第一篇:数字化技术在物理实验教学中的应用
海兴县 杨金钟 *** 061200 数字化技术在物理实验教学中的应用
物理本身就是一门以实验为基础的学科,实验在学科教学中的重要性也是不言而喻的。因此,在初中物理教学中,要做好演示实验,激发学生的学习兴趣和求知欲;要注重探究实验,促进学生学习方法的转变和探索意识的培养;开发课外实验,挖掘学生的潜力,提高动手实践能力和创新能力。中学作为基础教育阶段,传统实验方法的训练对学生实验能力、科学素质的培养是必不可少的。但若要研究的物理过程十分复杂,要采集或处理的数据量很多,或要通过多次改变实验条件,对实验过程进行深入的分析,数字化实验手段就有强大的优势和广阔的空间。
一、数字化实验的特点
1、强大的数据采集能力
利用计算机,既可以对传感器在快速变化的瞬态过程中获得的大量实验数据进行实时采集,也可以长时间地跟踪收集极缓慢过程的各种实验数据。数字化技术为理科教学中改造传统实验或开发以前无法进行的新实验提供了有力的工具。
2、灵活的数据处理能力
通过计算机,可以对实验过程进行控制,对大量的数据进行各种复杂的、快速的处理,例如数据的转换、曲线的拟合、误差的计算等.这就允许在实验中尝试改变各种条件,比较实验的结果,为学生创造了一个科学探究和自主学习的环境,培养学生的观察和实验能力以及实事求是、勇于探究的科学态度。
3、为互动式教学创造了条件
在实验室中将计算机联机,可以方 便地实现数据共享,在教师的指导下对各1 组实验结果进行比较、探讨,为开放、互动性的课堂教学创造了条件。
二、数字化实验系统的构成 硬件:传感器、采集器、计算机
软件:对数据的采集进行控制;对所采集的数据进行处理
三、数字化教学实验设计原则
既然要用数字化手段来进行某一实验,选择实验课题时就应该能够回答采用数字化手段来进行这个实验的必要性,并且在设计实验时充分发挥数字化技术的特长。
1、教学实验必须有鲜明的物理思想
教学实验必须含有丰富的物理思想.实验设计要突出所研究的问题的背景,实验所依据的原理和研究问题所用的方法。
2、教学实验的设计要能充分展示所研究的物理过程,有效地揭露物理过程的本质.教学实验的设计还必须给学生提供充分发挥创造力、想象力的空间,有一定的操作要素.
四、数字化实验的选取原则
要用数字化手段来进行某一实验,选择实验课题时就应该能够回答采用数字化手段来进行这个实验的必要性,并且在设计实验时充分发挥数字化技术的特长。在实验课题的选择上,数字化实验比较适合用在那些过程比较复杂的,要采集的数据量比较多的,数据处理中计算量比较大的实验。
五、数字化实验设计实例
1、作用力与反作用力
实验目的:说明物体间发生相互作用时,作用力反作用力方向相反,大小相等。实验方法:用两个力传感器互相对拉或对压,比较两条“力-时间”函数图线。
2、碰撞与缓冲的研究
实验目的:比较缓冲物软硬程度对冲力大小的影响;验证动量定理
实验方法:使砝码从同一高度下落到软硬程度不同的缓冲垫上,通过“力-时间”图线比较冲力大小。将珐码与缓冲垫接触过程中受到的“合力”对时间积分,说明珐码从同一高度下落,自接触缓冲垫到停止运动,所受合力的冲量相等。
3、电容器充、放电过程的研究
实验目的:
1、观察电容器充放电过程中电压、电流的变化情况。
2、说明电容器所带电量与电压之比是只与电容器物理结构有关的常量,说明物理量“电容”的概念。
实验方法:
1、观察电容器充、放电过程的“电压-时间”、“电流-时间”函数图线。
2、将电容器充、放电过程的“电流-时间”图线对时间积分,求出充、放电的电量。证明对某一电容器来说,这电量与充电电压之比是一个常量。
4、定值电阻伏安特性的研究 实验目的:
1、研究定值电阻的伏安特性
2、研究定值电阻上消耗的电功率与电压的关系
实验方法:
1、通过对定值电阻伏安特性曲线的线性拟合,研究定值电阻上电压、电流、电阻间的函数关系。
2、通过对定值电阻上“功率-电压”曲线的拟合5、电磁感应现象的研究 实验目的:验证电磁感应定律
实验方法:比较“磁感强度、感应电压-时间”、“磁感强度变化率、感应电压-时间”图线,说明在电磁感应现象中电路中感应电动势的大小只与磁通量的变化率有关。、6、研究交流电的有效值 实验目的:研究正弦交流电有效值与峰值间的关系
实验方法:
1、通过用“正弦函数”对“交流电压-时间”图线进行拟合,确认低压交流电源输出的是否可看作是正弦交流电。
2、通过对“电压平方-时间”图线进行统计分析,求出在整周期内交流电压的“均方根”值,并求出交流电压的峰值与“均方根”值之比。
7、振荡电流的研究
实验目的:
1、研究“LC”振荡电路产生振荡电流的过程
2、研究产生振荡电流时电路中电压、电流间的相位关系
实验方法:
1、观察“LC电路”产生超低频振荡的过程
2、通过软件慢速重放的功能研究产生振荡时电路中电压和电流间的相位关系
8、气体等温过程的研究
实验目的:验证一定量气体等温过程中压强与体积的关系
实验方法:
1、通过单点输入,作出一定量气体“压强-体积”曲线
2、通过对“压强-体积”曲线的拟合,验证波义耳定律
第二篇:数字化实验技术在物理实验中的应用
数字化实验技术在物理实验中的应用
戴儒京(江苏省特级教师)
所谓数字化实验技术,是以数字化设备为实验数据采集处理的工具、配套其它实验器材构建的现代化实验技术。数字化数据采集处理系统,由传感器、数据采集器和计算机组成。
以数字化实验技术为基础的物理实验,就是建立在上述实验仪器、实验技术、实验方法基础上的物理学实验。
数字化实验,是课程标准教科书的要求和需要,也是新高考和中考的要求和需要。也是物理学科发展的要求和需要。
实验是学习和研究物理学的最基本的内容、方法和手段。实验,包括学生实验和演示实验以及小实验等,要把传统实验和数字化实验结合起来。只有实验,才能学到真知识;只有实验,才能培养真人才;只有实验,才能真正提高教学质量。
数字化实验,是计算机辅助实验。课程标准教科书专门安排了一些电子计算机辅助实验,如:借助传感器用计算机测速度(教科书《物理》必修1 P25)、用传感器观察电容器的充电和放电(选修3-1 P31)等等。电子计算机,是现代化的标志和体现,学生通过用计算机做实验,不仅学了物理学,也学了计算机,可谓一举两得。
数字化实验,是新实验,不仅是新仪器,也是新方法。例如霍尔元件、斯密特触发器等实验。一些教师开始接触,不太了解,不太熟悉,往往有把数字化实验室闲置或充当门面。通过做实验,他们熟悉实验、熟悉仪器,并可能在应用的过程中有所创新,使数字化实验室充分发挥作用,以物尽其用。
1.数字化实验:传感器的应用实验
课程标准教科书《物理》不仅把传感器作为单独的一章知识内容,而且把传感器的应用实验(选修3-2 P70)作为学生实验和演示实验,新的高考大纲中也把“传感器的应用”实验作为高考内容。传感器在现代生活和工业、科技中也有广泛的应用,学生在实验中接触和了解传感器,对他们的高考和将来从事科学研究及工农业生产也不无帮助。
实验1.传感器的应用实验——光控开关
简单光控开关 背景资料: 在光敏电阻两端的金属电极之间加上电压,其中便有电流通过,受到适当波长的光线照射时,电流就会随光强的增加而变大,从而实现光电转换。光敏电阻没有极性,纯粹是一个电阻器件,使用时既可加直流电压,也可以加交流电压。当受到光照时,只要光子能量大于半导体材料的禁带宽度,则价带中的电子吸收一个光子的能量后可跃迁到导带,并在价带中产生一个带正电荷的空穴,这种由光照产生的电子—空穴对增加了半导体材料中载流子的数目,使其电阻率变小,从而造成光敏电阻阻值下降。光照愈强,阻值愈低。入射光消失后,由光子激发产生的电子—空穴对将逐渐复合,光敏电阻的阻值也就逐渐恢复原值。施密特触发器在数字电路及控制领域有广泛的应用,它属于电压触发方式,当输入电压达到某一阈值时,输出电压会发生突变,最重要的一点是,输入电压增加或减少时,电路有不同的阈值电压。以下图1为例 图 1 当输入电压Vi,当输入电压由低电位开始增加,如果Vi
实验原理:
图 3
将电路按图3连接,RG为光敏电阻,R1,R2为电阻箱,LED为发光二极管,A点为施密特触发器的输入端,Y点为施密特触发器的输出端。适当选择R1,R2的阻值后,当外界光线很强时,RG上的电阻相对比较小,A点的电压小于Vp,Y点输出高电位,发光二极管两端的电势差很小,因此不能发光,当外界光线变弱时,RG上的电阻显著增大,A点的电压也显著增大,当增大到Vp=3.0V时,Y点输出低电位,发光二极管两端有大约5V的电势差,发光二极管开始正常发光,如果光线强度又进一步开始回升,RG上的电阻减小,A点的电压也开始减小,当A点的电压小于Vn=2.2V时,Y点又输出高电位,发光二极管熄灭。
为了更直观地了解整个电路工作过程,在分别用两个电压传感器对A点和Y点的电压进行实时测量,光强传感器测量,显示外界光线变化对电路的影响。实验目的:
了解简单光控电路,对自动控制有初步理解。实验装置:
计算机,数据采集器,光强传感器,两个电压传感器,两个电阻箱,施密特触发器,发光二极管,导线若干,学生直流电源。实验步骤:
1.先按电路图连接各个器件,并注意发光二极管的极性,和施密特触发器的引脚,具体情况可以参照前面的示意图,将VDD接到稳压电源的正极,VSS接到稳压电源的负极,i1接输入电压对应电路中A点,o1接输出电压对应电路中Y点。
2.调节R1,R2电阻箱的阻值,选择合适的电阻,将两个电压传感器与数据采集器的1,2通道连接,把光强传感器连接到3或4通道,然后将数据采集器与计算机连接,开启采集器电源,进入实验专用界面。
3.把两个电压传感器的两个信号输入端的分别导线短接,对电压传感器进行较零,然后把连接1通道电压传感器的信号正极接到电路中A点,同时把它的负极接到稳压电源的负极,也就是电路中的地,然后把2通道电压传感器的信号正极接到电路中Y点,同时把它的负极接到稳压电源的负极。
4.把光敏电阻的感应面朝上,将光强传感器与光敏电阻放置在一起,在采集间隔和采集数量窗口输入合适的数值,点击开始按钮。
5.用一块大的挡光物将光敏电阻附近的光线慢慢挡住,观察实验数据曲线,同时注意二极管的发光情况,当它开始发光以后,再慢慢把挡光物撤掉,结束实验。实验数据记录与分析: 1.输出电压与输入电压曲线
2.外界光强与输出电压数据关系
本次实验中R11500,R22000,从图上可以看出当光强为I139lux时,发光二极管发光,而当光强为I244lux时,发光二极管熄灭。
2.数字化实验:探究性实验
课程标准教科书不仅把原教科书的一些验证性实验改为探究性实验,而且新安排了一些探究性实验。这些探究性实验,用数字化实验仪器和方法去做,更为便捷。例如探究加速度与力、质量的关系(必修1 P75)、探究功与物体速度变化的关系(必修2 P17)等实验。通过探究性实验,提高学生研究、探究的能力,为培养创新能力打好基础。
实验2.探究(恒力做)功与物体速度变化的关系动能定理)
(动能定理(恒力)实验原理 牛顿第二定律讲述的是力与加速度之间的瞬时关系,表达式为: F = m a(1)其中,F是作用在物体上的合外力,m是物体的质量,a是物体的加速度——速度的时间变化率,表达式为: avdv 或 a(2)tdt2把(2)式代入(1)式,并将(1)式两边对位移积分(由x1到x2),可以得到: W = ∫Fdx = mv2/2-mv1/2 = Δ(mv2/2)= Δ E k(3)2其中,W为从x1到x2的区间内,合外力F的功,v1 和v2分别为物体在x1和x2处的速度,E k为物体的动能。也就是说,合外力的空间积累效应表现为物体动能的改变。在本实验中,我们探究在恒定拉力的作用下,小车的动能随时间变化的关系。其中,拉力由力传感器测得,速度由固定有挡光滑轮的光电门传感器测得,动能由速度的平方乘以质量的一半得到。实验目的 通过对(恒定)拉力和速度的测量,探究合外力的功与物体动能变化的关系。实验装置 SWRDISLab-100III数据采集器、光电门(Photogate)传感器、力传感器、动力学系统(包括导轨、小车、滑轮和支撑杆等)等。实验步骤 1.按图连接实验装置(注意平衡摩擦力); 2.测量并记录小车和钩码的质量(第1次:小车402.81g,钩码19.91g); 3.打开SWRDISLab软件,点击“教学专用软件”,进入“物理实验列表”中的“力学”部分,选择“动能定理(恒力—Photogate)”; 4.点击“校零”按钮,对力传感器进行校零; 5.设置“采集间隔”为5ms,“采集200个暂停”,以及“共采集200条数据”; 6.让小车静止在靠近光电门传感器的一侧(钩码将细绳拉紧),点击“开始”按钮; 7.当“开始”按钮的颜色变“灰”时,释放小车; 8.当小车运动到靠近支撑杆时,使小车停止运动,然后点击“结束”按钮; 9.观察“力—位移”、“速度—位移”和“动能—位移”关系曲线的特点;
6.当“开始”按钮的颜色变“灰”时,释放小车;
7.当小车运动到靠近支撑杆时,使小车停止运动,然后点击“结束”按钮; 8.观察“力—位移”、“速度—位移”和“动能—位移”关系曲线的特点;
9.任选一个位移区间,对力进行积分,并比较积分值和两个区间端点处动能的差; 10.改变钩码和小车的质量,重复步骤6~10(第2次:小车402.81g,钩码30.35g)。
实验数据的记录与分析
a)“力、速度 vs.位移”图表(小车402.81g,钩码19.91g):
由图可知,从静止释放到制动前(去掉对应制动过程的最后两组读数),随着位移的增加,小车所受的拉力(中间的红色曲线)几乎不变,小车的速度(上方的绿色曲线)和动能(下方的蓝色曲线)不断增加,速度的变化率不断减小,但是动能的变化率几乎恒定。
b)力做的功与动能的变化(小车402.81g,钩码19.91g): 如图所示,在所选的位移区间内,力做的功为WFS0.0630 J,两个区间端点处动能的差为0.0594 J(= 0.0832-0.0238),力做的功略大于动能的变化,二者近似相等,相对误差为5.71 %。
3.“力、速度 vs.位移”图表(小车402.81g,钩码30.35g):
由图可知,从静止释放到制动前(去掉对应制动过程的最后4组读数),随着位移的增加,小车所受的拉力(中间的红色曲线)几乎不变,小车的速度(上方的绿色曲线)和动能(下方的蓝色曲线)不断增加,速度的变化率不断减小,动能的变化率几乎恒定。4. 力做的功与动能的变化(小车402.81g,钩码30.35g):
如图所示,在所选的位移区间内,力做的功为WFS0.0911 J,两个区间端点处动能的差为0.0870 J(= 0.1269-0.0399),力做的功略大于动能的变化,二者近似相等,相对误差为4.50 %。
误差分析
1. 滑轮与力传感器挂钩之间存在摩擦力,使得力传感器测得的读数大于小车拉力的二倍;
2. 随着速度的增加,小车受到的(滚动)摩擦力略有增加; 3. 拉力做功的一部分转化为两个滑轮的转动能。
关键点
1. 抵消摩擦力。
注意事项
1. 采集间隔取默认值5ms,如果使用更大的采集间隔,那么当小车的运动速度很快时,位移的测量有可能出错;使用5ms作为采集间隔时,钩码与小车的质量比必须小于3/10。
3.数字化实验:应用传感器做实验,有些传统实验,用数字化方法即用传感器和计算机去做,也比传统的方法更方便,数据处理更快、更准确,图象更清晰、更迅速。
例如可以用位移传感器或光电门代替打点计时器做探究小车速度随时间变化的规律(必修1 P34)等实验。用电流传感器和电压传感器代替电流表和电压表,做测定小灯泡的伏安特性曲线(选修3-1 P48)、测定电池的电动势和内电阻(选修3-1 P72)等实验。除“传感器的应用”实验外,还有许多用传感器作为实验仪器的实验,例如用传感器和计算机描绘简谐运动的图象(选修3-4P5)等等,我们统计有十几个。可以说:几乎所有的实验都可以用数字化方法做。实验3.测定电池的电动势和内电阻
测定电池的电动势和内电阻 背景资料:
通常的金属导体都是以金属键结合的晶体,处于晶格结点上的原子很容易失去外层的价电子,而成为正离子。脱离原子核束缚的价电子可以在整个金属中自由运动,称为自由电子,在不受外电场作用时,自由电子只做热运动,没有宏观的电量迁移,因而金属中各个部分都呈现电中性。当金属中存在静电场E时,金属中的自由电子在外电场的作用下,相对于晶格离子作定向运动,电子运动中必然与晶格相碰撞,达到某种平衡后,金属中电子有一个整体上的平均速度,导体中有稳定的电流,前面的分析都建立在导体中的静电场E是相对比较稳定的前提上。
如果将一个已经充好电的电容器的两个极板用导线连接起来,构成闭合回路,电路中就有电流通过,不过随着极板上带电量的减少,它们之间的电势差也在减少,电流很快就消失了。在电池的两个正极和负极上,分别带有正电荷和负电荷,当接入电路回路后,导线中的电子在电极电荷产生的静电场中开始运动,形成电流,如果两极上的电荷量得不到补充,那就不可能形成稳定的电流输出,电源的作用,不管是化学的电池,还是像范德格拉夫起电机之类的电源,都是将电荷从负电极搬运到正电极,这种搬运工作只能靠某种非静电力来完成,假设非静电力在搬运过程中做功qu,那u就是电源电动势,q为载流子的电荷量。实验原理:
图1 如图1所示的闭合电路中,电源的电动势为,内电阻为r,负载电阻为R,电路中的电流为IRr,可以看出,当负载电阻R足够大时,因为它和内电阻是串联在一起的,它两端的电压将非常接近于电源电动势,当R,即所谓开路或断路时,I0,U;当R0,即短路时,IImax
负载电阻两端的电压为Ur,这时候的电流最大。
RrR,也可以写为URrr,而电流为IRr,因此有UIr,这个关系在伏安曲线上表现为Umax,I0,也就是R时。如果R0,U0,Imaxr。在实验中用滑动变阻器做负载电阻,改变它的电阻,以同时改变电流和电压,在软件中作伏安曲线图后,取拟合线,线的斜率的绝对值就是r,曲线与纵轴的交点就是Umax,I0点,可以测出电动势。实验目的:
简单测量电池电动势和内阻。实验装置:
计算机,数据采集器,电池,滑动变阻器,电流传感器,电压传感器,导线等。实验步骤:
1.将数据采集器与电流传感器,电压传感器连接,然后将数据采集器与计算机连接,开启采集器电源,进入实验专用界面。
2.把电流传感器,电压传感器的两个信号输入端的导线分别短接,对电流传感器、电压传感器进行校零。3.按实验电路连接电路图,在专用界面的底部输入合适的采集间隔和采集数量,闭合开关,点击开始按钮,进行实验测量。
4.将滑动变阻器从最大滑为最小,或者从最小滑到最大,得到伏安曲线,然后对伏安曲线进行线性拟合。实验数据记录与分析:
1.电压变化:
2.电流变化:
3. 伏安曲线:
从图象可以得出,电池的电动势为E7.003V,内阻为r27.407。
数字化实验仪器,包括传感器、数据采集器和实验软件,是新仪器、新器材、新设备。南京师范大学苏威尔科技有限公司研发、生产的传感器、数据采集器和实验软件,以及配套使用的实验器材如动力学系统(包括滑轮、小车、滑轨、支架等),电磁学系统(如逻辑门电路、施密特触发器、霍尔元件实验等)等,是国内具有先进水平的数字化实验仪器,可以满足新课程对物理实验的要求和需要,可以促进物理实验教学质量的提高,可以促进物理实验的数字化、现代化。
第三篇:网络技术在物理实验教学中的应用[定稿]
网络技术在物理实验教学中的应用
常德市西湖一中 刘益安
摘要:网络技术应用在物理实验教学中,不仅仅是一种方法的更新,更重要的是把网络资源引入课程教学活动中,合理地运用网络技术,把学习空间还给学生,给学生提供视觉和听觉感受,丰富学生的想像,有效地培养学生自主学习、主动发展的意识和能力,提高高中学生科学实验的兴趣。
关键词:网络技术 物理实验教学 应用
21世纪是一个信息化和数字化的时代,是一个以计算机、多媒体、网络为代表的新技术时代,是一个生产力高度发展的时代。教育信息化的根本目的是使广大教师和学生充分利用优秀教育信息资源进行教育教学改革,提高现代教育技术水平,推进素质教育,实现培养创造性人才的目标。因而,教育信息化的重要任务之一是优秀教育信息资源的开发及其普及应用。教育信息资源应用于教学,其作用不仅是改变传统的教育教学手段,更重要的是将现代教育思想和理念、信息化的教学内容和方式融于学科课程教学的过程之中,实现新的更高的教育教学目标和更好的教学效果。因此,信息技术与课程整合被认为是教育信息资源开发和应用的核心课题。它的研究解决对我国教育信息化和教育改革的深化发展至关重要。笔者就网络技术与物理实验教学整合进行了初步探索,收到了良好的效果。本文就网络技术与物理实验教学的整合谈几点看法。
一、传统中学物理实验教学中存在的问题 1.重结论、轻过程、能力培养不全面。
谁都知道物理是一门以实验为基础的学科,但由于各种因素的长期影响,实验能力的培养,尤其是实验过程中观察能力和思维能力的培养一直是物理教学的薄弱环节。教材中安排的实验多数是用来帮助学生形成、理解、巩固所学知识的,属于验证性实验,这些实验始终处于概念和理论的依附地位,仅作为验证物理知识和物理理论的手段,原理、步骤、实验现象、实验结论在教材中均已写明,学生习惯进入实验室,一切都是别人准备好的,学生不必用心思考、分析,只要单纯模仿、重复,“照方抓药”,稍加动手就可以完成实验。另外一些教师准备不足,讲解粗放、重结论轻过程,有的教师思想不重视甚至认为“做实验不如讲实验”。在这种状态下,学生的思维活动降到最低程度,通过实验发展学生智力、培养能力自然成了空话。
2.客观条件限制,实验效果差。
现行的物理新教材中,虽然增加了许多实验,但不够多,绝大部分为演示实验,传统的教学是教师台上做,学生台下看,因空间因素的制约,并不是所有学生都能看清实验现象,而教学进度时间紧,又不能重复,也不允许拉长时间观察。有的实验因器材或其它不确定因素,实验还不成功;有的实验现象太快,不易观察;有的实验现象太慢,现象不明显,这会使学生注意力不集中;有的实验因有毒、污染严重、危险性较大;有的实验对设备、器材要求稍高等一些问题,都会制约实验的开展。所以,经常草草收兵,迷迷糊糊过关。
3.操作能力低下,缺乏规范。因为传统教学中讲比做多,重结论而轻过程,导致学生在实验操作过程中,存在胆小心粗的操作多,胆大心细的操作少;手忙脚乱的操作多,井然有序的操作少;随心所欲的操作多,严格规范的操作少;“按方抓药”的操作多,主动独立的操作少的现象。
二、网络技术应用在物理实验教学中的优势
1.运用网络技术平台, 能给予物理实验更大的展示空间。用制作课件的方法,再现或模拟实验现象。将一些在课堂上实验现象不明显、学生很难观察或受气候的原因不便做的实验,制成课件,使学生能很好地理解物理教学中的重点和难点。如:对于在波的传播过程中质点的运动规律、波的双缝干涉的特征、泊松亮斑;在静电实验中的静电屏蔽、法拉第圆筒实验、影响平行板电容器的电容的因素有哪些的实验、光电效应实验、原子物理中的α散射实验等等,都可以做成多媒体课件,突出重点和难点,使学生能更好地理解物理教学的内容。
提供与实验相关的生活与社会背景材料。在实际上课的过程当中,教师可以结合教学内容播放录像或从网络下载相关视频。如:针对磁极间的相互作用可播放磁浮列车的录像;在原子核一章中核能的利用可播放核电站的有关录像等等;这些现代媒体的运用,能对物理实验教学起到很好的辅助作用。
用投影或摄像的方法,强化观察主体。如不同规格的游标卡尺、螺旋测微器的读数,各种电表的表盘刻度等等学生很难观察清楚,可利用投影等方式,使观察主体在银幕上形成放大的像,使学生能方便地观察到各仪器的实验细节,增强了实验效果.增加信息容量,加快信息传递速度。在实验的复习阶段,针对各个实验的目的、原理、器材特点、器材组合、实验操作、现象观察、数据读取、分析处理、得出结论等各个阶段,可利用计算机使知识再现,并在重点、难点的地方加以突破,使学生能更好地理解。
2.利用网络技术手段,能优化原有的教学模式。
原有的物理实验教学模式中,比较先进的应是启发性的“边讲边实验”,就是“边实验,边观察,边讨论,边讲解”的教学形式。但笔者在实践过程中,经常觉得时间仓促,没办法完成教学进度,这种课型实际上只适用于—些操作比较简单、实验效果明显,即能保证安全,又不会对环境造成污染的实验内容,而且对教师的能力要求较高,必须要有很强的组织、调控能力。而借助多媒体辅助教学,教师在设置过程中将实验内容重新编排,认真筛选,事先编制好了实验内容和程序,节约了大量的板书时间,使课堂节奏明显加快,课堂容量增大,因此节省的时间,可使学生能在预定的时间内完成实验操作,即保证了安全,又获得良好的实验效果。
3.避免了“照方抓药”,体现了学生实验主体性
传统黑板式的教学不具备可移动性,可保存性,加上容量有限,教师在实验教学过程不能把所有实验的具体步骤,及注意事项一一板书出来。学生在做实验时,因为对实验不熟练,操作上又不熟练,经常都是按照课本表述一句一句“照方抓药”,一步一步地操作,绝大多数学生都是机械操作,处于盲目当中,只是为了能看到实验的最终现象及成功与否。现代计算机辅助教学手段的应用,弥补了这一缺憾。在课前,教师完全可借助多媒体把实验中一些具体操作步骤,用逼真的图象、鲜艳色彩、动态的画面,让其形象化、直观化,把器材的选用、该观察和记录的实验现象、注意事项及问题和讨论,都一一列在其中,使学生对任务一目了然,并能带着问题做实验。加上多媒体界面可变换,并可以定格,干扰少。如: 自由落体运动的教学设计: ①实验归纳自由落体运动的概念。
教师做如下演示实验:将一小球和一张白纸(小球的质量大于白纸的质量)从同一高度无初速度释放,请学生仔细观察物体下落的快慢。将一软木塞和一张硬纸板(软木塞的质量小于硬纸板的质量)从同一高度无初速度释放,学生仔细观察物体下落的快慢。牛顿管内置羽毛、小金属片、小软木塞,分有空气和抽真空两种情况,请学生仔细观察物体下落的快慢。目的是通过演示实验帮助学生建立对自由落体运动的感性认识。之后用多媒体课件以动画的形式再现了牛顿管实验情景,提出自由落体运动概念。
②利用频闪照片研究自由落体运动规律。
由于频闪照片在中学实验室条件下难以拍摄,因此采用计算机模拟的方式演示给学生。首先,简单介绍频闪照片的拍摄原理,然后进行仿真拍摄,最后获得频闪照片。请学生独立使用计算机软件计算分析频闪照片的数据,总结作自由落体运动的物体的运动特点。③用自由落体运动规律进行实例分析。
提出问题:假定雨滴从8km高处无初速度下落,若不计空气阻力,则雨滴下落到地面的瞬间,速度大小是多少?请学生用刚刚学的自由落体运动物理量计算公式进行计算。通过计算机模拟,分析雨滴下落过程的受力情况。并得出结论:雨滴的下落过程不是自由落体运动。
这样从提出问题开始,到得出结论、形成概念为止,学生始终处于积极探索的情境之中。为了解决问题,要运用已有的知识和实验技能,提出解决问题的方法;通过讨论,设计出合理的实验步骤。然后,独立地进行操作、观察和记录实验现象。最后,再通过讨论得出正确的结论。因此,这种教学形式,不仅为理解和掌握物理概念提供鲜明、生动的感性认识,而且由于学生始终处于主体地位,并积极参与教学的全部过程。他们主动地学习,积极参与问题的分析、讨论、交流、体验,在自主学习的氛围中主动学习知识,增强了自主学习的意识,不仅掌握了应学的知识,而且在实践中体会到了学习的乐趣;在自主学习的过程中,更提高了学生发现问题、思考问题、解决问题的能力,提高了学生的自身素质。
4.利用网络技术能有效培养学生的实验设计能力。
在网络环境下,实验教学可以采取开放式的教学模式,把“实验课”变成“实验活动课”。让学生自主地参与实验设计,主动地去认识实验仪器的作用及实验的步骤和原理,教师不讲课,只当启发、导思的角色,鼓励学生大胆实验,勇于探索,使学生主动去发现问题、研究问题,有所发现,有所创新,为培养学生的创新精神提供有利条件。
利用计算机能有效地培养学生的实验设计能力,其途径可利用计算机设计模拟实验室,学生可以根据要解决的问题设计不同的解决方案,同时,还可以根据反馈信息,不断修改设计方案。如:《恒定电流》电学实验器材的选择与电路的设计等,都可让学生通过鼠标拖动仪器,组合成各种装置。因计算机不受仪器、药品实物等限制,学生可以反复试做,利用计算机的交互性,使学生思维更具有深度,也避免了一个教师五十几个学生,不能完全指点与辅导的尴尬。
总之, 网络技术应用在物理实验教学中,不仅仅是一种方法的更新,更重要的是把网络资源引入课程教学活动中,合理、机动地运用网络技术,把学习空间还给学生,给学生提供视觉和听觉感受,丰富学生的想像,有效地培养学生自主学习,主动发展的意识和能力,充分挖掘学生的创造潜能。
参考文献:
1.郭昭全、何胜红 高中物理学生实验课改革的实践与思考 物理教学探讨 2000,8 2.康良溪 学生自主实验能力的培养 物理教师 2000,12(12)
第四篇:饮料瓶在物理实验教学中的应用
饮料瓶在物理实验教学中的应用
一、对饮料瓶不进行任何技术处理,就可以做如下实验
1.压缩气体体积,气体液化演示
拧开瓶盖,滴入几点乙醚,拧紧瓶盖后,稍待一会,蒸发,乙醚液体不见了。当用手挤压瓶体时,乙醚液体重新出现在瓶壁上。这表明压缩气体体积,气体被液化。
2.碘的升华与凝华演示
拧开瓶盖,用匙加入少些固态碘,拧紧瓶盖后,竖起将含有碘的瓶底,放入烧杯中的沸水里,就会观察到紫色的碘蒸气从瓶底上升,到瓶子的上部后重新凝华成闪闪发光的碘晶体。此时摇动饮料瓶时看到瓶底的碘仍然是固体,这比用烧瓶在酒精灯上加热出现液态碘的可操作更强。
3.物体的悬浮、上升、下降演示
(1)将几粒茶叶放入饮料瓶中,然后倒入多半瓶热水(不要倒满,留一部分空间,用于调节饮料瓶中的压强),最后旋紧瓶盖。
(2)观察到几粒茶叶中有的漂浮、有的下沉、也有的悬浮。选取一个漂浮的茶叶片为观察对象,用手挤压方形塑料饮料瓶正对的两侧面时,漂浮的茶叶片就会下降,当用力适度时茶叶片就会悬浮在热水中。
(3)若选取一个缓慢下降(或沉在瓶底)的茶叶片为观察对象,用手挤压方形塑料饮料瓶正对的两个棱时,下降的茶叶片就会停止下降(或瓶底的茶叶片上升),当用力适度时此茶叶片也会悬殊浮在水中。
实验原理:方形塑料饮料瓶挤压正对两侧面时,瓶的容积变小,内部压强增大,茶叶中浸入一些水而重力变大,当茶叶的重力等于浮力时就悬浮。当挤压方形塑料饮料瓶正对的两个棱时,瓶子的容积增大(数学证明略去),瓶内压强减小,浸入茶叶中的水分量减小,当茶叶的重力等于浮力时也会悬浮。
4.演示气体、液体分子之间有间隔
将空饮料瓶的瓶盖拧紧后,用手握住用力挤压,观察到瓶子发生的形变,体积减小,说明气体分子之间有间隔。将饮料瓶中盛满水,再拧紧瓶盖后,也用手握住使劲挤压,会观察到瓶子发生很小的形变,体积也减小,说明液体分子之间也有间隔。通过两次挤压后观察到形变的程度不同,说明了气体分子之间比液体分子之间间隔大。
5.演示光的直射、反射、折射现象
在一个比较粗一些的饮料瓶中充满香烟(或是卫生香)的烟雾,拧紧瓶盖,制成了显示光路器(能多个班级重复使用)。用激光笔从瓶底照向瓶口,能清晰地显示光在同一种物质中沿直线传播。若将瓶底放在平面镜上,用激光笔从侧面照向瓶底的平面镜照射时,会清晰地观察到入射光线和反射光线,给学生留下深刻的反射现象的表象。若一半是盛有未澄清的石灰水,一半是烟雾时,从侧面向石灰水面照射时,会清晰地观察到光的入射光线和折射光线。
6.分子不停地做无规则运动
将饮料瓶中滴入几滴酚酞试液,拧紧瓶盖后,上下倒置并旋转饮料瓶子,使管壁上涂有一层无色酚酞试液。然后,将瓶盖拧开后,在瓶盖里滴上两滴酚酞试液,并把饮料瓶倒置后,拧紧瓶盖,2秒钟后观察到饮料瓶内的氨分子与酚酞反应,从瓶口外开始逐渐向上变红,表明氨分子不停地做无规则运动。特点:饮料瓶由无色变成红色,色彩鲜艳,能激发求知欲望,而且不污染环境。
7.演示竖直方向
对具有物理意义的“竖直”,学生不能很好的认识,理解起来费力,以至在有些问题中对重力和浮力的方向不能正确把握。
如图
1、图2所示,A是塑料饮料瓶;B是水;C是用线系好固定在瓶盖上的铁球;D是用细线系好固定在瓶盖上的氢气球。演示时,将组装好的饮料瓶A正立、B倒立时,学生会观察到系有铁球C和系有氢气球D的线段方向是竖直的方向;若将饮料瓶A、B倾斜时,学生也会观察到系有铁球C和系有氢气球D的线段方向仍与水平面是竖直的,从而生动形象地表明重力的方向和浮力的方向总是竖直的。
9.证明大气压存在的演示
方法a:拧开塑料饮料瓶的瓶盖后,用打火机点燃浸过酒精的棉花团,用镊子放入塑料饮料瓶中,随即旋紧瓶口,火熄灭片刻后,塑料饮料瓶就发生明显的变形,同时有喀喀声音的出现。这是棉花团在瓶内燃烧,消耗氧气,体积膨胀又溢出,封口冷却后,瓶内气压减小,外界大气压把瓶压变形了。松开瓶盖后,空气进入内外气压平衡,在弹力的作用下,瓶身恢复了原样。
方法b:饮料瓶中盛满水,用一硬纸片(或塑片)挡住瓶口后,用手支撑着倒立过来,松手后,所挡的硬纸片掉不下来。再缓慢地使饮料瓶在竖直面转动360度,硬纸片也倒不下来的,从而形象生动地证明大气压的存在。
方法c:将饮料瓶用手挤压使它发生形变,让瓶内的气体被排出一部分后,把瓶口与自己的脸(或吹起的玩具气球上)上相接触,松手后,饮料瓶子就被“沾”在脸上了。这是饮料瓶瓶身的向外弹力作用下体积增大,内部压强减小,瓶外的大气压使饮料瓶“压”在人脸(或吹起的玩具气球上)上了。
方法d :如图所示,饮料瓶中盛满水,用带有较长(1.6~1.8m)橡胶管的塞子塞紧瓶口,将饮料瓶子倒立进过来,瓶中的水从橡胶管中流入容器中,随着水流入容器的增多,饮料瓶就发生形变,同时有声音的出现。这是由于瓶内水的流出使瓶内气压减小,外界大气压作用在瓶子上的缘故。
方法e:将饮料瓶拧开瓶盖后,用手按入水槽中使瓶中充满水,然后把饮料瓶倒立在水槽中,慢慢提起,直至瓶口不离开水面为止,液面不下降(并与托里拆利实验对比,使学生感悟出,当时托里拆利实验为什么用水银做实验),从而说明大气压强的存在。
10.演示空气振动产生声音及音调变化
方法a:在几个饮料瓶中盛入不同深度的水,将瓶口移至嘴边吹气,可以听到不同音调的声音产生。空气柱越短的,音调越高,反之,空气柱越长,音调越低。
方法b:在饮料瓶中盛入小部分水,用手握住后,将饮料瓶口移到嘴边、吹气,学生会听到一种音调的声音。若一边吹气,一边用手挤压饮料瓶水面升高时,学生又会听见不同音调的声音。
二、若对饮料瓶进行稍稍加工就会产生了“多功能瓶”
改进一:把自行车内袋上具有单向导气的气门芯,固定在瓶的盖上,这样就制成了可作如下实验:
1.演示空气有浮力
人类长时间生活在空气中,对空气的浮力适应,感受不到有浮力的存在,有下面的实验,使学生直观体会到空气中的物体有浮力。用打气筒给多功能瓶充气,然后气球套紧在气门芯上,并用线系好。放在天平上使天平平衡,将套在气球内的螺丝帽松动,使气球膨胀,天平左端上升。在左端质量不变的情况下,左端上升是体积大浮力变大的缘故。
2.演示空气有质量
空气有质量的直观表象是理解大气压强的关键,在新教材中没有编排这一实验,学生觉察不到大气有质量,因此,我们增加了该实验,天平调平后,将“多功能瓶”放在天平左盘上,右盘加砝码使天平平衡;然后用打气筒往“多功能瓶”中充8~9次后,再放在天平左盘上,发现左盘迅速下降,要使用天平再平衡,需要往右盘加1g多的砝码,这表明空气有质量。
3.演示对外做功内能减少
打开瓶盖、滴入几滴乙醚,拧紧瓶盖,在用打气筒充气后,看见瓶内的乙醚蒸发透明,然后慢慢松开瓶盖,同学们会看见瓶内出现了“白气”,这表明气体对外做功,气体的内能减小,温度降底而使乙醚液化的原因。
4.演示反冲运动
用打气筒往“多功能瓶”中充10~15次的空气后,将充足空气的多功能瓶放在水池中的水面上,然后旋松气门芯的螺丝,使气体放出,会观察到多功能饮料瓶,在水面上快速地前进着。
改进二:在饮料瓶上从上向下用针扎三个等距离的小孔可做如下实验.
1.大气压的存在饮料瓶中盛满水,拧紧瓶盖后,放在水平桌面上。用锥子在周围扎一些小眼(直径小于3mm),水并未流出,这是瓶内水产生的压强,小于外界大气压的缘故;当用手拧松瓶盖时,瓶内的水与大气压产生的压强之和大于瓶外的大气压,因此水就从所扎的小眼向外喷射出来,形成美丽的水帘。
2.液体的压强随深度的增加而增大
将带有三孔的饮料瓶,用手按入水中充满水后,不盖瓶盖时,从水中提出水面来,可观察到不同深度的水射程不同,从而说明液体的压强,随着深度的增加而增大。
3.演示失重和超重
将带有三孔的饮料瓶,用手按入水中充满水,拧紧瓶盖后,从水中提出来(水不溢出,是大气压的作用)。然后打开瓶盖,水从小孔射出,将饮料瓶提高位置,松手使饮料瓶自由下落,小孔中没有水射出。当瓶子落至地面前,用手接住,这时水又从小孔射出来。再竖直上抛时,也会观察到水不溢出。再下落时,又会看到没有水从小孔射出。这是因为当自由下落时,水受到的重力全部用作自由落体加速度g,不产生附加压强,完全“失重”了。而竖直上抛时,作减速上升的运动时,负加速度也是重力产生的,也“失重”了。
4.演示帕斯卡定律
将带有三孔的饮料瓶,用手按入水中充满水,拧紧瓶盖后,用手挤压饮料瓶,会观察到从三个孔中射出来的射程是一样的。从而说明加在密闭液体上的压强,能够按着原来的大小不变地传递。
第五篇:逻辑思维在物理实验教学中的应用
逻辑思维在物理实验教学中的应用
摘要:本文就如何在初中物理实验教学中发挥学生的逻辑思维能力,提高物理实验教学的效率提出了自己的看法和具体做法。
关键词:逻辑思维;物理;实验教学
实验教学是物理教学的重要组成部分,是落实物理课程目标,全面提高学生科学素养的重要途径。实验教学具有多维的课程目标,除了学习知识、训练技能以外,物理实验教学还在发展实验能力、提高科学素养方向发挥重要作用。应让学生通过设计实验、收集和分析实验数据等自主活动来提高实验能力;在认真收集、处理实验信息中培养严谨的科学态度和科学精神等。实验教学本身要求科学思维具有严密的逻辑性,从某种意义上讲,逻辑思维能力是一名学生科学素养的重要标志。逻辑思维方法是分析和解决物理问题的关键,认真分析研究逻辑思维方法对物理实验教学的指导作用,选择恰当的逻辑思维方法,将会提高物理实验教学的效率。比较与分类,分析与综合,归纳与演绎是逻辑思维的基本方法。下面我就如何在物理实验教学中发挥学生的逻辑思维能力谈谈自己的具体做法。
一、通过对比实验发现新事物
对比是找出事物之间的不同点和共同点的思维方法,通过事物间相同特征或不同特征的比较,揭示事物的本质和区别。在物理实验教学中,对比的目的主要是揭示两种事物的不同特征,但在对比的过程中我们还会发现新的事物。
大气压强这一概念,对初中学生来说是比较抽象的。在“体验大气压强的存在”教学时,为了证明大气压的存在,教学中我设计了两个对比性实验,每做一个实验,都引导学生观察现象,思考问题,分析问题,得出结论。第一个实验是用一张硬纸片盖住玻璃杯口,用右手拿着玻璃杯,左手压住硬纸片,将玻璃杯口朝下,松开左手,让学生观察发生的现象,根据纸片的受力情况分析纸片为什么向下掉。第二个实验是用一张硬纸片盖住装满水的玻璃杯口,进行与实验一同样的操作,让学生思考与实验一同样的问题。学生自然会想到厚纸片不会掉下来时因为受到一个向上的作用力,这个作用力只能是大气产生的,由此可见,大气对硬纸片产生了压强。
二、运用对比性实验导出物理规律
对于学生易于形成片面认识的物理规律,设计针对性强的对比性实验,可以帮助学生完成认识上的飞跃。在做“探究二力平衡的条件”演示实验时,先让学生仔细观察并读出卡片保持静止时两边吊盘里砝码的重力,并向学生提出探索性问题:“二力在什么条件下才会平衡?”学生往往得出片面的结论:“二力平衡条件是二力的大小相等,方向相反。”这时引导学生再仔细观察如下两个有针对性的对比实验。①两个力大小相等,方向相反,分别作用在两个物体上(即用两个卡片拼合在一起代替原来的卡片);②两力大小相等,方向相反,作用在同一个物体(卡片)上,但两力的作用线不在同一条直线上。通过这两个实验,学生自己否定了原先的片面论断,从而得出科学的结论:“作用在一个物体上的两个力,如果在同一条直线上,大小相等,方向相反,这两个力就平衡”。
三、联想实验现象,体验新事物的存在对看不见、摸不着的物质,通过引导学生分析在实验中出现的奇特现象,感受新物质的存在。在引入红外线的概念时,如果直接告诉学生红外线的存在,学生会很难理解,甚至认为无中生有。我们可以在“光的色散”实验的基础上,在肉眼看起来没有任何物质的红光外侧位置上放一支温度计,结果发现温度计的示数很快上升。从温度计的示数很快上升这种现象我们联想到红光外侧位置上应该存在某种肉眼看不见的物质,由于它位于红光外侧位置上,就根据它的位置命名为红外线。
四、分析与总结物理模型,降低实验探究的难度
物理器材的原理和结构决定了器材的使用方法。在物理仪器和器材的使用方法教学中,理解仪器的原理和结构可以降低实验探究的难度,加强学生对器材使用方法、使用规则的理解。在“探究滑动变阻器的使用方法”的实验教学时,首先要给学生分析滑动变阻器的结构和原理,然后引导学生根据原理分析接入A、B接线柱时,无论向哪移动滑片A、B间的都不发生变化;接入C、D接线柱时,无论向哪移动滑片接的都是一根金属杆(相对于一根导线),C、D间的电阻丝长度也不可能发生变化。只有一个接线柱接在电阻丝上,另一个接线柱接在金属杆上,移动滑片时电阻丝长度才能发生变化。接着让学生分析下接线柱选A时电阻值的变化规律,下接线柱选B时电阻值的变化规律,从而得出结论:滑动变阻器的接线柱选择应该“一下一上”,电阻值的变化规律是由下接线柱决定的。显然,培养学生使用基本仪器的技能,必须要注意把掌握仪器的方法与仪器的原理结合起来,这样既有利于巩固基础知识,又能帮助学生理解为什么这样使用仪器。
五、利用逻辑推理进行理想实验
进行理想实验的过程,同时也是运用逻辑思维进行高度科学抽象的过程。理想实验是一种创造性的思维活动,是科学实验的补充和跨越。在“探究阻力对物体运动的影响”的实验中,学生已经观察到小车受到的阻力越小,小车运动的路程越长。接着引导学生进行逻辑推理:如果小车在绝对光滑的水平面上运动,即受到的阻力等于零,小车将怎样运动?小车运动的路程将无限长,沿着直线一直运动下去,它的速度不会发生变化(做匀速直线运动)。
六、运用逆向思维,提出新问题
有许多把事物反转一下或把顺序调换一下就解决了停滞不前的问题的事例。比如,1820年奥斯特发现了电流的磁效应,法拉第利用逆向法,终于在1831年实现了“磁转化为电”。牛顿根据开普勒提出的行星运动三大定律,经过逆向思维,从而提出“行星为什么这样运动”,通过严密的推理论证、分析归纳,找到了天体运动的原因,总结出了的万有引力定律。物理学家的逆向思维活动的独特和新颖,使他们创造活动成为物理学发展史上璀璨明珠。在实际实验教学过程中,我们不妨模仿科学家使用过的逆向思维提出新问题,激发学生进行实验探究的兴趣。
(作者单位:陕西省勉县新街子镇九年制学校724205)