第一篇:七年级数学下学期期中试题(含解析)青岛版
2015-2016学年山东省菏泽市定陶县七年级(下)期中数学试卷
一、选择题(共10小题,每小题3分,满分30分)
1.下列四个图中,能用∠
1、∠AOB、∠O三种方法表示同一个角的是()
A. B. C. D.
2.已知,∠α与∠β互补,且∠α﹣∠β=30°,则∠α与∠β的大小关系依次为()A.110°,70° B.105°,75° C.100°,70° D.110°,80° 3.下列计算正确的是()
A.a+a=2a B.(﹣ab)=﹣ab C.a•a=a D.a÷a=a
4.若A,B,C是直线l上的三点,P是直线l外一点,且PA=5cm,PB=4cm,PC=3cm,则点P到直线L的距离()
A.等于3cm B.大于3cm而小于4cm C.不大于3cm D.小于3cm 2242
363
245.要使(y2﹣ky+2y)(﹣y)的展开式中不含y2项,则k的值为()A.﹣2 B.0 C.2 D.3 6.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=32°,则∠2的度数为()
A.25° B.28° C.30° D.32° 7.用加减法解方程组
时,要使方程中同一个未知数的系数相等或互为相反数,必须适当变形,以下四种变形正确的是()(1)(2)
(3)
(4)
A.(1)(2)B.(2)(3)C.(3)(4)D.(4)(1)
8.如图,直线AB、CD交于点O,OT⊥AB于O,CE∥AB交CD于点C,若∠ECO=30°,则∠DOT等于()
A.30° B.45° C.60° D.120°
9.古代有这样一个寓言故事:驴子和骡子一同走,它们驮着不同袋数的货物,每袋货物都是一样重的.驴子抱怨负担太重,骡子说:“你抱怨干吗如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”那么驴子原来所托货物的袋数是()A.5 B.6 40C.7 3224D.8 10.若a=2,b=3,c=4,则下列关系正确的是()A.a>b>c B.b>c>a C.c>a>b D.c>b>a
二、填空题(共8小题,每小题3分,满分24分)11.若(m﹣3)x+2y|m﹣2|+8=0是关于x,y的二元一次方程,m= .
12.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000000076克,用科学记数法表示是 克. 13.若xn﹣1•x=x,则n= . n+510﹣214.如图,在三角形ABC中,点D、E、F分别是三条边上的点,EF∥AC,DF∥AB,∠B=35°,∠C=65°,则∠EFD= .
15.若实数m,m满足|m﹣2|+(n﹣2015)=0,则m+n= . 16.已知关于x,y的二元一次方程组
22﹣10的解互为相反数,则k的值是 .
17.若(2x+5)(4x﹣10)=8x+px+q,则p=,q= .
18.五一前夕,某超市促销,由顾客抽奖决定折扣,某顾客购买甲乙两种商品,分别抽到七折(按售价70%)和九折销售,共付款386元,这两种商品原销售之和为500元,则甲乙两种商品原销售价分别为、.
三、解答题(共8小题,满分66分)19.化简求值:
(1)a•a+(﹣2a)+(﹣a),其中a=﹣1.(2)4x(x﹣1)﹣(2x+1)(2x﹣1),其中x=﹣5. 20.解方程组(1)33
3223(2).
21.一个角的余角与这个角的补角的和比平角的多1°,求这个角的度数.(2)已知5m=2,5n=3,求53m﹣2n.
22.如图,直线EF,CD相交于点O,OA⊥OB,且OC平分∠AOF.(1)若∠AOE=40°,求∠BOD的度数;
(2)若∠AOE=α,求∠BOD的度数.(用含α的代数式表示)
23.某开发区去年出口创汇额为25亿美元,今年达到30.55亿美元,已知今年上半年出口创汇额比去年同期增长18%,下半年比去年同期增长25%,求去年上半年和下半年的出口创汇额各是多少亿美元?
24.已知如图,在三角形ABC中,AC⊥AB,DG⊥BC,EF⊥AB,∠1=∠2,试判断CD与AB的位置关系?并说明理由.
25.小亮在做“化简(2x+k)(3x+2)﹣6x(x+3)+5x+16并求x=2时的值”一题时,错将x=2看成x=﹣2,但结果却和正确答案一样,由此,你能推算出k值吗?
26.如图,长青化工厂与A、B两地有公路、铁路相连.这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地.已知公路运价为1.5元/(吨•千米),铁路运价为1.2元/(吨•千米),且这两次运输共支出公路运输费15000元,铁路运输费97200元.求:
(1)该工厂从A地购买了多少吨原料?制成运往B地的产品多少吨?(2)这批产品的销售款比原料费与运输费的和多多少元?
2015-2016学年山东省菏泽市定陶县七年级(下)期中数学试卷
参考答案与试题解析
一、选择题(共10小题,每小题3分,满分30分)
1.下列四个图中,能用∠
1、∠AOB、∠O三种方法表示同一个角的是()
A. B. C. D.
【考点】角的概念.
【分析】根据角的表示方法和图形选出即可.
【解答】解:A、图中的∠AOB不能用∠O表示,故本选项错误; B、图中的∠1和∠AOB不是表示同一个角,故本选项错误; C、图中的∠1和∠AOB不是表示同一个角,故本选项错误; D、图中∠
1、∠AOB、∠O表示同一个角,故本选项正确; 故选D.
【点评】本题考查了角的表示方法的应用,主要考查学生的理解能力和观察图形的能力.
2.已知,∠α与∠β互补,且∠α﹣∠β=30°,则∠α与∠β的大小关系依次为()A.110°,70° B.105°,75° C.100°,70° D.110°,80° 【考点】余角和补角.
【分析】首先根据互补得出∠α+∠β=180°,再根据∠α﹣∠β=30°组成方程组,即可求出∠α与∠β的大小.
【解答】解:∵∠α与∠β互为补角,∴∠α+∠β=180°,又∵∠α﹣∠β=30°,∴解得:故选B.,【点评】此题考查了余角和补角,解题时要根据若两个角互补,则两个角的和等于180°列出方程组是本题的关键.
3.下列计算正确的是()
A.a2+a2=2a4 B.(﹣a2b)3=﹣a6b3 C.a2•a3=a6 D.a8÷a2=a4
【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方. 【分析】根据同底数幂的乘除法、合并同类项以及积的乘方和幂的乘方进行计算即可. 【解答】解:A、a+a=2aB,故A错误; B、(﹣ab)=﹣ab,故B正确; C、a•a=a,故C错误; D、a÷a=a,故D错误; 故选B.
【点评】本题考查了同底数幂的乘除法、合并同类项以及积的乘方和幂的乘方,是基础知识要熟练掌握.
4.若A,B,C是直线l上的三点,P是直线l外一点,且PA=5cm,PB=4cm,PC=3cm,则点P到直线L的距离()
A.等于3cm B.大于3cm而小于4cm C.不大于3cm D.小于3cm 8262352363222【考点】点到直线的距离.
【分析】根据“从直线外一点到这条直线上各点所连的线段中,垂线段最短”可知垂线段的长度不能超过PC的长.
【解答】解:根据点到直线的距离的定义,点P到直线L的距离即为点P到直线L的垂线段的长度,垂线段的长度不能超过PC的长.故选C.
【点评】本题主要考查了从直线外一点到这条直线上各点所连的线段中,垂线段最短的性质.
5.要使(y2﹣ky+2y)(﹣y)的展开式中不含y2项,则k的值为()A.﹣2 B.0 C.2 D.3 【考点】单项式乘多项式.
【分析】直接利用单项式乘以多项式运算法则求出答案.
【解答】解:∵(y2﹣ky+2y)(﹣y)的展开式中不含y2项,∴﹣y+ky﹣2y中不含y项,∴k﹣2=0,解得:k=2. 故选:C.
【点评】此题主要考查了单项式乘以多项式,正确掌握运算法则是解题关键.
6.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=32°,则∠2的度数为()3222
A.25° B.28° C.30° D.32° 【考点】平行线的性质.
【分析】首先过A作AE∥NM,然后判定AE∥GH,根据平行线的性质可得∠3=∠1=35°,再计算出∠4的度数,再根据平行线的性质可得答案. 【解答】解:过A作AE∥NM,∵NM∥GH,∴AE∥GH,∴∠3=∠1=32°,∵∠BAC=60°,∴∠4=60°﹣32°=28°,∵NM∥AE,∴∠2=∠4=28°,故选B.
【点评】此题主要考查了平行线的判定与性质,关键是掌握两直线平行,内错角相等.
7.用加减法解方程组
时,要使方程中同一个未知数的系数相等或互为相反数,必须适当变形,以下四种变形正确的是()(1)(2)
(3)
(4)
A.(1)(2)B.(2)(3)C.(3)(4)D.(4)(1)【考点】解二元一次方程组.
【分析】根据加减消元法适用的条件将方程进行适当变形,使方程中同一个未知数的系数相等或互为相反数即可.
【解答】解:把y的系数变为相等时,①×3,②×2得,把x的系数变为相等时,①×2,②×3得,故选C.
【点评】此题比较简单,考查的是用加减消元法求二元一次方程组的解时对方程进行合理变形的方法.
8.如图,直线AB、CD交于点O,OT⊥AB于O,CE∥AB交CD于点C,若∠ECO=30°,则∠DOT等于()
.,A.30° B.45° C.60° D.120° 【考点】平行线的性质.
【分析】由CE∥AB,根据两直线平行,同位角相等,即可求得∠BOD的度数,又由OT⊥AB,求得∠BOT的度数,然后由∠DOT=∠BOT﹣∠DOB,即可求得答案. 【解答】解:∵CE∥AB,∴∠DOB=∠ECO=30°,∵OT⊥AB,∴∠BOT=90°,∴∠DOT=∠BOT﹣∠DOB=90°﹣30°=60°. 故选C.
【点评】此题考查了平行线的性质,垂直的定义.解题的关键是注意数形结合思想的应用,注意两直线平行,同位角相等.
9.古代有这样一个寓言故事:驴子和骡子一同走,它们驮着不同袋数的货物,每袋货物都是一样重的.驴子抱怨负担太重,骡子说:“你抱怨干吗如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”那么驴子原来所托货物的袋数是()A.5 B.6 C.7 D.8 【考点】一元一次方程的应用. 【专题】应用题.
【分析】要求驴子原来所托货物的袋数,就要先设出未知数,再通过理解题意可知本题的等量关系,即驴子减去一袋时的两倍减1(即骡子原来驮的袋数)再减1(我给你一袋,我们才恰好驮的一样多)=驴子原来所托货物的袋数加上1,根据这个等量关系列方程求解. 【解答】解:设驴子原来驮x袋,根据题意,得到方程:2(x﹣1)﹣1﹣1=x+1,解得:x=5,答:驴子原来所托货物的袋数是5. 故选A.
【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.
10.若a=2,b=3,c=4,则下列关系正确的是()A.a>b>c B.b>c>a C.c>a>b D.c>b>a 【考点】幂的乘方与积的乘方.
【分析】利用幂的乘方运算法则将a,b,c化为指数相同的数字,进而比较底数得出答案. 【解答】解:∵a=240=328,b=332=818,c=424=648,∴b>c>a,故选B. 40322
4【点评】本题考查了幂的乘方与积的乘方,解答本题的关键在于正确利用幂的乘方运算法则对各数进行化简.
二、填空题(共8小题,每小题3分,满分24分)
11.若(m﹣3)x+2y|m﹣2|+8=0是关于x,y的二元一次方程,m= 1 . 【考点】二元一次方程的定义.
【分析】根据二元一次方程满足的条件,即只含有2个未知数,未知数的项的次数是1的整式方程,即可求得m的值. 【解答】解:根据题意,得 |m﹣2|=1且m﹣3≠0,解得m=1. 故答案为:1.
【点评】二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数的项的最高次数为一次;(3)方程是整式方程.
12.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000000076克,用科学记数法表示是 7.6×10﹣8 克. 【考点】科学记数法—表示较小的数.
【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【解答】解:0.000000076=7.6×10. 故答案为:7.6×10﹣8.
【点评】本题考查用科学记数法表示较小的数,一般形式为a×10,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
13.若xn﹣1•xn+5=x10,则n﹣2=
.
﹣n
﹣8
﹣n
【考点】同底数幂的乘法.
【分析】根据同底数幂的乘法底数不变指数相加,可得关于n的方程,根据负整数指数幂与正整数指数幂互为倒数,可得答案. 【解答】解:由xn﹣1•x=x,得 n+510x2n+4=x10,即2n+4=10,解得n=3. n﹣2=3﹣2=,故答案为:.
【点评】本题考查了同底数幂的乘法,利用同底数幂的乘法得出关于n的方程是解题关键.
14.如图,在三角形ABC中,点D、E、F分别是三条边上的点,EF∥AC,DF∥AB,∠B=35°,∠C=65°,则∠EFD= 80° .
【考点】平行线的性质.
【分析】根据EF∥AC,求出∠EFB=∠C=65°,再根据DF∥AB,求出∠DFC=∠B=35°,根据平角的定义即可得到结论. 【解答】解:∵EF∥AC,∴∠EFB=∠C=65°,∵DF∥AB,∴∠DFC=∠B=35°,∴∠EFD=180°﹣65°﹣35°=80°,故答案为:80°.
【点评】本题考查了平行线的性质,找到平行线、得到相应的同位角或内错角是解题的关键.
15.若实数m,m满足|m﹣2|+(n﹣2015)2=0,则m﹣1+n0=
.
【考点】负整数指数幂;非负数的性质:绝对值;非负数的性质:偶次方;零指数幂.
【分析】根据非负数的和为零,可得每个非负数同时为零,根据负整数指数幂与正整数指数幂互为倒数,非零的零次幂等于1,可得答案.
【解答】解:由m,m满足|m﹣2|+(n﹣2015)=0,得 m﹣2=0,n﹣2015=0. 解得m=2,n=2015. m﹣1+n0=+1=,故答案为:.
【点评】本题考查了非负数的性质,利用非负数的和为零得出每个非负数同时为零是解题关键,又利用了负整数指数幂、非零等零次幂.
16.已知关于x,y的二元一次方程组【考点】二元一次方程组的解.
【分析】将方程组用k表示出x,y,根据方程组的解互为相反数,得到关于k的方程,即可求出k的值.
【解答】解:解方程组
得:,的解互为相反数,则k的值是 ﹣1 .
2因为关于x,y的二元一次方程组可得:2k+3﹣2﹣k=0,解得:k=﹣1. 故答案为:﹣1. 的解互为相反数,【点评】此题考查方程组的解,关键是用k表示出x,y的值.
17.若(2x+5)(4x﹣10)=8x+px+q,则p= 0,q= ﹣50 . 【考点】多项式乘多项式. 【专题】计算题;整式.
【分析】已知等式左边利用多项式乘以多项式法则计算,再利用多项式相等的条件求出p与q的值即可.
2【解答】解:已知等式整理得:8x2﹣50=8x2+px+q,则p=0,q=﹣50,故答案为:0,﹣50 【点评】此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.
18.五一前夕,某超市促销,由顾客抽奖决定折扣,某顾客购买甲乙两种商品,分别抽到七折(按售价70%)和九折销售,共付款386元,这两种商品原销售之和为500元,则甲乙两种商品原销售价分别为 320元、180元 . 【考点】二元一次方程组的应用.
【分析】根据题意可知,本题中的等量关系是:以7折优惠价购买甲种商品所付钱数+以9折优惠价购买乙种商品所付钱数=386元,甲种商品原价+乙种商品原价=500元.根据这两个等量关系可以列出方程组,然后求解即可.
【解答】解:设甲、乙两商品的原价分别是x元,y元,则,解得.
故答案为:320元;180元
【点评】本题主要考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.
三、解答题(共8小题,满分66分)19.化简求值:
(1)a•a+(﹣2a)+(﹣a),其中a=﹣1.(2)4x(x﹣1)﹣(2x+1)(2x﹣1),其中x=﹣5. 【考点】整式的混合运算—化简求值. 【专题】计算题;整式.
【分析】(1)原式利用幂的乘方与积的乘方运算法则计算,合并得到最简结果,把a的值代入计算即可求出值;
(2)原式利用单项式乘以多项式,平方差公式化简,去括号合并得到最简结果,把x的值代入计算即可求出值. 33
3223
【解答】解:(1)原式=a6+4a6﹣a6=4a6,当a=﹣1时,原式=4;(2)原式=4x﹣4x﹣4x+1=﹣4x+1,当x=﹣5时,原式=20+1=21.
【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.
20.解方程组(1)22(2).
【考点】解二元一次方程组. 【专题】计算题.
【分析】(1)方程组利用加减消元法求出解即可;(2)方程组利用加减消元法求出解即可. 【解答】解:(1)①+②×4得:23x=23,即x=1,把x=1代入①得:y=2,则方程组的解为;,(2),①×3+②得:14x=﹣14,即x=﹣1,把x=﹣1代入①得:y=3,则方程组的解为.
【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
21.(1)一个角的余角与这个角的补角的和比平角的多1°,求这个角的度数.(2)已知5=2,5=3,求5mn3m﹣2n
.
【考点】同底数幂的除法;幂的乘方与积的乘方;余角和补角. 【专题】计算题;实数.
【分析】(1)设这个角为x,根据题意列出关于x的方程,求出方程的解即可得到结果;(2)原式利用幂的乘方及同底数幂的除法法则变形,将已知等式代入计算即可求出值. 【解答】解:(1)设这个角为x,根据题意得:90°﹣x+180°﹣x=180°×+1°,解得:x=67°,则这个角的度数为67°;(2)∵5=2,5=3,∴原式=(5)÷(5)=.
【点评】此题考查了同底数幂的除法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.
22.如图,直线EF,CD相交于点O,OA⊥OB,且OC平分∠AOF.(1)若∠AOE=40°,求∠BOD的度数;
(2)若∠AOE=α,求∠BOD的度数.(用含α的代数式表示)m3n2mn
【考点】垂线;角平分线的定义;对顶角、邻补角.
【分析】(1)根据平角的性质求得∠AOF,又由角平分线的性质求得∠FOC;然后根据对顶角相等求得∠EOD=∠FOC;∠BOE=∠AOB﹣∠AOE,∠BOD=∠EOD﹣∠BOE;
(2)根据平角的性质求得∠AOF,又由角平分线的性质求得∠FOC;然后根据对顶角相等求得∠EOD=∠FOC;∠BOE=∠AOB﹣∠AOE,∠BOD=∠EOD﹣∠BOE.
【解答】解:(1)∵∠AOE+∠AOF=180°(互为补角),∠AOE=40°,∴∠AOF=140°; 又∵OC平分∠AOF,∴∠FOC=∠AOF=70°,∴∠EOD=∠FOC=70°(对顶角相等); ∵∠BOE=∠AOB﹣∠AOE=50°,∴∠BOD=∠EOD﹣∠BOE=20°;
(2)∵∠AOE+∠AOF=180°(互为补角),∠AOE=α,∴∠AOF=180°﹣α; 又∵OC平分∠AOF,∴∠FOC=∠AOF=90°﹣α,∴∠EOD=∠FOC=90°﹣α(对顶角相等); ∵∠BOE=∠AOB﹣∠AOE=90°﹣α,∴∠BOD=∠EOD﹣∠BOE=α.
【点评】本题考查了垂线,利用垂直的定义,对顶角和互补的性质计算,要注意领会由垂直得直角这一要点.
23.某开发区去年出口创汇额为25亿美元,今年达到30.55亿美元,已知今年上半年出口创汇额比去年同期增长18%,下半年比去年同期增长25%,求去年上半年和下半年的出口创汇额各是多少亿美元?
【考点】二元一次方程组的应用.
【分析】设去年上半年出口创汇额为x亿美元,去年下半年的出口创汇额为y亿美元,可表示出今年的上半年和下半年的出口创汇额,由条件可列出方程,求解即可. 【解答】解:
设去年上半年出口创汇额为x亿美元,去年下半年的出口创汇额为y亿美元,则今年上半年出口创汇额为(1+18%)x=1.18x(亿美元),今年下半年的出口创汇额为(1+25%)y=1.25(亿美元),根据题意可列方程组,解得,答:去年上半年出口创汇额为10亿美元,去年下半年的出口创汇额为15亿美元.
【点评】本题主要考查了二元一次方程组的应用,根据题意正确表示出种植两种作物的费用是解题关键.
24.已知如图,在三角形ABC中,AC⊥AB,DG⊥BC,EF⊥AB,∠1=∠2,试判断CD与AB的位置关系?并说明理由.
【考点】平行线的判定与性质.
【分析】由AC⊥BC,DG⊥BC,可证得AC∥DG,又由∠1=∠2,易证得EF∥CD,继而证得结论. 【解答】解:垂直. 理由:∵AC⊥BC,DG⊥BC,∴AC∥DG,∴∠2=∠3,∵∠1=∠2,∴∠1=∠3,∴EF∥CD,∵EF⊥AB,∴CD⊥AB.
【点评】此题考查了平行线的判定与性质.注意证得AC∥DG是关键.
25.小亮在做“化简(2x+k)(3x+2)﹣6x(x+3)+5x+16并求x=2时的值”一题时,错将x=2看成x=﹣2,但结果却和正确答案一样,由此,你能推算出k值吗? 【考点】整式的混合运算—化简求值. 【专题】计算题;整式.
【分析】原式利用多项式乘以多项式,单项式乘以多项式法则计算,去括号合并后根据结果与x取值无关,求出k的值即可.
【解答】解:原式=6x+4x+3kx+2k﹣6x﹣18x+5x+16=(3k﹣9)x+2k+16,由结果与x取值无关,得到3k﹣9=0,解得:k=3.
【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.
26.如图,长青化工厂与A、B两地有公路、铁路相连.这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地.已知公路运价为1.5元/(吨•千米),铁路运价为1.2元/(吨•千米),且这两次运输共支出公路运输费15000元,铁路运输费97200元.求: 2
(1)该工厂从A地购买了多少吨原料?制成运往B地的产品多少吨?(2)这批产品的销售款比原料费与运输费的和多多少元? 【考点】二元一次方程组的应用. 【专题】应用题.
【分析】(1)设工厂从A地购买了x吨原料,制成运往B地的产品y吨,利用两个等量关系:A地到长青化工厂的公路里程×1.5x+B地到长青化工厂的公路里程×1.5y=这两次运输共支出公路运输费15000元;A地到长青化工厂的铁路里程×1.2x+B地到长青化工厂的铁路里程×1.2y=这两次运输共支出铁路运输费97200元,列出关于x与y的二元一次方程组,求出方程组的解得到x与y的值,即可得到该工厂从A地购买原料的吨数以及制成运往B地的产品的吨数;
(2)由第一问求出的原料吨数×每吨1000元求出原料费,再由这两次运输共支出公路运输费15000元,铁路运输费97200元,两运费相加求出运输费之和,由制成运往B地的产品的吨数×每吨8000元求出销售款,最后由这批产品的销售款﹣原料费﹣运输费的和,即可求出所求的结果. 【解答】解:(1)设工厂从A地购买了x吨原料,制成运往B地的产品y吨,依题意得:整理得:,①×12﹣②得:13y=3900,解得:y=300,将y=300代入①得:x=400,∴方程组的解为:,答:工厂从A地购买了400吨原料,制成运往B地的产品300吨;
(2)依题意得:300×8000﹣400×1000﹣15000﹣97200=1887800(元),答:这批产品的销售款比原料费与运输费的和多1887800元.
【点评】此题考查了二元一次方程组的应用,是一道与实际密切相关的热点考题,解答此类题时,要弄清题中的等量关系,列出相应的方程组,进而得到解决问题的目的.
第二篇:七年级数学下学期期中试题(含解析)新人教版25
2015-2016学年湖北省孝感市安陆市七年级(下)期中数学试卷
一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一个答案是正确的,请将正确答案的序号填入表中. 1.4的平方根是()
A.2 B. C.±2 D.±
2.直线a、b、c、d的位置如图,如果∠1=100°,∠2=100°,∠3=125°,那么∠4等于()
A.80° B.65° C.60° D.55°
3.如图,直线a,b被直线c所截,则下列说法中错误的是()
A.∠1与∠2是邻补角 B.∠1与∠3是对顶角 C.∠2与∠4是同位角 D.∠3与∠4是内错角 4.下列各式中,正确的是()A. =±4B.±
=4 C.
=﹣3 D.
=﹣4 5.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=38°时,∠1=()
A.52° B.38° C.42° D.60°
6.如图,数轴上的A、B、C、D四点中,与数﹣
表示的点最接近的是()
A.点A B.点B C.点C D.点D 7.下列命题:①相等的角是对顶角;②若a∥b,b⊥c,则a⊥c;③同位角相等;④邻补角的平分线互相垂直.其中正确的有()A.0个 B.1个 C.2个 D.3个
8.如图,由∠1=∠2,则可得出()
A.AD∥BC B.AB∥CD C.AD∥BC且AB∥CD D.∠3=∠4 9.若2m﹣4与3m﹣1是同一个正数的平方根,则m为()A.﹣3 B.1 C.﹣1 D.﹣3或1 10.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C为()
A.30° B.60° C.80° D.120°
二、填空题:本大题共10小题,每小题3分,共30分.
11.用直尺和三角尺作直线AB、CD,从图中可知,AB∥CD,依据是_______.
12.一个角的度数为20°,则它的补角的度数为_______.
13.如图在直角坐标系中,右边的图案是由左边的图案经过平移以后得到的.左图案中左右眼睛的坐标分别是(﹣4,2)、(﹣2,2),右图中左眼的坐标是(3,4),则右图案中右眼的坐标是_______.
14.如图,∠AOB=90°,∠MON=60°,OM平分∠AOB,ON平分∠BOC,则∠AOC=_______.
15.已知a、b为两个连续的整数,且a<2<b,则a+b=_______.
16.在同一平面内,有三条直线a、b、c,下列说法:①若a与b相交,b与c相交,则a与c相交;②若a∥b,b∥c,则a∥c;③若a⊥b,b⊥c,则a⊥c.其中正确命题是_______.(填序号)
17.把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在M、N的位置上,若∠EFG=55°,则∠2=_______.
18.已知=x,=3,z是16的算术平方根,则2x+y﹣5z的值为_______. 19.如图所示,在平面直角坐标系中,点A(4,0),B(3,4),C(0,2),则四边形ABCD的面积S=_______.
20.如图,AB∥CD,则∠1+∠2+∠3+…+∠2n=_______度.
三、解答题:本大题共6小题,满分60分. 21.计算:(1)(2)|1﹣|+|22.求下列各式中的x
|+|
|
(1);
(2)(x﹣7)3=27. 23.如图,是小明家(图中点O)和学校所在地的简单地图,已知OA=2cm,OB=2.5cm,OP=4cm,C为OP的中点.
①请用距离和方位角表示图中商场、学校、公园、停车场分别相对小明家的位置; ②若学校距离小明家400m,那么商场和停车场分别距离小明家多少米?
24.如图,已知P为直线AB外一点,按要求画图(1)在图1中过点P画PD⊥AB,垂足为D;(2)在图2中过点P画PE∥AB.
25.如图①②所示,将两个相同三角板的两个直角顶点O重合在一起,像图①②那样放置.(1)若∠BOC=60°,如图①,猜想∠AOD的度数;(2)若∠BOC=70°,如图②,猜想∠AOD的度数;(3)猜想∠AOD和∠BOC的关系,并写出理由.
26.已知,如图,CD⊥AB,GF⊥AB,∠B=∠ADE,试说明∠1=∠2.
2015-2016学年湖北省孝感市安陆市七年级(下)期中数学试卷
参考答案与试题解析
一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一个答案是正确的,请将正确答案的序号填入表中. 1.4的平方根是()
A.2 B. C.±2 D.± 【考点】平方根.
【分析】原式利用平方根定义计算即可得到结果. 【解答】解:∵(±2)2=4,∴4的平方根是±2,故选C
2.直线a、b、c、d的位置如图,如果∠1=100°,∠2=100°,∠3=125°,那么∠4等于()
A.80° B.65° C.60° D.55° 【考点】平行线的判定与性质.
【分析】根据平行线的判定得出a∥b,根据平行线的性质得出∠4=∠5,求出∠5即可.
【解答】解:∵∠1=100°,∠2=100°,∴∠1=∠2,∴直线a∥直线b,∴∠4=∠5,∵∠3=125°,∴∠4=∠5=180°﹣∠3=55°,故选D.
3.如图,直线a,b被直线c所截,则下列说法中错误的是()
A.∠1与∠2是邻补角 B.∠1与∠3是对顶角 C.∠2与∠4是同位角 D.∠3与∠4是内错角
【考点】同位角、内错角、同旁内角;对顶角、邻补角.
【分析】根据邻补角的定义,可判断A,根据对顶角的定义,可判断B,根据同位角的定义,可判断C,根据内错角的定义,可判断D.
【解答】解:A、∠1与∠2有一条公共边,另一边互为方向延长线,故A正确; B、∠1与∠3的两边互为方向延长线,故B正确; C、∠2与∠4的位置相同,故C正确; D、∠3与∠4是同旁内角.故D错误; 故选:D.
4.下列各式中,正确的是()A. =±4B.±
=4 C.
=﹣3 D.
=﹣4 【考点】二次根式的混合运算.
【分析】根据算术平方根的定义对A进行判断;根据平方根的定义对B进行判断;根据立方根的定义对C进行判断;根据二次根式的性质对D进行判断. 【解答】解:A、原式=4,所以A选项错误; B、原式=±4,所以B选项错误; C、原式=﹣3=,所以C选项正确; D、原式=|﹣4|=4,所以D选项错误. 故选:C.
5.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=38°时,∠1=()
A.52° B.38° C.42° D.60° 【考点】平行线的性质.
【分析】先求出∠3,再由平行线的性质可得∠1.
【解答】解:如图:
∠3=∠2=38°°(两直线平行同位角相等),∴∠1=90°﹣∠3=52°,故选A.
6.如图,数轴上的A、B、C、D四点中,与数﹣
表示的点最接近的是()
A.点A B.点B C.点C D.点D 【考点】实数与数轴;估算无理数的大小.
【分析】先估算出≈1.732,所以﹣≈﹣1.732,根据点A、B、C、D表示的数分别为﹣
3、﹣
2、﹣
1、2,即可解答. 【解答】解:∵≈1.732,∴﹣≈﹣1.732,∵点A、B、C、D表示的数分别为﹣
3、﹣
2、﹣
1、2,∴与数﹣表示的点最接近的是点B. 故选:B.
7.下列命题:①相等的角是对顶角;②若a∥b,b⊥c,则a⊥c;③同位角相等;④邻补角的平分线互相垂直.其中正确的有()A.0个 B.1个 C.2个 D.3个 【考点】命题与定理.
【分析】根据对顶角的定义以及平行公理及推论和邻补角的性质分别进行判断即可得出答案.
【解答】解:①相等的角是对顶角; 根据对顶角相等,但相等的角不一定是对顶角,故此选项错误;
②若a∥b,b∥c,则a∥c;根据平行于同一直线的两条直线平行,故此选项正确; ③同位角相等;根据两直线平行,同位角相等,故此选项错误,④邻补角的平分线互相垂直,根据角平分线的性质得出,邻补角的平分线互相垂直. 已知:AB,CD相交于O,OE,OF分别平分∠AOC,∠AOD,证明:∵OE平分∠AOC,∴∠AOE=∠AOC,∵OF平分∠AOD,∴∠AOF=∠AOD,∵∠AOC+∠AOD=180°,∴∠AOE+∠AOF=(∠AOC+∠AOD)=90°,∴OE⊥OF. 故此选项正确. ∴正确的有2个. 故选:C.
8.如图,由∠1=∠2,则可得出()
A.AD∥BC B.AB∥CD C.AD∥BC且AB∥CD D.∠3=∠4 【考点】平行线的判定.
【分析】∠1与∠2是直线AB、CD被直线AC所截形成的内错角,利用内错角相等,两直线平行求解.
【解答】解:∵∠1=∠2,∴AB∥CD(内错角相等,两直线平行). 故选B.
9.若2m﹣4与3m﹣1是同一个正数的平方根,则m为()A.﹣3 B.1 C.﹣1 D.﹣3或1 【考点】平方根. 【分析】由于一个正数的平方根有两个,且互为相反数,可得到2m﹣4与3m﹣1互为相反数,2m﹣4与3m﹣1也可以是同一个数.
【解答】解:∵2m﹣4与3m﹣1是同一个正数的平方根,∴2m﹣4+3m﹣1=0,或2m﹣4=3m﹣1,解得:m=1或﹣3. 故选D.
10.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C为()
A.30° B.60° C.80° D.120°
【考点】平行线的性质;角平分线的性质.
【分析】根据两直线平行,同位角相等可得∠EAD=∠B,再根据角平分线的定义求出∠EAC,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解. 【解答】解:∵AD∥BC,∠B=30°,∴∠EAD=∠B=30°,∵AD是∠EAC的平分线,∴∠EAC=2∠EAD=2×30°=60°,∴∠C=∠EAC﹣∠B=60°﹣30°=30°. 故选:A.
二、填空题:本大题共10小题,每小题3分,共30分.
11.用直尺和三角尺作直线AB、CD,从图中可知,AB∥CD,依据是 两直线平行,同位角相等 .
【考点】作图—复杂作图;平行线的判定.
【分析】利用平行线的判定方法对各选项进行判断. 【解答】解:由画法可得∠1=∠2,则AB∥CD. 故答案为:两直线平行,同位角相等.
12.一个角的度数为20°,则它的补角的度数为 160° . 【考点】余角和补角.
【分析】根据互为补角的两个角的和等于180°列式进行计算即可得解. 【解答】解:180°﹣20°=160°. 故答案为:160°.
13.如图在直角坐标系中,右边的图案是由左边的图案经过平移以后得到的.左图案中左右眼睛的坐标分别是(﹣4,2)、(﹣2,2),右图中左眼的坐标是(3,4),则右图案中右眼的坐标是(5,4).
【考点】坐标与图形变化-平移.
【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
【解答】解:∵两眼间的距离为2,且平行于x轴,∴右图案中右眼的横坐标为(3+2). 则右图案中右眼的坐标是(5,4). 故答案为:(5,4).
14.如图,∠AOB=90°,∠MON=60°,OM平分∠AOB,ON平分∠BOC,则∠AOC= 120° .
【考点】垂线;角平分线的定义.
【分析】根据角平分线的性质,OM平分∠AOB,得出∠MOB=45°,再根据∠MON=60°,ON平分∠BOC,得出∠BON=15°,进而求出∠AOC=∠AOB+∠BOC的度数. 【解答】解:∵∠AOB=90°,OM平分∠AOB,∴∠MOB=45°,∵∠MON=60°,∴∠BON=15°,∵ON平分∠BOC,∴∠NOC=15°,∴∠AOC=∠AOB+∠BOC=90°+30°=120°. 故答案为:120°.
15.已知a、b为两个连续的整数,且a<2<b,则a+b= 13 . 【考点】估算无理数的大小. 【分析】首先估算出2的取值范围,确定出a,b的值,易得a+b. 【解答】解:∵2=,∴6<7,∴6<7,∴a=6,b=7,∴a+b=6+7=13,故答案为:13.
16.在同一平面内,有三条直线a、b、c,下列说法:①若a与b相交,b与c相交,则a与c相交;②若a∥b,b∥c,则a∥c;③若a⊥b,b⊥c,则a⊥c.其中正确命题是 ② .(填序号)
【考点】命题与定理.
【分析】根据在同一平面内,垂直于同一条直线的两直线平行;如果两条直线都与第三条直线平行,那么这两条直线也互相平行进行分析即可.
【解答】解:①若a与b相交,b与c相交,则a与c可能相交,也可能平行,故说法错误; ②若a∥b,b∥c,则a∥c,说法正确; ③若a⊥b,b⊥c,则a∥c,说法错误. 故答案为②.
17.把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在M、N的位置上,若∠EFG=55°,则∠2= 110° .
【考点】翻折变换(折叠问题).
【分析】由折叠的性质可得:∠DEF=∠GEF,根据平行线的性质:两直线平行,内错角相等可得:∠DEF=∠EFG=55°,从而得到∠GEF=55°,根据平角的定义即可求得∠1,再由平行线的性质求得∠2.
【解答】解:∵AD∥BC,∠EFG=55°,∴∠DEF=∠EFG=55°(两直线平行,内错角相等),∠1+∠2=180°(两直线平行,同旁内角互补),由折叠的性质可得:∠GEF=∠DEF=55°,∴∠1=180°﹣∠GEF﹣∠DEF=180°﹣55°﹣55°=70°,∴∠2=180°﹣∠1=110°. 故答案为:110°.
18.已知=x,=3,z是16的算术平方根,则2x+y﹣5z的值为 1 . 【考点】算术平方根.
【分析】先根据算术平方根的值求出x,y,z的值,再代入代数式即可解答. 【解答】解:∵=x,=3,z是16的算术平方根,∴x=6,y=9,z=4,∴2x+y﹣5z=12+9﹣20=1,故答案为:1.
19.如图所示,在平面直角坐标系中,点A(4,0),B(3,4),C(0,2),则四边形ABCD的面积S= 11 .
【考点】坐标与图形性质;三角形的面积.
【分析】连接OB,根据S四边形ABCO=S△ABO+S△BCO即可计算. 【解答】解:如图,连接OB. ∵点A(4,0),B(3,4),C(0,2),∴S四边形ABCO=S△ABO+S△BCO=•4•4+•2•3=11. 故答案为11.
20.如图,AB∥CD,则∠1+∠2+∠3+…+∠2n= 180(2n﹣1)度.
【考点】平行线的性质.
【分析】本题主要利用两直线平行,同旁内角互补进行做题. 【解答】解:在转折的地方依次作AB的平行线,根据两直线平行,同旁内角互补得∠1+∠2+∠3+…+∠2n=180(2n﹣1)度. 故填180(2n﹣1).
三、解答题:本大题共6小题,满分60分. 21.计算:(1)
(2)|1﹣|+||+|| 【考点】实数的运算. 【分析】(1)原式利用算术平方根,立方根定义计算即可得到结果;(2)原式利用绝对值的代数意义化简,计算即可得到结果. 【解答】解:(1)原式=0.2﹣4﹣=﹣4.3;(2)原式= ﹣1+﹣
+2﹣
=1.
22.求下列各式中的x(1)3;
(2)(x﹣7)=27.
【考点】立方根;平方根. 【分析】(1)根据平方根,即可解答;(2)根据立方根,即可解答. 【解答】解:(1)
2(x﹣1)=16 x﹣1=4或x﹣1=﹣4,解得:x=5或﹣3;
3(2)(x﹣7)=27 x﹣7=3 x=10.
23.如图,是小明家(图中点O)和学校所在地的简单地图,已知OA=2cm,OB=2.5cm,OP=4cm,C为OP的中点.
①请用距离和方位角表示图中商场、学校、公园、停车场分别相对小明家的位置; ②若学校距离小明家400m,那么商场和停车场分别距离小明家多少米?
【考点】方向角.
【分析】①根据方位角定义及图中线段的长度即可得知;
②根据学校距离小明家400m而图中对应线段OA=2cm可知图中1cm表示200m,再根据OB、OP的长即可得.
【解答】解:①商场在小明家西偏北60°方向,距离2.5cm位置,学校在小明家东偏北45°方向,距离2cm位置,公园在小明家东偏南30°方向,距离2cm位置,停车场在小明家东偏南30°方向,距离4cm位置;
②∵学校距离小明家400m,且OA=2cm,∴图中1cm表示200m,∴商场距离小明家2.5×200=500m,停车场距离小明家4×200=800m.
24.如图,已知P为直线AB外一点,按要求画图(1)在图1中过点P画PD⊥AB,垂足为D;(2)在图2中过点P画PE∥AB.
【考点】作图—复杂作图. 【分析】(1)根据垂线的作法,过点P作PD⊥AB,垂足为D即可;(2)根据平行线的作法利用直尺作PE∥AB即可. 【解答】解:(1)如图所示:(2)如图所示:
25.如图①②所示,将两个相同三角板的两个直角顶点O重合在一起,像图①②那样放置.(1)若∠BOC=60°,如图①,猜想∠AOD的度数;(2)若∠BOC=70°,如图②,猜想∠AOD的度数;(3)猜想∠AOD和∠BOC的关系,并写出理由.
【考点】垂线.
【分析】此题利用余角、周角性质即可求出角的度数.应按照题目的要求,逐步计算. 【解答】解:(1)∵∠AOB=90°,∠BOC=60°,∴∠AOC=∠AOB﹣∠BOC=90°﹣60°=30°. 又∵∠COD=90°,∴∠AOD=∠AOC+∠COD =30°+90°=120°.
(2)∵∠AOB+∠COD+∠BOC+∠AOD=360°,∠AOB=90°,∠COD=90°,∠BOC=70°,∴∠AOD=360°﹣∠AOB﹣∠COD﹣∠BOC =360°﹣90°﹣90°﹣70°=110°.
(3)猜想:∠AOD+∠BOC=180°.
理由:如图①∵∠AOD=∠AOC+∠COD=∠AOC+90°,∠BOC=∠COD﹣∠BOD=90°﹣∠BOD,∠AOC=∠BOD,∴∠AOD+∠BOC=180°.
26.已知,如图,CD⊥AB,GF⊥AB,∠B=∠ADE,试说明∠1=∠2.
【考点】平行线的判定与性质;垂线.
【分析】利用平行线的判定及性质,通过证明∠1=∠BCD=∠2达到目的. 【解答】证明:∵∠B=∠ADE(已知),∴DE∥BC(同位角相等,两直线平行)∴∠1=∠DCB.(两直线平行,内错角相等)∵CD⊥AB,GF⊥AB,∴CD∥FG(平面内,垂直于同一条直线的两条直线平行),∴∠2=∠DCB.(两直线平行,同位角相等)∴∠1=∠2.(等量代换)
第三篇:2018年七年级下学期语文期中试题
第一部分 语基检测站(30分)
1、下列词语中加点字的注音完全正确的一项是(2分)()
A.支撑(chēng)似(sì)的 散(sàn)落 卖弄(nòng)
B.水藻(zǎo)澄(chéng)清 着(zhuó)落 济(jǐ)南
C.窥(kuī)视 酝酿(niàng)蓑(shuō)衣 开辟(pì)
D.发窘(jiǒng)抽噎(yē)棱(líng)角 亵(xiè)玩
2、下列词语中没有错别字的一项是(2分)()
A.笼罩 烦燥 花枝招展 小心翼翼
B.贮蓄 匾额 引吭高歌 暴风急雨
C.清脆 暄闹 笑容可掬 烂漫无比
D.瞑目 诧异 蜂拥而至 不胜其烦
3、下列文学常识表述无误的一项是(2分)()
A.《美猴王》------《西游记》------施耐庵------明代小说家。
B.《爱莲说》中的“说”和《陋室铭》中的“铭”都是古代的文体。
C.咏物寄情散文《海燕》的作者是郑振铎,当代作家,文学史家。
D.《孙权劝学》--------司马光-------宋代思想家、文学家。
4、下面文字中的横线处,应依次填入的一组句子是(2分)()
黄河,中华民族的母亲河。五千多年的华夏文明史,与黄河有着血肉相连的关系。黄河流千古,流出了,流出了,流出了。
A.生生不息的炎黄子孙 灿若明珠的黄河古文化 漫无边际的黄土地
B.灿若明珠的黄河古文化 漫无边际的黄土地 生生不息的炎黄子孙
C.漫无边际的黄土地 灿若明珠的黄河古文化 生生不息的炎黄子孙
D.漫无边际的黄土地 生生不息的炎黄子孙 灿若明珠的黄河古文化
5、下面文段中有两处语病,请提出修改意见。(2分)
①语文学习既包括读写听说能力的培养,又包括精神的充实、情感的完善与人格的提升,其最终目的是要全面提高语文素养。②在这里,教科书只是给你们搭建了一种资源,一个平台。③你们不必受此局限,而应尽可能将教科书与社会生活中的语文学习资源整合起来,在更广阔的范围内运用语文、学习语文、享受语文。④这样,你们的语文水平就会在潜移默化中得到提高。
(1)第②句修改意见:。
(2)第③句修改意见:。
6、名句默写:(8分)
①此中有真意。(陶渊明《饮酒》)
②念天地之悠悠。(陈子昂《登幽州台歌》)
③《雁门太守行》中的“,”两句,表现了将士们以死报国的坚定决心。
④《天净沙秋思》中直接抒发游子远离家乡、孤独漂泊的痛楚与悲秋的句 子是:。
⑤荡胸生层云。(杜甫《望岳》)
⑥,病树前头万木春。(刘禹锡《酬乐天扬州席上见赠》)
7、名著阅读:(5分)(1)、在人类历史风云激荡、苦难深重的20世纪初期,法国著名作家罗曼罗兰为艺术家贝多芬、米开朗琪罗、托尔斯泰分别作传,合称《名人三传》。罗曼罗兰称这三位艺术家为“英雄”。根据你的阅读感受,请选择其中的一位,说说作者为什么称他们为“英雄”?(3分)
答:。
(2)、阅读《伊索寓言》中的故事,从不同角度写出寓意或看法(答出两 点即可2分)。
农夫与他的儿子们
有个农夫生命垂危,此时此刻,希望告诉儿子们一个秘密,就把他们叫到跟前说:“我的孩子们,我就快死了;所以我想让你们知道,在我的葡萄园里埋藏着珍宝,你们自己去把它挖出来吧!”儿子们认定财宝埋在地下,为了找到它们,就用铁铲和钉耙反反复复地翻遍了整片葡萄园,然而什么都没有找到。但是经过了彻底的挖掘,葡萄却有了前所未有的好收成。
寓意或看法:
①。
②。
8、综合性学习(7分)
(1)、“座右铭”出现的历史比较久远。东汉书法家崔瑗(yuàn)年轻时好意气用事,他因哥哥被人杀害,大怒之下杀了仇人,只身逃亡。几年后,朝廷大赦,才回到故乡。崔瑗自知因一时鲁莽惹了大祸,吃足苦头,就把“铭”放在座位的右侧,用以自戒。后来人们就把这种勉励自己、鞭策自己、约束自己的警言称为“座右铭”。
(1)根据上述内容拟一个标题。(1分)
(2)、某校七(1)班准备举行一次“交流座右铭”口语交际活动,假如你是该班学生,并被同学们推举为这次活动主持人。作为主持人你应该先有一段精彩开场白。那么现在请你展示出来吧!(3分)
(3)、“座右铭”是放在身边用来激励或提醒自己的警句格言,如“带着妹妹上大学”的洪战辉的座右铭是:“一个人你脊梁不弯,就没有你扛不起的山。”请结合自己的学习、生活,运用适当的修辞手法,为自己创作一条座右铭。(不超过30字)(3分)
第二部分 美文欣赏吧(39分)(一)阅读下面文字,回答9----11题。(7分)
小草偷偷地从土里钻出来,嫩嫩的,绿绿的。园子里,田野里,瞧去,一大片一大片满是的。坐着,躺着,打两个滚,踢几脚球,赛几趟跑,捉几回迷藏。风轻悄悄的,草软绵绵的。
桃树、杏树、梨树,你不让我,我不让你,都开满了花赶趟儿。红的像火,粉的像霞,白的像雪。花里带着甜味儿;闭了眼,树上仿佛已经满是桃儿、杏儿、梨儿。花下成千成百的蜜蜂嗡嗡地闹着,大小的蝴蝶飞来飞去。野花遍地是:杂样儿的,有名字的,没名字的,散在草丛里像眼睛,像星星,还眨呀眨的。
9.对下面句子进行简要赏析。(3分)
小草偷偷地从土里钻出来,嫩嫩的,绿绿的。
答:。
10.本文抒发了作者怎样的感情?(2分)
答:。
11.想想看,春天还是什么?发挥你的想像力,仿写一个形式相同的比喻句子(2分)。
春天是一缕轻轻吟唱的暖风,和着声声婉转的鸟语;春天是一捧温暖明亮的阳光,吻着馥郁醉人的花香;
答:。
(二)阅读下面文字,回答12---17题。(16分)每一棵草都会开花
①回乡下,跟母亲一起到地里去,惊奇地发现,一种叫牛耳朵的草,开了细小的黄花。那些小小的花,羞涩地藏在叶间,不细看,还真看不出。
②我问:“怎么草也开花?”
③母亲笑着扫过一眼来,淡淡说:“每一棵草,都会开花的。”
④我愣住了,细想,还真是这样,蒲公英开花是众所周知的,开成白白的绒球球,轻轻一吹,满天飞花。狗尾巴草开的花,就像一条狗尾巴,若成片,是再美不过的风景。蒿子开花,是大团大团的……就没见过不开花的草。
⑤曾教过一个学生,很不出众的一个孩子,皮肤黑黑的,还有些耳聋。因不怎么听见声音,他总是竭力张着他的耳朵,微向前伸了头,作出努力倾听的样子。这样的孩子,成绩自然好不了,所有的学科竞赛,譬如物理竞赛,化学竞赛,他都是被忽略的一个。甚至,学期大考时,他的分数,也不被计入班级总分。所有人都把他当残疾可有,可无。
⑥他的父亲,一个皮肤同样黝黑的中年人,常到学校来看他,站在教室外。他回头看看窗外的父亲,也不出去,只送出一个笑容。A那笑容真是灿烂,盛开的野菊花般的,有大把的阳光开在里头。我很好奇他绽放出那样的笑,问他:“为什么不出去跟父亲说话?”他回我:“爸爸知道我很努力的。”我轻轻叹一口气,在心里。有些感动,又有些感伤。并不认为他,可以改变自己什么。
⑦学期要结束的时候,学校组织学生手工竞赛,是要到省里夺奖的,这关系到学校的声誉。平素的劳技课,都被充公上了语文、数学,学生们的手工水平,实在有限,收上去的作品,很令人失望。这时,却爆出冷门,有孩子送去手工泥娃娃一组,十个。每个泥娃娃,都各具情态,或嬉笑或遐想,活泼、纯真、美好,让人惊叹。作品报上省里去,顺利夺得特等奖。全省的特等奖,只设了一名,其轰动效应,可想而知。
⑧学校开大会表彰这个做出泥娃娃的孩子。热烈的掌声中,走上台的,竟是黑黑的他——那个耳聋的孩子。或许是第一次站到这样的台上,他神情很是局促不安,只是低了头,羞涩地笑。让他谈获奖体验,他嗫嚅半天,说:“我想,只要我努力,我总会做成一件事的。”
⑨B刹那间,台下一片静,静得阳光掉落的声音,都能听得见。
⑩从此面对学生,我再不敢轻易看轻他们中任何一个。他们就如同乡间的那些草们,每棵草都有每棵草的花期,哪怕是最不起眼的牛耳朵,也会把黄的花藏在叶间。开得细小而执著。(选自《杂文报》
12、文题“每一棵草都会开花”与母亲的话“每一棵草,都会开花的。”语句相近而含义不同,各是什么意思?(2分)
13、结合语境,理解第⑧段中加点的“嗫嚅”一词。(3分)。
14、从文中A、B 两句中任选一句进行赏析。(2分)
15、文章前四节运用大量笔墨细致描写各种草开的花,其作用是什么?(3分)
16、结合全文,从哪些地方可以看出这个做出泥娃娃的孩子是一个内心阳光的孩子?(可以引用原文回答)(4分)
17、你认为文中那位“做出泥娃娃的孩子”取得成功的原因是什么?(2分)
三、诗文欣赏站(一)阅读下面文言文,完成18—21小题。(13分)
【甲】 山不在高,有仙则名。水不在深.有龙则灵。斯是陋室,惟吾德馨。苔痕上阶绿,草色入帘青。谈笑有鸿儒,往来无白丁。可以调素琴,阅金经。无丝竹之乱耳,无案犊之劳形。南阳诸葛庐,西蜀子云亭。孔子云:“何陋之有?” 《陋室铭》
【乙】 水陆草木之花,可爱者甚蕃。晋陶渊明独爱菊。自李唐来,世人甚爱牡丹。予独爱莲之出淤泥而不染,濯清涟而不妖,中通外直,不蔓不枝,香远益清,亭亭净植,可远观而不可亵玩焉。
予谓菊,花之隐逸者也;牡丹,花之富贵者也;莲,花之君子者也。噫!菊之爱,陶后鲜有闻。莲之爱,同予者何人?牡丹之爱,宜乎众矣!《爱莲说》
18.解释下列加点的字。(4分)
(1)谈笑有鸿儒()(2)无案牍之劳形()
(3)陶后鲜有闻()(4)宜乎众矣()
19.翻译文中划线句子。(4分)
(1)苔痕上阶绿,草色入帘青。
(2)予独爱莲之出淤泥而不染,濯清涟而不妖。
20.甲文作者认为陋室不陋,这表达了他怎样的志向或情操?(2分)
21.乙文中描写莲花,为什么要先写陶渊明爱菊世人爱牡丹?这样写有什么作用?(3分)
阅读下面一首诗,完成 23—24 题。(4分)次北固山下 王 湾
客路青山外,行舟绿水前。潮平两岸阔,风正一帆悬。
海日生残夜,江春入旧年。乡书何处达?归雁洛阳边。
22、“乡书何处达?归雁洛阳边”运用了()的修辞手法,全诗抒发了诗人()情感。
23.“海日生残夜,江春入旧年”一联历来被人称道。请选一个角度,作简要赏析。(2 分)
第四部分 作文聊天室(50分)(下面两题中任选一题作文)
1、“竖起大拇指”常用来表示鼓励、夸奖、赞美、肯定、自豪……生活中、学习上值得为自己竖起大拇指的事太多了:克服困难、战胜自我、帮助别人、努力拼搏……
请以“为自己竖起大拇指”为题,选取你亲生经历的一个具体事例,写一篇文章。
要求:体裁不限(诗歌、戏剧除外),不少于600字;要写出真情实感;
文中不能出现真实的班名和人名;书写要正确、规范、美观。
2、半命题作文:我的(乐园、最爱、财富、未来、课余生活……)请补全题目写作。要求:立意自定,文体自选;字数600字以上;书写工整,卷面整洁。
题目:__________________________
七年级语文下期期中答案
1、B(Ashì Csuō D léng)
2、D(烦躁,B暴风疾雨C喧闹)
3、B(A吴承恩 c 现代作家 D政治家,史学家)
4、D5、(2分)(1)把“搭建”改为“提供”,(“搭建”改为“提供”,在“一个平召”前加“搭建了”。)
(2)把“运用语文”和“学习语文”互换位置。(每小题2分,意思对即可)
6、名句默写:(8分)
①欲辨已忘言,(关键字 辨 已)
②独怆然而涕下。(关键字 怆 涕)
③报君黄金台上意,提携玉龙为君死(关键字意 携)
④夕阳西下 断肠人在天涯。(关键字 涯)
⑤决眦入归鸟。(关键字 眦)
⑥沉舟侧畔千帆过
7、名著阅读:(5分)
(1)、示例:《贝多芬传》扼要叙述了德国天才作曲家贝多芬的家庭出身、童年生活以及他一生的各个重要创作时期的活动,突出描绘的是他同命运的斗争过程。他出身贫寒,小时候受父亲虐待,不到30岁就耳聋,晚年十分贫困,但他同命运进行了顽强的斗争,使音乐作品达到了一个新的高度,不愧为“英雄”的称。号。
(2)、示例:
①勤劳致富。②父亲临终前善意的说谎,使儿子们有了意外的收获。
③善于教育。④生活不要依赖别人,要用自己的双手去耕耘。
⒏⑴“座右铭”的由来
(2)、(3分)开场白要有称呼语,此次活动的内容、目的。
(3)、(3分)开放性题目,只要符合题意,即可得分:若只是抄用现成名言警句的只能得1分;若是自己创作的但没有运用适当修辞手法的,最多得1分。
9.(3分,每点1分,意近即可)
句子运用拟人的修辞方法生动形象地描绘了春草萌发的景象,表现了小草生长的神态和顽强的生命力,表达了作者对春草的喜爱之情。
10.(2分,意近即可)对春的热爱、赞美之情
11.(2分,句子结构相似,运用比喻的修辞方法)
示例:一股清凉澄澈的山泉,伴着悠扬动听的琴音
12、文题“每一棵草都会开花”的含义是每一个人(学生、孩子)都能成才。母亲的话只是在陈述每一棵草都会开花的这一自然现象。(每问1 分,共2 分)
13、“嗫嚅”在这里是想说而又说不出的意思。是动作神态描写,也是一个细节描写。表现了主人公的窘迫、紧张。(2分)
14、A处运用了比喻的修辞手法,表现了小男孩尽管貌不惊人、技不出众,但他有着健康、乐观、向上的心态。为下文小男孩的成功做了铺垫。B处运用了衬托的手法,以“阳光掉落在地上的声音”衬托环境的安静。说明小男孩的话引起了大家的深思,也解密了小男孩之所以成功的原因。
15、作者运用大量笔墨细致地描写各种草开的花,为下文写“耳聋学生不被重视却取得成功打下铺垫;结构上与结尾构成首尾呼应;借花喻人,表现文章的主题(答出一点得1 分,答出其中两点得2 分)
16(1)他有些耳聋。因为不怎么能听见声音,他总是竭力张着耳朵,微向前伸了头,努力倾听。(2)他回答我:“爸爸知道我很努力的。”(3)每个泥娃娃都各具情态,或嬉笑或遐想,活泼、纯真、美好,让人惊叹。(4)让他谈获奖体会,他嗫嚅半天,说:“我想,只要我努力,我总会做成一件事的。”(每条1分,共4分)
17、首先是他没有自卑,没有自暴自弃。其次选定了一个更适合他自己的目标,默默的努力。
18.(1)大(2)使……劳累(3)少(4)当 然
19.(1)苔痕碧绿,长到 阶上;草色青葱,映入帘里。
或:苔藓给石阶铺上绿毯,芳草将帘内映得碧青。
(2)我唯独喜欢爱莲——莲从淤泥里生长出来,却不受泥的沾染;它经 过清水洗涤,却不显得妖艳。
20.安贫乐道(或“高洁傲岸”,意合即可)
21.用菊和牡丹来衬托突出莲的高洁品质。菊是正面衬托,牡丹是反面衬托。
22设问,对家乡,对亲人的思念,23.①运用了拟人的修辞手法,生”入赋予日春以人的情态,生动形象地表现了自然理趣。
②两句诗对偶工整,形象生动,表现了时光匆匆,光阴荏苒,身在他乡的游子顿生思乡之情。(答出其中一点,言之成理即可)。
作文评分标准参照中考作文评分标准:
一类卷:45—50分。中心突出,切合题意,内容充实;语言准确,行文流畅;结构完整,层次分明;书写正确,工整清晰。以47分为基准分上下浮动。
二类卷:38—44分。中心明确,内容具体;语言通顺,结构完整,层次清楚;字体端正,错别字和标点错误均有3个以下。以41分为基准分上下浮动。
三类卷:30—37分。中心基本明确,内容比较具体;语言基本通顺,偶有语病;结构基本完整,层次较清楚;字迹清楚,错别字和标点错误均在10个以下,以34分为基准分上下浮动。
四类 卷:21—29分。中心不明确,内容不具体;语病较多;层次不够清楚;字迹潦草,错别字和标点错误多。以25分为基准分上下浮动。
五类卷:20分以下。严重偏离题意;文理不通;结构混乱;字体难看,不易辨认,错字多,不会使用标点。
第四篇:七年级数学暑假作业下学期试题
七年级数学暑假作业下学期试题
很多同学因为假期贪玩而耽误了学习,以至于和别的同学落下了差距,因此,小编为大家准备了这篇七年级数学暑假作业下学期试题,希望可以帮助到您!
9.H7N9是一种新型禽流感,病毒颗粒呈多形性,其中球形病毒的最大直径为0.00000012米,这一直径用科学记数法表示为 ▲ 米.10.写出对顶角相等的逆命题 ▲.11.若an=3,an=,则a2m-3n= ▲.12.已知:,则用x的代 数式表示y为 ▲.13.已知两个正方形的边长和是8cm,它们的面积和是50cm2,则这两个正方形的面积差的绝对值是 ▲.14.若4a2+kab+9b2是完全平方式,则常数k= ▲.15.如图,将正方形纸片ABCD沿BE翻折,使点C落在点F处,若DEF=40,则ABF= ▲.16.定义:对于实数a,符号[a]表示不大于a的最大整数,例如:[5.7]=5,[5]=5,[-]=-4.如果[ ]=3,那么满足条件的 所有正整数x有 ▲.17.七(2)班小明同学带50元去超市购买笔记本,已知皮面笔记本每本6元,软面笔记本每本4元,笔记本总数不小于10本,50元恰好全部用完,则有 ▲ 种购买方案.18.如图,在△ABC中,A=m,ABC和ACD的平分线于点A1,得 A1BC和A1CD的平分线交于点A2,得A2018BC和A2018CD的平分线交于点A2018,则A2018= ▲ 度.
第五篇:青岛版实验小学四年级下学期数学期中试题
青岛版实验小学2019-2020学年四年级下学期数学期中试卷(2)小朋友,带上你一段时间的学习成果,一起来做个自我检测吧,相信你一定是最棒的!一、填空(20分)(共10题;
共20分)1.(4分)村里有两所学校,第一所学校有320名学生,第二所学校再招收15名学生后,它的学生数就是第一所学校的2倍.第二所学校原有_______名学生. 2.(2分)电影票上的“6排15号”简记作(6,15),则“20排10号”简记作(_______,_______),(12,16)表示_______排_______号。
3.(2分)6×8×125=6×(8×125)运用了乘法_______律。
4.(1分)某工厂有女职工3200人,男职工比女职工的2倍少15人.这个厂共有职工_______人. 5.(2分)在计算62×25×4时,可运用_______使计算简便,在计算99×9+99时,可运用_______使计算简便. 6.(2分)如果三角形的两条边的长分别是4厘米和6厘米,那么第三条边的长必须大于_______厘米而小于_______厘米. 7.(2分)长安小学请了405位家长开家长会,每两人坐一条长凳,要准备_______条长凳比较合适. 8.(2分)30×6改写成加法算式是_______+_______+_______+_______+_______+_______。
9.(1分)最少用_______个等边三角形可以拼成如图的菱形. 10.(2分)下图中等腰三角形的底角是_______度。
二、判断(5分)(共5题;
共5分)11.(1分)0÷0=0,这个算式是不成的。
12.(1分)用乘法验算乘法的依据是乘法交换律.(判断对错)13.(1分)三角形的任意两边的和大于第三边.()14.(1分)等边三角形的每一个内角都是锐角。()15.(1分)72-38+28和72-(38-28)的计算结果相等。()三、选择(5分)(共5题;
共5分)16.(1分)与103×98计算结果不相等的算式是()A.(100+3)×(100-2)B.103×100-103×2 C.100×98+3×98 D.100×98+103×2 17.(1分)钝角三角形中,两个锐角的和()。
A.大于90° B.小于90° C.无法判断 18.(1分)下列各线段,不能围成三角形的是()A.6cm 6cm 6cm B.7cm 4cm 4cm C.2cm 4cm 6cm 19.(1分)一个正方形的周长是72厘米,它的面积是()平方厘米。
A.5184 B.324 C.18 20.(1分)任何一个三角形至少有()个角是锐角。
A.4 B.3 C.2 D.1 四、计算(35分)(共3题;
共35分)21.(8分)能简算的要简算 ①[480÷(20-4)×80 ②32×125×25 ③5600÷4÷25 ④12.6×101-12.6 ⑤567-186-14 ⑥158-[(27+54)÷9] 22.(6分)列竖式计算,并验算.(1)146×56=(2)931÷49= 23.(21分)口算 3.2+7.8= 8.4+6= 5.2﹣1.7= 125×32= 1﹣0.7= 3.61×10= 4.9÷100= 0.235÷100×1000= 五、操作(4分)(共1题;
共4分)24.(4分)画出下面图形底边上的高。
(1)(2)六、问题解决(31分)(共6题;
共31分)25.(5分)王伯伯家养了185只公鸡、299只母鸡和23只鸭。养鸡的只数是鸭的多少倍? 26.(5分)有一根30厘米长的线,用它可以围成边长是几厘米的等边三角形? 27.(5分)一艘军舰,从起点向东偏北60°行驶48干米后,再向东行驶24千米到达终点。
(1)根据上面的描述,把军舰行驶的路线图画完整;
(2)如果从终点返回起点用了4小时,这艘军舰返回时的速度是多少? 28.(6分)食堂要运回142袋大米,一次最多运8袋,至少要运多少次才能运完? 29.(5分)甲数是826,乙数是甲数的11倍,乙数是多少? 30.(5分)从A地到B地,甲车10小时走完,乙车15小时走完,现在甲乙两车分别从AB两地同时出发相向而行,相遇时距中点10千米.AB两地相距多少千米? 参考答案 一、填空(20分)(共10题;
共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、判断(5分)(共5题;
共5分)11-1、12-1、13-1、14-1、15-1、三、选择(5分)(共5题;
共5分)16-1、17-1、18-1、19-1、20-1、四、计算(35分)(共3题;
共35分)21-1、22-1、22-2、23-1、五、操作(4分)(共1题;
共4分)24-1、24-2、六、问题解决(31分)(共6题;
共31分)25-1、26-1、27-1、27-2、28-1、29-1、30-1、