第一篇:三角函数教学反思
本课教学虽然是复习课,但是学生兴趣盎然,通过本节课的学习把学生学习的三角形单元的各个零散的知识点进行系统梳理,形成知识网络.还通过解决一些实际问题加深对所学知识的理解和运用,还通过一些题组练习区别学生容易混淆的知识点。这样一边整理知识点,一边应用这些知识点解决实际问题,使学生在不知不觉中把三角形的不同知识点有机的联系起来,形成一个完整的知识网络。
1.探索与实践环节
设计目的是让学生感受到复习课,不仅是已学知识的整理复习,同时还是所学知识的延续,更是探索新知的起点。我设计的题目是应用三角形的内角和来探索n边形的内角和,同时也想渗透一点完全归纳法的思想,当然并不是要让学生知道完全归纳法。
2.数学的发展史环节
主要是让学生了解三角形知识的发展史,既是数学的发展史。通过神秘的金字塔中三角形知识的运用,让学生体会到数学历史以及学习数学的快乐,增强学习数学浓厚兴趣。
3.评价与反思环节
设计目的是让学生初步感受更深层次的数学学习评价,让学生逐渐明白学习数学不仅仅只有通过单元测试卷这种书面的形式来评价自己的学习能力和水平,还有更多的评价方法和评价标准,特别是要提醒学生,评价自己是否掌握了学习数学的方法往往比做对了一道题更为重要。
本课重视建构知识网络,发展了学生观察、推理的能力,使学生在复习整理旧知识的同时还能有所获有所得,真正体现了新课提出的练中获得新知,提高了学生的分析综合能力。但是本节课在教学中还没有完全让学生自主回顾、有效参与旧知的整理。
第二篇:锐角三角函数教学反思
教学反思
本节课是锐角三角形这章的第一节课,是学生在学了直角三角形及勾股定理基础上再来研究直角三角形边与角的关系的内容,本章的知识通过解直角三角形与实际问题中的坡度、方向角方位角建立联系,解决问题。本章是中考必考的知识点,特别是特殊角的三角函数值,一定要熟记。本节课虽考虑到本班学生自从分班以后,学习氛围不浓,而基础又较差,因而必须将难度降低想办法调动学生的学习积极性;但在引入时,既用了直角三角形在数学中的重要地位,用:“黑夜给了我一个黑色的眼睛,我用它来寻找光明”类比数学中的“上帝给了我一双黑色的眼睛,我用它来寻找直角三角形”说明寻找直角三角形对解决数学问题的重要性;然后又引入用学生最近反应学习苦,学习累和不爱护公共财物的情况,从引入课桌要到了到其他贫困地区孩子午休谁桌子下的情况引入爱护公共财物,今儿从而引出本节课相关的知识。虽然大家都在说这节课的亮点就是将德育与数学知识结合起来,注重学科之间的联系。但我始终觉得这样的结合不免显得优点牵强,下来我将在思考如何让本节课的引入与内容结合得更好。
还有一个问题就是我在设计教学时,想到学生函数的基础不好,很怕函数,没有考虑到和函数的定义联系起来,而学生虽然会计算一个锐角的三角函数了,但对为什么把这些值成为这个锐角的三角函数并不清楚,在教学中我忽视了这一细节,也没有一个学生提出疑问,这说明学生只停留在定义的表面,并没有深入思考。因此,在下次教学时,我要设计这么一个问题:“为什么把它们成为函数值?”来启发学生。
第三篇:三角函数教学反思1
三角函数教学反思
2月份是本学期的第一个月,我们开始了高中数学必修四的内容,必修四主要在讲三角函数,既然是函数,就和必修一联系起来了,可是学生们在面对必修一的知识时,却大多数都回忆不起来,比如说今天上课时的函数性质——奇偶性,大部分学生已经不知道判断奇偶性的方法种类和具体方法,所以我们必须先将旧知识进行回顾然后再教授新知识。
三角函数其实是一个初中就接触过的概念,只是在这里把它又放到单位圆中来研究了,因为只有这样我们才能研究三角函数线,才能把角扩展到全体实数范围内,才能研究三角函数的诱导公式,再通过三角函数线来画出正(余)弦函数的图象,然后在研究性质。近段时间的内容表面看起来复杂,但实则简单,需要记忆的东西比较多,虽然也可以现推公式图象,但还是有简单记忆做题会快得多。
这学期以来感觉两个班的学习气氛明显不同,第一个班少数学生带动,整个班级课堂气氛、学习氛围都要好得多,而第二个班就不同了。这是一个不好的开始,希望第二个班能尽快调整过来,作为老师我也会尽自己最大的努力让两个班成绩相当。
第四篇:《锐角三角函数》教学反思
《锐角三角函数》教学反思
这节课是锐角三角函数的第一节课,是一节概念课,教学目标是让学生认识直角三角形的边角关系,即锐角的四个三角函数的概念。通过集体备课、讲课、作业反馈几个环节,进行以下几方面的反思。
一、数学概念课教学
数学概念教学要使学生明确概念的背景、作用、概念中有哪些规定、限制等问题。
(一)概念的引出
这节课引入锐角三角函数概念的时候,从学生的认知水平出发先提出问题:(1)
如图Rt△ABC中,AC=3,BC=4,求AB=?
(2)
如图Rt△ABC中,AC=3,∠B=40°,求AB=? 对于第一个问题,学生在对勾股定理的已有认知基础上,很容易求出AB,但对第二个问题,则不够条件求AB了。从而引出课题。
在教学设计中,针对学生思维的多样性,集备时对课本中的探索进行改动。探索1得出直角三角形中,锐角A的对边与邻边的比值是唯一确定的。在此基础上,设计一个开放性的探索2。让学生从探索1中得到启发去找找直角三角形中其他两边的比值是否也是唯一确定的。按照集备时的设想,是希望能充分拓展学生思维,找到各种不同的比值,从而比较自然的引出四种比值,即四个三角函数。但是在实际教学过程中,存在两个极端,一部分学生很快找到四个比值。另一部分则感觉摸不着头脑,需要不同程度的提示。在课后反思中,我们打算在下一次教学设计进行修改。对于水平比较低的班级,在探索1得出,通过填空提示学生找出其它两边比值,再进行探索2。
(二)概念讲解
新课标提倡学生自主思考探索,但是数学概念毕竟是需要教师进行讲解,特别 是一些规定限制必须由教师强调。这节课上我是结合图形小结等。但还应注意定义的中文说法即还是应该回到汉字,这样有助于学生记忆定义。在下一节课开始的复习,我用了这种方法,发现学生的确容易记忆。
二、教学中注重解题方法的总结 本节课有一道例题,是这样设计的
例1:求出如图所示的Rt△ABC中∠A的四个三角函数值.解:在Rt△ABC中,BC=8,AC=15, ∵
∴AB= =
=
sin A=
=
cos A=
=
tan A=
=
以填空的形式,给学生一定的提示,也给了一个规范的格式。在实际教学过程中,学生都能做出这题,所以我只是略略讲解后就开始进行相关练习。可是在做A组第一题:“Rt△DEC中,∠E=90゜,CD=10,DE=6,求出∠D的四个三角函数值。”这道题中,有部分学生出现不知怎么下笔的情况。这就提示我们在例题讲解中,一定要帮助学生归纳出求三角函数的方法。应该指出为什么要运用勾股定理,让学生明确求四个三角函数必须知道三条边。这样在做练习时他们就能确定解题思路,明确预见利用勾股定理求出CE。
第五篇:锐角三角函数教学反思
锐角三角函数教学反思
直角三角形中边角之间的关系,是现实世界中应用最广泛的关系之一。锐角三角函数在解决现实问题中有着重要的作用,因此,学好本章中关于锐角的三种三角函数,正弦,余弦的正切意义是关键。
通过这一阶段的课堂教学,在合作探究中培养学生的问题意识,同学们的表现有了明显的转变,课堂上有问题能及时提出来。
第一节课采用问题引入法,从教材探究性问题入手,让学生主动参与学习活动。用特殊值探究锐角的三角函数时,学生们表现比较积极。在教学中,我还注重对学生进行数学学习方法的指导。在数学学习中,有一些学生往往不注重基本概念、基础知识,认为只要会作题就可以了,结果往往失分于选择题、填空题等一些概念性较强的题目。通过引导学生进行知识梳理,教会学生如何进行知识的归纳、总结,进一步帮助学生理解、掌握基本概念、基础知识。
在本章的教学中还存在许多缺陷,促使我进一步研究和探索。我清醒地认识到,课程改革势在必行,在教学中加入新的理念,发挥传统教学的基础性和严谨性,不断地改善教法、学法,才能适应现代教学。
总之,在教学方法上,改变教师教、学生听的传统模式,采用学生自主交流、合作学习、教师点拨的方式,把主动权真正交给学生,让学生成为课堂的主人,才能提高学生的问题意识。