的方法叫做特例法.特例法的逻辑原理是:事物的一般性存在于特殊性之中.例

33、大圆半径是小圆半径的2倍,大圆周长是小圆周长的()倍,大圆面积是小圆面积的()倍.可以取小圆半径为1,那么大圆半径就是2.计算一下,就能得出正确结果.例

33、正方形的面积和边长成正比例吗? 如果正方形的边长为a,面积为s.那么,s:a=a(比值不定)所以,正方形的面积和边长不成正比例.19、化归法

通过某种转化过程,把问题归结到一类典型问题来解题的方法叫做化归法.化归是知识迁移的重要途径,也是扩展、深化认知的首要步骤.化归法的逻辑原理是,事物之间是普遍联系的.化归法是一种常用的辩证思维方法.例

34、某制药厂生产一批防“非典”药,原计划25人14天完成,由于急需,要提前4天完成,需要增加多少人? 这就需要在考虑问题时,把“总工作日”化归为“总工作量”.例

35、超市运来马铃薯、西红柿、豇豆三种蔬菜,马铃薯占25%,西红柿和豇豆的重量比是4:5,已知豇豆比马铃薯多36千克,超市运来西红柿多少千克? 需要把“西红柿和豇豆的重量比4:5”化归为“各占总重量的百分之几”,也就是把比例应用题化归为分数应用题.

第四篇:浅谈小学数学教学方法

浅谈小学数学教学方法

依据新的数学课程标准有目的地引导学生进行数学教学活动,从学生已有的生活经验出发,重视培养学生的创新意识和实践能力。现就新课程下的小学数学教学谈谈我的观点与做法:

1.让数学回归生活,让“生活”走进课堂,加强数学课本材料的实用性

从学生日常的买菜、买学习用品让学生明白,学习数学无非是为了用,为了能解决实际生活中的具体问题,为了长大后能在社会上生存。因此,我们的数学教学不能远离生活,不能脱离现实。因此,我在备每一节课时都要想到所讲知识与哪些生活的实际例子有联系,生活中哪些地方使用它,尤其我们农村小学的孩子,生活中到处与数学联系在一起。教师在教学中尽量做到能在实际情境中融入数学知识,做到不干巴巴地讲;有学生熟知的生活例子,就替代乏味的课本例题;能动手操作发现学习知识的,就让学生动手操作获取知识;总之,数学教学就要做到“从生活中来,到生活中去,体会到生活处处有数学”。

2.把学习数学变成具体的感受和体验

小学数学是数学教育的基础,是孩子们一生中学习数学的开始。如何在孩子们面前展示出一个五彩缤纷、与生活紧密相关的数学世界,把抽象、枯燥的数学变得生动有趣和亲近,让孩子们发自内心的爱数学,主动地用数学。我认为关键是要加强数学与生活的联系,把抽象陌生的数学变成具体的感受和体验,让数学知识生活化。现代儿童心理学研究表明,儿童学习数学时,他们的心智活动离不开具体事物的支持。而且小学生的学习带有浓厚的感情色彩,对熟悉的生活情景,感到亲切,有兴趣。只有当数学不再板起面孔,而是与孩子们的生活实际更贴近的时候,他们才会产生学习的兴趣,才会进入学习的角色,才会真正感受和体验数学的魅力与价值,增进理解和应用的信心。在教学中,要注意从学生熟悉的生活原型入手,唤起他们已有的生活经验和感受,使学习成为学生发自内心的需求。

3.创造性地使用情景图、模拟实际情境,增加实际体验

打开数学新教材,映入眼帘的是五颜六色的图画,生动有趣的故事,憨态可拘的动物,深受欢迎的卡通,这不仅给枯燥的数学课赋予了活力,更为我的教学设计提供了丰富的资源。教材为我们小学数学教育者提供了这样许许多多的情景图。实质上是编者把他对人生的理解、对现实的看法,转化到书本上以图的形式来展示,并不是要广大教师局限在图中,必须看图、用图、讲图。我在实际教学中感到,教师学生拿着实物走进教室,动口、动手创设一个个比较真实的情境,让学生看得见、摸得着,学生能更快的进入学习角色,能产生更大的学习兴趣,能有更具体的感受和体验。我经常根据书上的图找来图片、实物、自做动物头饰、编写童话故事等,领着学生动手动口,还用模拟表演来亲自创设情境,使数学知识更具生活性和趣味性,效果很好。

4.创设平等愉快,民主、和谐的师生关系,让学生乐于交流发言

新的数学课程标准,给我们提出了新的要求。要适应新的形势发展,必须有新的教育观念。首先,对学生重新认识,每一个孩子都有自己的爱好,充分估计每个孩子的潜在能力,不要片面认为某某孩子太差。实际上每个孩子都是好孩子,只是他们的特长和优点不同而已。要信任理解孩子,要让每个孩子都抬起头来,都体体面面的坐下去,千万不能让孩子在其他同学面前暴露他的不足。其次,要用和蔼的目光面和面容对全班的学生,经常用鼓励和赞赏的语言和学生交流,如:“我很高兴,我的想法和某某同学不谋而合。”“你今天表现很不错”“你对这一点的看法很有主见。”对于不完全正确的答案,我注意发现它的闪光点:“我听懂了你的意思”。“你说的这一点很有道理。”“你能解释一下吗?”以前每节课结束,我都说:“有不懂的找老师。”现在我常说的是:“你有什么感想或遗憾?”“今天的课堂,谁还想发表看法?”这样就能体现出老师和学生平等、民主、和谐。同时,还要观察分析学生的质量,应从不同的角度下结论,从能力的培养入手,使学生的特长得以充分的发挥。

总之,数学教学中我都要经历苦恼、反思、探索、实践的过程,在这一过程中,我时刻记住创造性的学习数学课程标准,创造性地驾驭教材,处理教材,处理教学中的“突然”事例,不断地自身调节,以达到课程目标。在课堂教学中,我把观念的转变、知识的更新、行动的研究并将这些体现在每一次的教学活动中,使所教的小学课堂变为学生善思的场所,提高能力的主阵地。

第五篇:浅谈小学数学教学方法(定稿)

浅谈小学数学教学方法

摘 要:在小学的数学日常教学过程中,如何更好地,更有效的让学生学习到知识更直接的让学生接触到关键的知识点,是小学数学教学过程中的一项重要的课题。我们都知道,要想达到既定的教学目标,必须要以有效的教学方法作为基础,教师培养其学生的学习兴趣,促进学生进行自主学习,提高教学效率,从而取得良好的教学效果。

关键词:小学数学;数学体验;和谐

中图分类号:G622 文献标识码:B 文章编号:1002-7661(2015)13-300-01

在对于小数数学的教学过程中,由于小学生的心理和生理都处于一个成长的阶段,他们无法像成年人一样去思考和感悟,所以教师必须探索出一个适合小学生的教学道路,这对于小学数学的教学有着极为重要的意义。随着新课改政策的逐渐推进,对于教学方法上的要求也是不断的更新,根据学生的生活和学习经验,让学生在学习中发现生活,在生活中进行学习,不断促进学生在理论中的学习,以及在实践中的应用,提高学生的数学学习能力。

一、数学理论和实践相结合,让小学数学更加的具有实际意义

在小学数学的教学过程中,教师要让学生认识到,数学的学习最根本的目的是为了在实践中的应用,是为了解决现实生活中的实际问题的,是为了能够在以后的生活中发挥作用的。正是由于此,数学的教学绝不可脱离现实生活,必须要与实际生活相结合。

所以,教师在进行数学的教学过程中,尤其是在于准备的过程中要注意,知识点的教学和实际生活有着怎样的联系。对于即将要学习的知识,我们在现实生活里,什么样的情况下会使用到,生活中处处充满着数学,这就需要教师的发现和探索。如果教师在教学的过程中仅仅是直白的讲述,缺少必要的生活例子来支撑,那么学生在听课的过程中必然是枯燥乏味的,这样的课堂必然是无法取得高效率的;有些知识是需要学生进行自主探索的,教师应当积极的创造条件,鼓励学生去发现和探索,让学生在实践中学习到知识,这样才能记忆的更加深刻。有句话叫做:革命从群众中来,到群众中去。数学也可以说是从生活中来,最终回到生活中的。

二、学习数学的过程是一种体验的过程

小学教育是学生整个人生教育的基础所在,也是学生正式接受教育的出发点。对于数学,传统的印象大多都是枯燥,抽象,难以理解,那么怎样才能使得数学的学习也变得具有趣味性,让学生能够更加轻易的去理解呢?主要还是在于学生和数学的接触。我们都知道,每个人每一天都是在生活的,生活无时无刻不在我们的身边,如果数学更加与生活接近,那么数学就会更加亲近,数学的学习也是更加的简单。

生活是具体的,实际的,但是数学是抽象的,如果将抽象的数学融入到具体的生活中,数学更加的生活化,与学生的接触更加亲近,那么学生对于数学的学习也会更加的有兴趣。根据调查研究显示,学生在学习数学的过程中,其心理活动与现实事物是不可分离的。对于处于小学的学生来讲,他们在学习的过程中情感因素影响会占据比较大的比重。当某一部分的数学知识对于他们来说更加的亲近,更加的熟悉的时候,他们学习的兴趣也就会更加的浓厚,也只有在这个时候,他们才会走进数学,才会主动的去学习数学,才会更加有信息,更加主动的结合生活去感受数学。

三、模拟情景教学,使得数学和生活更加自然的结合在数学的教材中,书本上配有很多的插图和故事,还有一些可爱的卡通人物和动物,这可以说将原本抽象的数学学习变得更加通俗和实际了,实际上这也是对于实际教学中的一种帮助。教材之所以作为教材,是经过很多专家和学者们的不断研究和讨论之后的结果,这是编者们根据他们的人生阅历和理解,将知识融入到书本中,通过各种各样的图片或者故事给学生和教师们展示出来。但是教室们必须要注意到一点,图片和故事的使用,只是给予教师们一个教学的启示,帮助教师去发掘更多的教学方法,而不是让教师局限在课本之内的图片和故事中。

通过一个具体的生活场景,从生活中发现一个问题,让学生们从生活情景中学习,也让学生能够迅速的投入到学习的角色中,从而培养学生的学习兴趣,更加深刻的去学习数学的知识。通过生活情景的展示,让学生自己参与到情景中,动手的同时动脑,使得数学的学习更加具有趣味性。

四、和谐师生关系是数学教学的重要基础

对于小学生来说,他们学习过程中的感性因素的比重更加多,所以如果师生关系处理不当,学生排斥数学教学老师,那么必然对于数学失去兴趣,不会去主动的进行数学的学习。

要想建立起良好的师生关系,首先需要教师对于学生的关注和了解,包括每一个学生的兴趣和爱好,评估学生的学习潜力。既然有考试,那么必然有先后之分,但是这并不代表排名在前的学生就一定比排名在后的学生好,这并不是证明学生能力高低的比准。在实际的教学过程中,教师要了解并理解学生,鼓励每一个学生,培养学生的自信,避免在全班面前让学生下不了台,给予每个学生一个公平的机会和待遇;其次,教师和蔼的目光和和善的语言对于师生关系都起到一个重要的维系作用。诸如“今天表现的很好”,“对于这个问题你提出的意见很不错”等等,这样可以让学生感受到教师对于自己的重视,感受到公平和民主,极大的促进师生之间的和谐关系。

总而言之,在数学的教学过程中,必然是要经历一个从迷惑到实践的过程的,在这个过程中,需要教师的不断创新和探索,不断的发展自我,不断的反思自我,使得课堂的数学教学更加具有实效性和现实性,让学生能够积极主动的参与到数学的学习过程中,提高学生的数学学习能力。

参考文献:

[1] 杨巧婧.小学数学教学生活化的实践研究[D].四川师范大学.2011

[2] 王晴晴.小学数学教学生活化研究[D].山东师范大学.2014

[3] 熊 觅.新课程背景下小学数学教学生活化的研究[D].湖南师范大学.2013

下载教师考编小学数学教育教学方法总结word格式文档
下载教师考编小学数学教育教学方法总结.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    小学数学教学方法

    小学数学教学方法 小学数学教学方法 1 讲授法 讲授法是教师运用口头语言向学生描绘情境、叙述事实、解释概念、论证原理和阐明规律的一种教学方法。 2 谈话法 谈话法,又称回......

    19种小学数学教学方法总结(最终五篇)

    19种小学数学教学方法总结 良好的方法能使我们更好地发挥运用天赋的才能,而拙劣的方法则可能阻碍才能的发挥。------[英]贝尔纳 “数学为其他科学提供了语言、思想和方法”,“......

    谈小学五年级数学教学方法[小编推荐]

    谈小学五年级数学教学方法 邓丽娟 五年级是小学学习重要阶段。他们不再像一年级那样幼稚和天真,不再将老师的话奉为圣旨,他们有了自己的意识和主见。但他们又不像中学生那样逐......

    小学数学计算教学方法

    小学阶段的计算教学 一、提高小学生计算能力的重要性 计算是数学知识中的重要内容之一,数学计算能力是一项基本的数学能力,包含了计算速度和正确率两方面。计算能力是学习数学......

    小学数学有效教学方法

    小学数学教学中减负的有效方法 棠香小学唐智慧 当沉甸甸的书包压在孩子稚嫩的肩头时,在老师奋笔疾书的批改中,结果却是学生对学习的厌学,对学习失去兴趣,孩子的各种隐含的天赋......

    小学数学几何教学方法探讨(定稿)

    小学数学几何教学方法探讨 一、新旧联系,引渡教学 在小学几何教学中,为了突出教学内容,教师可以在讲解新内容的时候联系以往学过的内容,通过旧的知识引出新的内容,进行平滑的过渡......

    小学数学教学方法案例

    小学数学教学方法案例 一、 谈话法案例: 某教师在教××比××多(或少)的概念时师生的一段对话。 师问:图上有什么(见图15)? 生答:图上有一排三角形;一排圆形。 师问:有几个三角形?有几......

    小学数学教学常用教学方法

    教学方法是教师和学生在教学活动中为达到一定的教学目标所采用的手段和方式。在数学教学中,教师要教,必须运用课本、手册、挂图、幻灯、直观教具等手段,运用讲解、演示、练习等......