第一篇:【归纳】小学列方程解应用题步骤与方法
新杰睿 新数学 www.xiexiebang.com
列方程解应用题
1、列方程解应用题的意义
★ 用方程式去解答应用题求得应用题的未知量的方法。
2、列方程解答应用题的步骤
★ 弄清题意,确定未知数并用x表示;
★ 找出题中的数量之间的相等关系;
★ 列方程,解方程;
★ 检查或验算,写出答案。
3、列方程解应用题的方法
★ 综合法:先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。这是从部分到整体的一种 思维过程,其思考方向是从已知到未知。
★ 分析法:先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。这是从整体到部分的一种思维过程,其思考方向是从未知到已知。
4、列方程解应用题的范围
a一般应用题;
b和倍、差倍问题;
c几何形体的周长、面积、体积计算; d 分数、百分数应用题;
e 比和比例应用题。
以总量为等量关系建立方程 以相差数为等量关系建立方程 以题中的等量为等量关系建立方程 以较大的量或几倍数为等量关系建立方程 根据题目中条件选择解题方法
5、常见的一般应用题
一、以总量为等量关系建立方程
例1:两列火车同时从距离536千米的两地相向而行,4小时相遇,慢车每小时行60千米,快车每小时行多少小时?
解:设快车小时行X千米
解法一:快车 4小时行程+慢车4小时行程=总路程 解法二:快车的速度+慢车的速度)4小时=总路程
4X+60×4=536(X+60)×4=536 4X+240=536 X+60=536÷4 4X=296 X=134一60 X=74 X=74 答:快车每小时行驶74千米。
新杰睿 新数学 www.xiexiebang.com
练一练:
① 降落伞以每秒10米的速度从18000米高空下落,与此同时有一热汽球从地面升起,20分钟后伞球在空中相遇,热汽球每秒上升多少米?
② 甲、乙两个进水管往一个可装8吨水的池里注水,甲管每分钟注水400千克,要想在8分钟注满水池,乙管每分钟注水多少千克?
③ 两城相距600千米,客货两车同时从两地相向而行,客车每小时行70千米,货车每小时行80千米,几小时两车相遇?
④ 两地相距249千米,一列火车从甲地开往乙地,每小时行55。5千米,行了多少小时还离乙地有27千米?
⑤ 买5个本子和3支铅笔一共用去10.4元,已知铅笔每支0.9元,每本子多少元?
⑥ 服装厂要做984套衣服,已经做了120套,剩下的要在12天内完成平均每天做多少套?
⑦ 某生产小组9个工人要生产1926个零件,每人每小时可生产20个,工作5.5小时后,要求剩下的任务必须在4小时内完成,每人每小时必须生产多少?
⑧ 电机厂计划生产1980台电动机,已经生产了4天,每天生产45台,由于改进了技术,以后每天比原来增产15台,实际完成任务需几天?
新杰睿 新数学 www.xiexiebang.com
二、以总量为等量关系建立方程
例2:甲、乙两个粮仓一共有粮6800包,甲是乙的3倍,两仓各有多少包? 解:设乙仓有粮X包,那么甲仓有粮3X包
甲粮仓的包数+乙粮仓的包数=总共的包数
X+3X=6800 4X=6800 X=1700 3X=3×1700=5100
检验:1700+5100=6800包(甲乙两仓总共的包数)或5100÷1700=3(甲仓是乙仓的3倍)答:甲原有粮5100包,乙原有粮1700包。
练一练:
① 学校买来乒乓球和蓝球一共135个,买来的乒乓球是蓝球的8倍,两种球各多少个?
② 有一个上下两层的书架一共放了240书,上层放的书是下层的2倍,两层书架各放书多少本?
③ 图书馆买来文艺科技书共235本,文艺书的本数比科技书的2倍多25本,两种书各买了多少本?
④ 甲、乙、丙三人为灾区捐款共270元,甲捐的是乙捐的3倍,乙是丙的两倍,三人各捐多少元?
⑤A、B两个码头相距379.4千米,甲船比乙船每小时快3.6千米,两船同时在这两个码头相向而行,出发后经过三小时两船 还相距48.2千米,求两船的速度各是多少?
新杰睿 新数学 www.xiexiebang.com
三、以相差数为等量关系建立方程
例3:化肥厂三月份用水420吨,四月份用水380吨,四月份比三月份节约水费60元,这两个月各付水费多少元?
解:设每吨水费X元
三月份的水费一四月份的水费=节约的水费
420X一380X=60 40X=60 X=1.5 三月份付水费1.5×420=630(元)四月份付水费1.5×380=570(元)答:三月份付水费630元,四月份付水费570元。练一练:
① 新华书店发售甲种书90包,乙种书68包,甲种书比乙种书多1100本,每包有多少本?
② 一篮苹果比一篮梨子重30千克,苹果的千克数是梨子的2.5倍,求苹果和梨子各多少千克?
③ 两块正方形的地,新杰睿 新数学 www.xiexiebang.com
⑦ 师徒两人共同加工一批零件,徒弟每天做30个,师傅因有事只做了6天,比徒弟少做了3天还比徒弟多做12个零件,师傅每天做几个?
⑧ 食堂买的白菜比萝卜的3倍少20千克,萝卜比白菜少70千克,白菜、萝卜食堂各买了多少千克?
四、以题中的等量为等量关系建立方程
例4:有两桶油,甲桶油重量是乙桶油的2倍,现在从甲桶中取出25.8千克,从乙桶中取出5.2千克。剩下的两桶油重量相等,两桶油原来各有多少千克? 解:设乙桶油为X千克,那么甲桶油为2X千克
甲桶剩下的油=乙桶剩下的油
2X一25.8=X一5.2 2X一X=25.8一5.2 X=20.6 2X=20.6×2=41.2
答:甲桶油重41.2千克,乙桶油重20.6千克,练一练:
① 甲厂有钢材148吨,乙厂有112吨,如果甲厂每天用18吨,乙厂每天用12吨,多少天后两厂剩下的钢材相等?
② 一个两层的书架,上层放的书是下层的3倍,如果把上层的书放90本到下层,则两层的书相等,原来上下层各有书多少本?
③ 甲车间有54人,乙车间有48人,在工作时,为了使两车间人数相等,甲车间应调多少人去乙车间?
新杰睿 新数学 www.xiexiebang.com
④ 超市存有大米的袋数是面粉的3倍,大米卖掉180袋,面粉卖掉50袋后,大米、面粉剩下的袋数相等,大米、面粉原各多少袋?
⑤ 某校有苦于人住校。若每一间宿舍住6人,则多出34人;若每一间宿舍住7人,则多出4间宿舍。问有多少人住校?有几间宿舍?
⑥ 甲仓所存的面粉是乙仓的3倍,如果从甲仓运走900千克,从乙仓运出80千克,则两仓所存的面粉相等,两仓原有面粉各多少千克?
⑦ 有甲乙两箱桔子,甲箱的重量是乙箱的1.8倍,如果从甲箱中取出1.2千克放入乙箱,那么两箱的重量相等了,原来甲乙两箱各多少千克?
⑧ 一个通讯员骑自行车要在规定的时间内把信件送到某地,他每小时15千米查以早到24分钟,每小时骑12千米要迟到15分钟,规定时间是多少?他去某地的路程有多远?
⑨ 一列火车从甲地开往乙地每小时 50千米,一小时后另一列火车也从甲地开往乙 地每小时行60千米,结果两列火车同时到达乙地,甲、乙两地相距多少千米?
⑩甲级糖每千克16.60元,乙级糖每千克8.80元。商店用80千克甲级糖和若干乙级糖混合后平均每千克售价14.00元,乙级糖要多少千克?
五、以较大的量或几倍数为等量关系建立方程
例5:两筐苹果,每筐的个数相等,从甲筐卖出150个,从乙筐卖出194个后,剩下的苹果甲筐是乙筐的3倍,原来每筐有多少个? 解:设原来每筐X个
甲筐剩下的=乙筐剩下的3倍
X一150=(X一194)×3 X一150=3X一582 2X=432
新杰睿 新数学 www.xiexiebang.com
X=216 答:原来甲筐有苹果216。练一练:
① 修一条水渠计划需70人挖土,50人运土,而实际上挖土人数是运土人数的3倍,问从运土的人中调多少人去挖土?
② 电力公司现有职工1240人,比五年前的6倍还多40人,五年前电力公司有多少人?
③ 有两堆煤,甲堆有32吨,乙堆有57吨,以后甲堆每天增加4吨,乙堆每天增加9吨,几天后乙堆的煤是甲堆的2倍?
④ 甲乙两厂用同样的原料生产同样的产品,甲厂有720吨,乙厂有540吨,两厂同时生产并每天都用去20吨,多少天后甲厂所剩的原料是乙厂所剩原料的2倍?
⑤ 甲乙两个工程队,甲队原有240人,乙队原有168人,因工作需要将甲队的人数调整到乙队的2倍,应由乙队抽调多少人到甲队?
⑥ 兄妹两人各有钱若干,如果兄给妹20元两人钱数就相等,如果妹给兄25元,则兄的钱是妹的2倍,问兄妹两人各有多少钱?
⑦ 兄妹有相等的存款,如果兄给妹160 元,那么妹的存款是兄的3倍,求兄妹两人存款之和?
⑧ 弟弟今年5岁,哥哥今年18岁,几年后哥哥的年龄是弟弟的2倍?
⑨ 父亲今年45岁,儿子今年15岁,几年前父亲的年龄是儿子的11倍?
新杰睿 新数学 www.xiexiebang.com
⑩甲原有的钱是乙的4倍,若甲给乙40元则甲的钱是乙的3倍,甲、乙现有钱各多少?
六、根据题目中条件选择解题方法
例6:桃树有300棵,杏树比桃树的2倍多30棵,杏树有多少棵?——倍量已知 300×2+30=600+30=630(棵)答:杏树有630棵。
例7:桃树有300棵比杏树的2倍多30棵,杏有多少棵?——倍量未知
解法一:(300一30)÷2=270÷2=135(棵)解法二:设:杏树为X棵
2X+30=300 2X=270 X=135
练一练:
① 地球绕太阳一周要用365天,比水星绕太阳一周要用的时间的4倍多13天,水星绕太阳一周要用多少天?
② 某厂计划今年生产机器480台,比去年的2倍少30台,去年生产机器多少台?
③ 世界上最小的鸟是蜂鸟,一只蜂鸟重2.1克,一只麻雀的体重比蜂鸟的50倍多1克,一只麻雀重多少克?
④ 我国发射的
第二篇:列方程解应用题的一般步骤
列方程解应用题的一般步骤
1、审题,弄清题意.找出等量关系
2、设未知数.用x表示所求的数量或有关的未知量.
3、根据题中等量关系,列出方程.
4、解方程,求出未知数的值
5、检验并写出答语.
第三篇:列方程解应用题的一般步骤是什么
列方程解应用题的一般步骤是什么?
((1)审题:分析题意,弄清哪些是已知量,哪些是未知量,它们之间的数量关系.(2)设未知数:未知数有直接与间接两种,恰当的设元有利于布列方程和解方程,以直接设未知数居多.(3)根据已知条件找出等量关系布列方程或方程组.(4)解方程或方程组.(5)检验并写出答案.)
例1 两个连续奇数的积是323,求这两个数. 分析:(启发同学思考回答)审题(1)有两个连续奇数;
(2)两数之积等于323;(3)要求出这两个数.
设元(复习奇数,连续数的表示)
(1)设较小的一个奇数为x,则另一个奇数为x+2.(2)设较小的一个奇数为x-1,则另一个奇数为x+1.(3)设较小的一个奇数为2x-1,则另一个奇数为2x+1. 找等量关系布列方程:两数之积等于323.
解:设较小的一个奇数为x,另一个为x+2,根据题意,得x(x+2)=323. 整理后得x2+2x-323=0
解这个方程得x1=17,x2=-19.
由x=17得x+2=19; 由x=-19得x+2=-17.
答:这两个奇数是17、19或者-
19、-17. 提问:
1.按后两种设未知数的方法列出怎样的方程.
(x+1)(x-1)=323,(2x+1)(2x-1)=323)
2.三种不同的设元,列出三个不同的方程,得出不同的x值,影响最后结果吗?
3.解题中x出现了负值,为什么不舍去?(奇数、偶数是在整数范围内讨论,而整数包括正整数、零、负整数).
例2 有一个两位数等于其数字之积的3倍,其十位数字比个位数字小2,求这两位数.
分析:
1.首先弄清数与数字之间的关系,如35≠3×5,35=3×10+5,3是十位数字,5是个位数字,由这两个数字组成的两位数是3×10+5=35.同理,若个位数字是x,十位数字是y,则这两位数是10y+x.由此可知,数与数字的关系是:
两位数=(十位数字×10)+个位数字
三位数=(百位数字×100)+(十位数字×10)+个位数字 2.审题:(1)十位数字比个位数字小2.
(2)这两个数字构成两位数.(3)两位数等于数字之积的3倍.
3.设元设个位数字为x,则十位数字为x-2.
解:设个位数字为x,则十位数字为x-2.这个两位数是10(x-2)+x. 根据题意得10(x-2)+x=3x(x-2). 整理后得3x2-17x+20=0.
当x=4时,x-2=2,10(x-2)+x=24. 答:这个两位数是24.
*例3有一个两位数,它的十位数字与个位数字之和是8,如果把十位数字与个位数字调换后,所得两位数乘以原来的两位数就得1855,求原来的两位数.
关键:正确写出原来的两位数和调换后的两位数.(带领同学分析后解题)解:设十位数字是x,个位数字为8-x.则原来的两位数是10x+(8-x). 调换后的两位数是10(8-x)+x. 根据题意得
[10x+(8-x)][10(8-x)+x]=1855. 整理后得x2-8x+15=0
解这个方程得x1=3,x2=5 当x=3时,8-x=5,两位数为35. 当x=5时,8-x=3,两位数为53. 答:原来的两位数是35或53. 小结
1.列一元二次方程解应用题,步骤与以前列方程解应用题一样,其中审题是解决问题的基础,找出等量关系列方程是关键.恰当灵活地设元直接影响着列方程与解法的难易,它可以为寻求正确的、合理的答案提供有利条件.
2.注意方程的解不一定适合应用题,因此必须检验方程的解是否符合实际问题的要求.
第四篇:列方程解应用题的一般步骤及习题
列方程解应用题的一般步骤及习题
(1)审题:分析题意,弄清哪些是已知的,哪些是未知的,它们之间的数量关系.
(2)设未知数:未知数有直接与间接两种,恰当的设未知数有利于列方程和解方程,以直接设未知数居多.
(3)根据已知条件找出相等的关系列出方程.(4)解方程.
(5)检验并写出答语.
例1.两个连续奇数的和是56,求这两个数.
分析:审题(1)两个连续奇数;(2)两数之和等于56;(3)要求出这两个数. 设未知数(复习奇数,连续数的表示)(1)若设较小的奇数为x,则较大奇数为x+2.(2)若设较大的奇数为x,则较小奇数为x-2.
找等量关系布列方程:两个奇数之和等于56. 按后两种设未知数的方法列出方程。
例2.有一个两位数等于其数字之积的3倍,其十位数字比个位数字小2,求这两位数. 分析:
1. 首先弄清数与数字之间的关系,如35=3×10+5,3是十位数字,5是个位数字。
两位数=(十位数字×10)+个位数字
2.审题:(1)十位数字比个位数字小2.(2)两位数等于数字之积的3倍. 3.设未知数:设个位数字为x,则十位数字为x-2. 4.相等的关系:两位数等于数字之积的3倍。列出方程。
下面的题只列出方程不解方程:
1、甲有书的本数是乙的3倍,甲、乙两人平均每人有82本书,求甲、乙两人 各有书多少本。
2、一只两层书架,上层放的书是下层的3倍,如果把上层的书搬60本到下层,那么两层的书一样多,求上、下层原来各有书多少本.
3、有甲、乙两缸金鱼,甲缸的金鱼条数是乙缸的一半,如从乙缸里取出9条金鱼放人甲缸,这样两缸鱼的条数相等,求甲缸原有金鱼多少条.
5、新河口小学的同学去种向日葵,五年级种的棵数比四年级种的3倍少10棵,五年级比四年级多种62棵,两个年级各种多少棵?
7、甲仓存粮32吨,乙仓存粮57吨,以后甲仓每天存人4吨,乙仓每天存人9吨.几天后,乙仓存粮是甲仓的2倍?
9、甲、乙两个粮仓存粮数相等,从甲仓运出130吨、从乙仓运出230吨后,甲粮仓剩粮是乙粮仓剩粮的3倍,原来每个粮仓各存粮多少吨?
11、买2.5千克苹果和2千克橘子共用去13.6元,已知每千克苹果比每千克橘子贵2.2元,这两种水果的单价各是每千克多少元?
第五篇:列方程解应用题
列方程解应用题
【例1】水果店运来的西瓜的个数是白兰瓜的个数的2倍,如果每天卖白兰瓜40个,西瓜50 个,若干天后卖完白兰瓜时,西瓜还剩360个。水果店运来的西瓜和白兰瓜共多少个?
【例2】有甲、乙两桶油,若从甲桶倒入乙桶15千克,则两桶油质量相等;若从乙桶倒入甲桶48千克后,则甲桶油是乙桶油质量的4倍。甲桶原来有油多少千克?
【例3】甲乙丙三人,甲的年龄是乙的2倍时,丙是20岁,当乙的年龄是丙的2倍时,甲35岁,那么甲65岁时,丙是多少岁?
【例4】甲、乙、丙、丁四人今年分别是16、12、11、9岁。问,多少年前,甲、乙的年龄和是丙、丁年龄和的2倍?
【例5】甲、乙、丙、丁四个人组成代表队参加数学比赛,甲得了88分,丙得了85分,丁得了90分,乙的分数比四个人的平均分多4分。问乙的成绩是多少?
【例6】414是三个数的和,这三个数分别能被5、6、7整除,所得的商相同。问;这三个数分别是多少?商是多少?
【例7】小余买了5元、1元2角、8角的三种邮票共20张,总值43元6角,其中5元和1元2角的邮票张数相同。问:小余三种邮票各购多少张?
【例8】某校五、六年级师生秋游去公园划竹筏,若每筏坐12人,则少3个竹筏;若每筏坐14人,则多出4个竹筏。问:公园一共有几个竹筏?五年级师生共多少人?
【例9】一架飞机所带燃料最多可飞行15.75小时。飞机去时顺风,飞行速度每小时1500千米,返回时逆风,速度是每小时1200千米。问:这架飞机最多飞出去多少千米就要往回飞?
【例10】一个三位数的数字是由大到小的顺序排列的三个连续整数,这个三位数除以3所得的商比这个三位数的百位数与个位数交换后所得新的三位数小238,求原来的三位数。
【例11】东西两镇相距3450米,甲、乙从东镇,丙从西镇同时出发相向而行,甲、乙、丙速度分别是每分钟45、50、60米,那么多少分钟后乙正好在甲、丙的中间?
【例12】小余买两种练习本若干本,单价分别是1元和1元5角,共付出12元,问:两种本子各买了多少本?
消去法解题
【例1】甲买了8盒糖和5盒蛋糕共用去171元,乙买了5盒糖和2盒蛋糕共用去90元。每盒糖和每盒蛋糕各多少元?
【例2】小明买了3只小鸭,7只小鸡和1只小兔,共付15.9元;小豪买了4只小鸭,10只小鸡和1只小兔共付了21元。如果小兰只买小鸭、小鸡、小兔各1只,则应付多少元?
【例4】8头梅花鹿和13只羊每天共吃青草182千克,13头梅花鹿和8只羊每天共吃青草217千克。问:1头梅花鹿和1只羊每天各吃青草多少千克?
列方程专项练习
1、一条鲨鱼头长3.5米,身长等于头长加尾长,尾长等于头长加身长的一半。问:这条鲨鱼有多长?
2、一道除法算式中,商是除数的7倍,除数是余数的4倍,商与除数、余数的和是528。问:被除数是多少?
3、用绳子量井深,将绳子2折则多出井外9米,将绳子3折则多出井外0.5米。问井有多深?
4、商店里有一批服装,卖掉90套女装后,剩下的服装中,男装是女装的2倍,又卖掉378套男装后,剩下的女装是男装的5倍。问:商店里原有男、女装各多少套?
5、一个两位数,十位上数字比个位上数字少2,如果十位上的数字扩大3倍,个位上的数字减去3,所得的两位数比原来的数大57,求原来的两位数。
6、五年级组织爬山活动,上山用了3小时到达离山顶还有22.5千米处,如果从山顶沿原路下山,就要用4小时,已知下山的速度是上山的2倍,问:从山脚到山顶的山路有多长?
7、王师傅加工一批零件,如果每天加工75个,就可以比原计划提前4天完成任务;如果每天加工50个就会比原计划推迟3天完成。王师傅希望能比原计划提前3天完成,他每天应加工多少个?
8、五年级组织去郊外活动,共有师生336人准备租车前往,现有56个座位的大客车和28个座位的小客车若干辆,要使每辆车都满座,问:需大、小客车各多少辆?
9、已知蜘蛛有8条腿,蝴蝶有6条腿和2对翅膀,蝉有6条腿和一对翅膀。现有三种小虫共43只,共有294条腿和39对翅膀。问:每种小虫各有几只?
10、小明有面值分别为拾元、伍元、壹元的人民币49张共211元,拾元的张数比伍元的少8张。问:小明有拾元、伍元和壹元的各多少张?
11、有大兔、中兔和小兔共97只,一餐午饭共吃掉蘑菇854个,已知每只大兔子吃13个,每只中兔子吃9个,每只小兔子吃6个。已知中兔比大兔多4只。问:兔场有大、中、小兔子各多少只?
12、甲仓库有大米76吨,乙仓库有大米46吨,现在甲仓库每天进大米5吨,乙仓库每天进大米29吨,多少天后乙仓库的大米是甲仓库的3倍?
13、同学们乘车郊外游玩,如果每辆车坐60人,就余下25人的座位;如果每辆坐55人,就空出10人的座位。问:车有多少辆,有多少同学?
14、五(1)班甲组同学擦玻璃,如果每人擦12块,还剩18块;如果每人擦14块,还剩6块。问:每人擦多少块正好擦完?
15、果蔬农场将855千克的圣女果分装在大小两种纸箱里,每只大箱装6千克,每只小箱装4.5千克。装箱后清点箱数,得知小箱比大箱的3倍还多8箱。问:一共装了多少大箱?多少小箱?
16、牧场上的青草每天匀速生长,已知这片草可供15头牛吃20天,或者供84只羊吃10天,如果4只羊吃草量相当于1头牛的吃草量。那么现有9头牛和96只羊一起吃,可以吃几天?
17、一个六位数的左端数字是1,如果把左端的数字1移到右端,所得的新数是原数的3倍,求原数是几?
18、兔妈妈给小兔们分蘑菇,如果每只小兔分6个,就会多出48个蘑菇;如果每只小兔分8个蘑菇,就有一只小兔分不到。问:一共就有多少蘑菇?
19、果园里有梨树若干棵,苹果树是梨树的3倍。如果每天给15棵苹果树和9棵梨树修枝,当梨树全部修枝后,还剩96棵苹果树没有修枝。问:果园里有苹果树、梨树各多少棵?
20、一个两位数,各位数字之和的4倍正好比这个数少9,这个两位数最大是多少?
21、运一批西瓜,如果用2辆大卡车和6辆小卡车运,15次可以运完;如果用9辆大卡车和5辆小卡车运,5次可以运完。现在只有4辆小卡车运,问:多少次可以运完?
22、学校教务处购买2台打印机和10个U盘共用去2360元,如果用一台打印机换回8个U盘,可以少花62元。问:打印机和U盘单价各是多少?
23、有一个两位数,十位数字比个位数字大2,如果把个位上的数字与十位上的数字对调,所得的两位数比原数小18,求这个两位数是多少?
24、三个连续自然数,它们的和为108,求这三个数。
25、一个三位数、各个数位上的数字相加之和是9,百位上的数字比十位上的数字大1,个位上的数字比十位上的数字小1,求这个三位数。