专题二 全等三角形的有关证明[优秀范文5篇]

时间:2019-05-13 04:33:12下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《专题二 全等三角形的有关证明》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《专题二 全等三角形的有关证明》。

第一篇:专题二 全等三角形的有关证明

专题二

全等三角形的有关证明

1.如图所示,OC是∠AOB的平分线,P是OC上一点,PD⊥DA交OA于点D,PE⊥OB交OB于点E,F是OC上另一点,连接DE、EF.求证:DF=EF.2.如图所示,等边△ABC的边长为1cm,D、E分别是AB、AC上的点,将△ADE沿直线DE折叠,点A落在A'处,且点A'在△ABC外部,BD=NC.求证:DM=NE.3.如图,在△ABC中,AB=AC,AD⊥BC于点D,将△ADC绕点A顺时针旋转,使AC与AB重合,点D落在点E处,AE的延长线交CB的延长线于点M,EB的延长线交AD的延长线于点N,求证:AM=AN。

4.如图,已知点D为等腰直角△ABC内一点,AB为斜边,∠CAD=∠CBD=15°,E为AD延长线上的一点;且CE=CA.(1)求证:DE平分∠BDC;

(2)若点M在DE上,且DC=DM,求证:ME=BD.5.如图,一个含45°的三角板HBE的两条直角边与正方形ABCD的两邻边重合,过点E作EF⊥AE交∠DCE的平分线于点F,试探究线段AE与EF的数量关系,并说明理由。

6.如图,在Rt△ABC中,∠C=90°,AC=16,BC=8,MN=AB,M、N分别在AC上和过点A且垂直于AC的射线AP上运动,那么当点M运动到什么位置时,才能使△ABC与△AMN全等?

7、如图,在△ABC中,AC=BC,∠C=900,BD为∠ABC的平分线,若A点到直线BD的距离AD为2cm,求BE的长。(温馨提示:延长AD、BC交于点F后试一试!)

8.(1)如图1,在∠BAC的平分线上任取一点D,在AB、AC上各取一点E、F,若DE=DF,且AE>AF.求证:∠AED+∠AFD=180°;(2)如图2,AD是∠BAC的平分线,E、F分别为AB、AC上的点,且∠DEA+∠DFA=180°.求证:DE=DF.9.如图所示,已知AC∥BD,EA、EB分别平分∠CAB和∠DBA,点E在CD上.求证:AB=AC+BD.解图

10.如图,AD=CB,E,F是AC上两动点,且有DE=BF。(1)若E,F运动至图①所在位置,且有AF=CE,求证:△ADE≌△CBF;

(2)若E,F运动至图②所在位置,仍有AF=CF,那么△ADE≌△CBF还成立吗?为什么?(3)若E,F不重合,AD和CB平行吗?说明理由。

第二篇:全等三角形证明

全等三角形的证明

1.翻折

如图(1),BOC≌EOD,BOC可以看成是由EOD沿直线AO翻折180得到的;

旋转

如图(2),COD≌BOA,COD可以看成是由BOA绕着点O旋转180得到的;

平移

如图(3),DEF≌ACB,DEF可以看成是由ACB沿CB方向平行移动而得到的。

2.判定三角形全等的方法:

(1)边角边公理、角边角公理、边边边公理、斜边直角边(直角三角形中)公理

(2)推论:角角边定理

3.注意问题:

(1)在判定两个三角形全等时,至少有一边对应相等;

(2)不能证明两个三角形全等的是,a: 三个角对应相等,即AAA;b :有两边和其中一角对应相等,即SSA。

一、全等三角形知识的应用

(1)证明线段(或角)相等

例1:如图,已知AD=AE,AB=AC.求证:BF=FC

(2)证明线段平行

例2:已知:如图,DE⊥AC,BF⊥AC,垂足分别为E、F,DE=BF,AE=CF.求证:AB∥CD

(3)证明线段的倍半关系,可利用加倍法或折半法将问题转化为证明两条线段相等

例3:如图,在△ ABC中,AB=AC,延长AB到D,使BD=AB,取AB的中点E,连接CD和CE.求证:CD=2CE

例4 如图,△ABC中,∠C=2∠B,∠1=∠2。求证:AB=AC+CD.

例5:已知:如图,A、D、B三点在同一条直线上,CD⊥AB,ΔADC、ΔBDO为等腰Rt三角形,AO、BC的大小关系和位置关系分别如何?证明你的结论。

例6.如图,已知C为线段AB上的一点,ACM和CBN都是等边三角形,AN和CM相交于F点,BM和CN交于E点。求证:CEF是等边三角形。

N

M

FE

C

A B

第三篇:全等三角形证明

全等三角形证明

1、已知CD∥AB,DF∥EB,DF=EB,问AF=CE吗?说明理由。

CA2、已知∠E=∠F,∠1=∠2,AB=CD,问AE=DF吗?说明理由。

F3、已知,点C是AB的中点,CD∥BE,且CD=BE,问∠D=∠E吗?说明理由。

4、已知AB=CD,BE=DF,AE=CF,问AB∥CD吗?

A B

C

第四篇:全等三角形练习题(证明)

全等三角形练习题(8)

一、认认真真选,沉着应战!

1.下列命题中正确的是()

A.全等三角形的高相等B.全等三角形的中线相等

C.全等三角形的角平分线相等D.全等三角形对应角的平分线相等 2. 下列各条件中,不能做出惟一三角形的是()

A.已知两边和夹角B.已知两角和夹边

C.已知两边和其中一边的对角D.已知三边

4.下列各组条件中,能判定△ABC≌△DEF的是()

A.AB=DE,BC=EF,∠A=∠D

B.∠A=∠D,∠C=∠F,AC=EF

C.AB=DE,BC=EF,△ABC的周长= △DEF的周长

D.∠A=∠D,∠B=∠E,∠C=∠F

5.如图,在△ABC中,∠A:∠B:∠C=3:5:10,又△MNC≌△ABC,则∠BCM:∠BCN等于()

A.1:2B.1:3C.2:3D.1:

46.如图,∠AOB和一条定长线段A,在∠AOB内找一点P,使P到OA、OB的距离都等于A,做法如下:(1)作OB的垂线NH,使NH=A,H为垂足.(2)过N作NM∥OB.(3)作∠AOB的平分线OP,与NM交于P.(4)点P即为所求.

其中(3)的依据是()

A.平行线之间的距离处处相等

B.到角的两边距离相等的点在角的平分线上

C.角的平分线上的点到角的两边的距离相等

D.到线段的两个端点距离相等的点在线段的垂直平分线上

7. 如图,△ABC的三边AB、BC、CA长分别是20、30、40,其三条 角平分线将△ABC分为三个三角形,则S△ABO︰S△BCO︰S△CAO等于()

A.1︰1︰1B.1︰2︰3C.2︰3︰4D.3︰4︰

58.如图,从下列四个条件:①BC=B′C,②AC=A′C,③∠A′CB=∠B′CB,④AB=A′B′中,任取三个为条件,ANCA

C F 余下的一个为结论,则最多可以构成正确的结论的个数是()

A.1个B.2个C.3个D.4个

9.要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上 取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在同 一条直线上,如图,可以得到EDCABC,所以ED=AB,因

E

此测得ED的长就是AB的长,判定EDCABC的理由是()A.SASB.ASAC.SSSD.HL

10.如图所示,△ABE和△ADC是△ABC分别沿着AB,AC边 翻折180°形成的,若∠1∶∠2∶∠3=28∶5∶3,则∠α的度数为()

A.80°B.100°C.60°D.45°.

二、仔仔细细填,记录自信!

11.如图,在△ABC中,AD=DE,AB=BE,∠A=80°,则∠CED=_____.

12.已知△DEF≌△ABC,AB=AC,且△ABC的周长为23cm,BC=4 cm,则△DEF的边中必有一条边等于______.

13. 在△ABC中,∠C=90°,BC=4CM,∠BAC的平分线交BC于D,且BD︰DC=5︰3,则D到AB的距离为_____________.

14. 如图,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出_____个.

BE

BCDE

分别是锐角三角形ABC和锐角三角形ABC中BC,BC边上的高,且15. 如图,AD,ADB,ABAAD

D若使△ABC≌△ABC,请你补充条件___________.(填写一个你认为适A.

当的条件即可)

C

'

'

B D D

17. 如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三边所对的角的关

'

C

'

系是__________.

19. 如右图,已知在ABC中,A90,ABAC,CD平

分ACB,DEBC于E,若BC15cm,则△DEB 的周长为cm.

E

C

20.在数学活动课上,小明提出这样一个问题:∠B=∠C=900,E是

BC的中点,DE平分∠ADC,∠CED=350,如图,则∠EAB是多少 度?大家一起热烈地讨论交流,小英第一个得出正确答案,是______.

三、平心静气做,展示智慧!

21.如图,公园有一条“Z”字形道路ABCD,其中

AB∥CD,在E,M,F处各有一个小石凳,且BECF,M为BC的中点,请问三个小石凳是否在一条直线上?说出你推断的理由.

22.如图,给出五个等量关系:①ADBC ②ACBD ③CEDE ④DC⑤DABCBA.请你以其中两个为条件,另三个中的一个为结论,推出一个正确 的结论(只需写出一种情况),并加以证明.

已知:

求证:

证明:

23.如图,在∠AOB的两边OA,OB上分别取OM=ON,OD=OE,DN和EM相交于点C. 求证:点C在∠AOB的平分线上.

A

B

B

如图,已知△ABC和△DEC都是等边三角形,∠ACB=∠DCE=60°,B、C、E在同一直线上,连结BD和AE.求证:BD=AE.2.已知:如图点C是AB的中点,CD∥BE,且CD=BE.求证:∠D=∠E.3.已知:E、F是AB上的两点,AE=BF,又AC∥DB,且AC=DB.求证:CF=DE。

4.如图,D、E、F、B在一条直线上,AB=CD,∠B=∠D,BF=DE。求证:⑴AE=CF;⑵AE∥CF;⑶∠AFE=∠CEF。

1、已知:如图,∠1=∠2,∠B=∠D。求证:△AFC≌△DEB4、已知:AD为△ABC中BC边上的中线,CE∥AB交AD的延长线于E。

求证:(1)AB=CE; 5、已知:AB=AC,BD=CD

求证:(1)∠B=∠C

(2)DE=DF

6.已知:AD为△ABC中BC边上的中线,CE∥AB交AD的延长线于E。7.已知:如图,AB=CD,DA⊥CA,AC⊥BC。

求证:△ADC≌△CBA

求证:(1)AB=CE;

参考答案

一、1—5:DCDCD6—10:BCBBA

二、11.100° 12.4cm或9.5cm 13.1.5cm 14.4 15.略

16.1AD5 17. 互补或相等 18. 180 19.15 20.350

三、21.在一条直线上.连结EM并延长交CD于F' 证CFCF'. 22.情况一:已知:ADBC,ACBD

求证:CEDE(或DC或DABCBA)

证明:在△ABD和△BAC中 ∵ADBC,ACBD

ABBA

∴△ABD≌△BAC

∴CABDBA∴AEBE

∴ACAEBDBE

即CEED

情况二:已知:DC,DABCBA

求证:ADBC(或ACBD或CEDE)证明:在△ABD和△BAC中DC,DABCBA∵ABA B

∴△ABD≌△BAC

∴ADB C

23.提示:OM=ON,OE=OD,∠MOE=∠NOD,∴△MOE≌△NOD,∴∠OME=∠OND,又DM=EN,∠DCM=∠ECN,∴△MDC≌△NEC,∴MC=NC,易得△OMC≌△ONC(SSS)∴∠MOC=∠NOC,∴点C在∠AOB的平分线上.

四、24.(1)解:△ABC与△AEG面积相等

过点C作CM⊥AB于M,过点G作GN⊥EA交EA延长线于N,则

AMCANG90

四边形ABDE和四边形ACFG都是正方形

BAECAG90,ABAE,ACAGBACEAG180



EAGGAN180BACGAN△ACM≌△AGN

D

CMGNS△ABC

ABCM,S△AEG

12AEGN

S△ABCS△AEG

(2)解:由(1)知外圈的所有三角形的面积之和等于内圈的所有三角形的面积之和

这条小路的面积为(a2b)平方米.

第五篇:第八课 三角形全等证明

第八讲 三角形全等的条件(2)

5.如图,CD⊥AB,BE⊥AC,垂足分别为D、E,BE交CD于F,且AD=DF,三角形全等条件(3):有两角和它们的夹边对应相等的两个三角形全等.

C

求证:AC= BF。如图,在ABC与DEF中 AD

AB

DE BE

A

E

F

ABCDEF(ASA)

ASA公理推论(AAS公理):有两角和其中一角的对边对应相等的两个三角形全等.

1. 如图,在△ABC中,AD为∠BAC的平分线,DE

⊥AB于E,DF

⊥AC于F

。求证:DE=DF.

2.如图,已知:AD=AE,ACDABE,求证:

A

6.如图,AB,CD相交于点O,且AO=BO,试添加一个条件,使△AOC≌△BOD,并说明添加的条件是正确的。(不少于两种方法)

DB

7.如图,在Rt△ABC中,AB=AC,∠BAC=90º,多点A的任一直线AN,BD⊥AN于D,CE⊥AN于E,你能说说DE=BD-CE的理由吗?

8.如图,已知AEDADE,BAECAD,求证:BE=CD

E

3.如图,已知∠A=∠C,AF=CE,DE∥BF,求证:△ABF≌△CDE.4.如图,已知123,AB=AD.求证:BC=DE.D

F

C

E

9.如图△ABC中,∠B=∠C,D,E,F分别在AB,BC,AC上,且BD=CE,∠DEF=∠B 求证:ED=EF

C

F

D

E

C

10.如图,∠E=∠B,∠1=∠2,EC=BC,求证:DE=AB

11.如图,AB∥DE,AC∥DF,BE=CF. 求证:AB=DE

第八讲 三角形全等的条件(2)

15.如图,在正方形ABCD中,CEDF.求证:△CBE≌△DCF.A

E

D

D

C B F

16.已知:△ABC中,D、E、F分别是AB、AC、BC上的点,连结DE、EF,∠ADE=∠EFC,∠AED=∠ACB,DE=FC。求证:△ADE≌△EFC

17.已知:如图∠1=∠2,∠3=∠4,求证:△ABC≌△ABD。

18.如图,已知∠1=∠2,∠3=∠4,求证:AB=CD

△BED与△CFD全等吗?

13.如图,D是AB上一点,DF交AC于点E,AEEC,CF∥AB.求证:ADCF

B

A

F

19.如图:AE、BC交于点M,F点在AM上,BE∥CF,BE=CF。求证:AM是△ABC的中线。

G

C

B

F

B E C

F

12.如图所示,BE⊥AE,CF⊥AE,垂足分别是E、F,D是EF的中点,A

D

A

C B

C

14.如图,ABCD是正方形.G是 BC 上的一点,DE⊥AG于 E,BF⊥AG于 F.

A D

(1)求证:△ABF≌△DAE;(2)DEEFFB.

B

E

M

C

第八讲 三角形全等的条件(2)24.已知:如图,AC⊥OB,BD⊥OA,AC与BD交于E 点,20.如图:AB=AC,ME⊥AB,MF⊥AC,垂足分别为E、F,若OA=OB,求证:AE=BE。求证:MB=MC

求证:BE=CD

22.如图,将一等腰直角三角形ABC的直角顶点置于直线l上,且过A、B两点分别作直线l的垂线,垂足分别为D、E.请你仔细观察后,在图中找出一对全

等三角形,并写出证明它们全等的过程.

C

O

21.已知:如图,AB=AC,BDAC,CEAB,垂足分别为D、E,BD、CE相交于点F,25.已知:如图,AB=CD,AD=BC,O是AC中点,OE⊥AB于E,OF⊥D于F。求证:OE=OF。

C

A E B

三角形全等条件(4)

1、如图,B、E、F、C在同一直线上,AE⊥BC,DF⊥BC,AB=DCBF=CE,试判断AB与CD的位置关系.2、已知 如图,AB⊥BD,CD⊥BD,AB=DC,求证:AD∥BC.D

C

23.如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E.(1)求证:△ADE≌△CB′E;(2)若AB=8,DE=3,试求BC的长.D

C

A

B

第八讲 三角形全等的条件(2)

3、如图,AD是△ABC的高,E为AC上一点,BE交AD于F,具有BF=AC,FD=CD,8.如图,在ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别 试探究BE与AC的位置关系.求证:△ACF≌△BDE.5.如图,已知AC⊥BC,AD⊥BD,AD=BC,CE⊥AB,DF

垂足分别为E、F,那么,CE=DF吗?谈谈你的理由!

求证:(1)CE=BE;(2)CB⊥AD.B

B

D C4、如图,A、E、F、B四点共线,AC⊥CE、BD⊥DF、E A

是E、F,且DE=DF,试说明AB=AC.9.如图,DC=BC,∠B=∠D=90°,求证:AB=AD.10.已知:如图∠B=∠E=90°AC=DFFB=EC,证明:AB=DE 已知:如图,AB=CD,DE⊥AC,BF⊥AC,E,F是垂足,DEBF.求证:AB∥CD.

6.如图,已知AB=AC,AB⊥BD,AC⊥CD,AD,BC12.已知:如图,AB⊥BC,AD⊥DC,AB=AD,若E是AC上一点。求证:EB=ED

7.如图,△ABC中,D是BC上一点,DE⊥AB,DF⊥AC,E、F分别为垂足,且AE=AF,试说明:DE=DF,AD平分∠BAC.E

下载专题二 全等三角形的有关证明[优秀范文5篇]word格式文档
下载专题二 全等三角形的有关证明[优秀范文5篇].doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    初一全等三角形证明

    全等三角形1.三角形全等的判定一(SSS)1.如图,AB=AD,CB=CD.△ABC与△ADC全等吗?为什么?2.如图,C是AB的中点,AD=CE,CD=BE.求证△ACD≌△CBE.3.如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF. 求证∠A=∠D.4.已知......

    全等三角形的证明

    3eud教育网http://50多万教学资源,完全免费,无须注册,天天更新! 全等三角形的证明 1、 已知:(如图)AD∥BC,AD=CB,求证:△ADC≌△CBA。B C 2、已知:如图AD∥BC,AD=CB,AE=CF。求证:△AFD≌△......

    八年级同步辅导专题二:全等三角形证明

    八年级同步辅导专题二全等三角形证明专题1.条件充足时直接应用在证明与线段或角相等的有关问题时,常常需要先证明线段或角所在的两个三角形全等,而从近年的中考题来看,这类试题......

    刘老师三角形全等的证明专题

    三角形全等的证明学案(1)条件充足时直接应用例1 已知:如图1,CE⊥AB于点E,BD⊥AC于点D,ABD、CE交于点O,且AO平分∠BAC.那么图中全等的三角形有___对.EDOBC(2)条件不足,会增加条件用判别方......

    全等三角形证明专题(共5则范文)

    1、(10分)如图,△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过C作CF⊥AE,F是垂足,过B作BD⊥BC交CF的延长线于点D.(1)求证:AE=CD; (2)AC=12cm,求BD的长.F2、(10分)如图,AB=CD,AE⊥BC于E,DF......

    全等三角形证明写理由

    全等三角形证明1.已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠C证明:延长AB到,使AE=,连接DE∵AD平分∠BAC∴∠EAD=∠CAD()∵AE=AC,AD=AD∴△AED≌△ACD()∴∠E=∠C()∵AC=AB+BD∴AE=AB+BD()∵AE=AB+BE∴BD=B......

    浅谈证明三角形全等的一些技巧

    浅谈证明三角形全等的一些技巧 娄菊红 【摘要】:正全等三角形是初中平面几何知识的一个重要组成部分,也是中考必考的内容之 一.证明两个三角形全等,一般有边角边(SAS)、角边......

    全等三角形定义与证明

    全等三角形能够完全重合的两个图形叫做全等形。能够完全重合的两个三角形叫做全等三角形。把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角......