公务员行测-数列-数字推理-练习题

时间:2019-05-13 08:33:40下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《公务员行测-数列-数字推理-练习题》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《公务员行测-数列-数字推理-练习题》。

第一篇:公务员行测-数列-数字推理-练习题

1,6,20,56,144,()A.256

B.312

C.352

D.384 3, 2, 11, 14,()

A.18

B.21

C.24

D.27

1,2,6,15,40,104,()

A.329

B.273

C.225

D.185 2,3,7,16,65,321,()

A.4546

B.4548

C.4542

D.4544 1/2

6/11

17/29

23/38

()A.117/191

B.122/199

C.28/45 D.31/47

答案 1.C 6=1x2+4 20=6x2+8 56=20x2+16 144=56x2+32 144x2+64=288+64=352

2.D 分奇偶项来看:奇数项平方+2 ;偶数项平方-2 = 1^2 +2 = 2^2-2

11= 3^2 +2

14= 4^2-2(27)=5^2 +2

34= 6^2-2

3.B 273

几个数之间的差为: 1 4 9 25 64

为别为:

1的平方

2的平方 3的平方 5的平方 8的平方 1+2=3 2+3=5 3+5=8 5+8=13

即后面一个为13的平方(169)

题目中最后一个数为:104+169=273 3.A 4546 设它的通项公式为a(n)规律为a(n+1)-a(n)=a(n-1)^2

4.D 原式变为:1/

1、2/

4、6/

11、17/

29、46/76,可以看到,第二项的分子为前一项分式的分子+分母,分母为前一项的分母+自身的分子+1;答案为:122/1 99 2011年国家公务员考试数量关系:数字推理的思维解析

近两年国家公务员考试中,数字推理题目趋向于多题型出题,并不是将扩展题目类型作为出题的方向。因此,在题目类型上基本上不会超出常规,因此专家老师建议考生在备考时要充分做好基础工作,即五大基本题型足够熟练,计算速度与精度要不断加强。

首先,这里需要说明的是,近两年来数字推理题目出题惯性并不是以新、奇、变为主,完全是以基本题型的演化为主。特别指出的一点是,多重数列由于特征明显,解题思维简单,基本上可以说是不会单独出题,但是通过近两年的各省联考的出题来看,简单多重数列有作为基础数列加入其它类型数列的趋势,如2010年9.18中有这样一道题:

【例1】10,24,52,78,().,164

A.106 B.109 C.124 D.126

【答案】D。其解题思路为幂次修正数列,分别为

故答案选D。

基本幂次修正数列,但是修正项变为简单多重数列,国考当中这一点应该引起重视,在国考思维中应该有这样一个意识,幂次的修正并不仅仅为单纯的基础数列,应该多考虑一下以前不被重视的多重数列,并着重看一下简单多重数列,并作为基础数列来用。

下面说一下国考中的整体思维,多级数列,幂次数列与递推数列,三者在形式上极其不好区分,幂次数列要求考生对于单数字发散的敏感度要够,同时要联系到多数字的共性联系上,借助于几个题目的感觉对于理解和区别幂次数列是极为重要的。

对于多级数列与递推数列,其区分度是极小的,几乎看不出特别明显的区别,考生在国考当中遇到这类题目首先应该想到的就是做差,通过做差来看数列的整体趋势,如果做差二次,依然不成规律,就直接进行递推,同时要看以看做一次差得到的数列是否能用到递推中。

【例2】(国考 2010-41)1,6,20,56,144,()

A.384 B.352 C.312 D.256

【答案】B。在这个题目中,我们可以得到这样一个递推规律,即(6-1)×4=20,(20-6)×4=56,(56-20)×4=144,因此(144-56)×4=352。这个规律实际上就是两项做一次差之后4倍的递推关系,也就是充分利用了做差来进行递推。

【例3】(联考 2010.9.18-34)3,5,10,25,75,(),875

A.125 B.250 C.275 D.350

【答案】B。这个题目中,其递推规律为:(5-3)×5=10,(10-5)×5=25,(25-10)×5=75,(75-25)×5=250,(250-75)×5=875,故答案为B选项。

联系起来说,考生首先应当做的是进行单数字的整体发散,判断数字推理中哪几个题目为幂次或幂次修正数列,其次需要做的就是进行做差,最后进行递推,递推的同时要考虑到做一次差得到的二级数列。

这里针对许多学员遇到幂次修正数列发散不准确的问题,提出这样一个方法,首先我们知道简单的幂次及幂次修正数列可以当成多级数列来做,比如二级和三级的等差和等比数列。在2010年的国考数字推理中,我们发现这样一道数字推理题:

【例4】(2010年国家第44题)3,2,11,14,(),34

A.18 B.21 C.24 D.27

我们可以看出,这个题中,未知项在中间而且是一个修正项为+2,-2的幂次修正数列。从这里我们得到这样一个信息,国考当中出题人已经有避免幂次修正数列项数过多,从而使得考试可以通过做差的方式解决幂次修正数列的意识。未知项在中间的目的就是变相的减少已知项数,避免做差解题。

因此,在今后的行测考试中,如果出现未知项在中间的数字推理题目,应该对该题重点进行幂次数的发散,未知项在中间,本身就是幂次数列的信号,这是由出题人思维惯性而得出的一个结论。

这一思维描述起来极为简单,但是需要充分考虑到国考出题的思维惯性,对于知识点的扩充要做好工作,然后再联系起来思考,在运用的时候要做到迅速而细致,这才是国家公务员考试考察的方向与出题思路。

题海

几道最BT公务员考试数字推理题汇总 1、15,18,54,(),210 A 106 B 107 C 123 D 112 2、1988的1989次方+1989的1988的次方…… 个位数是多少呢? 3、1/2,1/3,2/3,6/3,(),54/36 A 9/12, B 18/3 ,C 18/6 ,D 18/36 4、4,3,2,0,1,-3,()A-6 , B-2 , C 1/2 ,D 0 5、16,718,9110,()A 10110,B 11112,C 11102,D 10111 6、3/2,9/4,25/8,()A 65/16, B 41/8, C 49/16, D 57/8 7、5,(),39,60,105.A.10 B.14 C.25 D.30 1、3 2 53 32()A. 7/5 B.5/6 C.3/5 D.3/4 2、17 126 163 1124()

3、-2,-1,1,5()29(2000年题)A.17 B.15 C.13D.11 4、5 9 15 17()A 21 B 24 C 32 D 34

5、81,30,15,12(){江苏真题} A10 B8 C13 D14 6、3,2,53,32,()A 75 B 5 6 C 35 D 34 7、2,3,28,65,()A 214B 83C 414D 314 8、0,1,3,8,21,(),144 9、2,15,7,40,77,()A96,B126,C138,,D156 10、4,4,6,12,(),90 11、56,79,129,202()A、331 B、269 C、304 D、333 12、2,3,6,9,17,()A 19 B 27 C 33 D 45 13、5,6,6,9,(),90 A 12, B 15, C 18, D 21 14、16 17 18 20()A21

B22

C23

D24 15、9、12、21、48、()16、172、84、40、18、()17、4、16、37、58、89、145、42、(?)、4、16、.....KEYS:

1、答案是A 能被3整除嘛

2、答:应该也是找规律的吧,1988的4次个位就是6,六的任何次数都是六,所以,1988的1999次数个位和1988的一次相等,也就是8 后面那个相同的方法个位是1 忘说一句了,6乘8个位也是8

3、C(1/3)/(1/2)=2/3 以此类推

4、c两个数列 4,2,1-〉1/2(依次除以2);3,0,-3

5、答案是11112 分成三部分:

从左往右数第一位数分别是:5、7、9、11 从左往右数第二位数都是:1 从左往右数第三位数分别是:6、8、10、12

6、思路:原数列可化为1又1/2, 2又1/4, 3又1/8。故答案为4又1/16 = 65/16

7、答案B。5=2^2+1,14=4^2-2,39=6^2+3,60=8^2-4,105=10^2+5

17、分数变形:A 数列可化为:3/1 4/2 5/3 6/4 7/5

18、依次为2^3-1,3^3-1,……,得出6^3-1

19、依次为2^3-1,3^3-1,……,得出6^3-1 20、思路:5和15差10,9和17差8,那15和(?)差6 5+10=15 9+8=17 15+6=21 21、81/3+3=30,30/3+5=15,15/3+7=12,12/3+9=13 答案为1322

22、思路:小公的讲解

2,3,5,7,11,13,17.....变成2,3,53,32,75,53,32,117,75,53,32......3,2,(这是一段,由2和3组成的),53,32(这是第二段,由2、3、5组成的)75,53,32(这是第三段,由2、3、5、7组成的),117,75,53,32()这是由2、3、5、7、11组成的)

不是,首先看题目,有2,3,5,然后看选项,最适合的是75(出现了7,有了7就有了质数列的基础),然后就找数字组成的规律,就是复合型数字,而A符合这两个规律,所以才选A 2,3,5,后面接什么?按题干的规律,只有接7才是成为一个常见的数列:质数列,如果看BCD接4和6的话,组成的分别是2,3,5,6(规律不简单)和2,3,5,4(4怎么会在5的后面?也不对)质数列就是由质数组成的从2开始递增的数列

23、无思路!暂定思路为:2*65+3*28=214,24、0+3=1*3,1+8=3*3,3+21=8*3,21+144=?*3。得出?=55。

25、这题有点变态,不讲了,看了没有好处

26、答案30。4/4=1,6/12=1/2,?/90=1/3

27、不知道思路,经过讨论:

79-56=23 129-79=50 202-129=73 因为23+50=73,所以下一项和差必定为50+73=123 ?-202=123,得出?=325,无此选项!

28、三个相加成数列,3个相加为11,18,32,7的级差 则此处级差应该是21,则相加为53,则53-17-9=27 答案,分别是27。

29、答案为C 思路: 5×6/5=6,6*6/4=9,6*9/3=18(5-3)*(6-3)=6(6-3)*(6-3)=9(6-3)*(9-3)=18 30、思路:

22、23结果未定,等待大家答复!

31、答案为129 9+3=12,12+3平方=21,21+3立方=48

32、答案为7 172/2-2=84 84/2-2=40 40/2-2=18 18/2-2=7

经典推理:

1,4,18,56,130,()A.26 B.24 C.32 D.16 2,1,3,4,8,16,()A.26 B.24 C.32 D.16 3,1,1,3,7,17,41,()A.89 B.99 C.109 D.119 4,1,3,4,8,16,()A.26 B.24 C.32 D.16 5,1,5,19,49,109,()A.170 B.180 C 190 D.200 6,4,18,56,130,()A216 B217 C218 D219

KEYS:

答案是B,各项除3的余数分别是1.0.2.1 0.对于1、0、2、1、0,每三项相加=>3、3、3 等差

我选B 3-1=2 8-4=4 24-16=8 可以看出2,4,8为等比数列 我选B 1*2+1=3 2*3+1=7 2*7+3=17 … 2*41+17=99 我选 C 1+3=4 1+3+4=8 … 1+3+4+8=32 1*1+4=5 5*3+4=19 9*5+4=49 13*7+4=95 17*9+4=157 我搜了一下,以前有人问过,说答案是A 如果选A的话,我又一个解释

每项都除以4=>取余数0、2、0、2、0 仅供参考

1.256,269,286,302,()A.254 B.307 C.294 D.316 2.72 , 36 , 24 , 18 ,()A.12 B.16 C.14.4 D.16.4 3.8 , 10 , 14 , 18 ,()A.24 B.32 C.26 D.20 4.3 , 11 , 13 , 29 , 31 ,()A.52 B.53 C.54 D.55 5.-2/5,1/5,-8/750,()A 11/375 B 9/375 C 7/375 D 8/375 6.16 , 8 , 8 , 12 , 24 , 60 ,()A.90 B.120 C.180 D.240 10.2,3,6,9,17,()A.18 B.23 C.36 D.45 11.3,2,5/3,3/2,()A.7/5 B.5/6 C.3/5 D.3/4 13.20,22,25,30,37,()A.39 B.45 C.48 D.51 16.3 ,10 ,11 ,(),127 A.44 B.52 C.66 D.78 25.1,2/3,5/9,(1/2),7/15,4/9,4/9 A.1/2 B.3/4 C.2/13

D.3/7 32.(),36,19,10,5,2 A.77 B.69 C.54 D.48 33.1,2,5,29,()A.34 B.846 C.866 D.37 36.1/3,1/6,1/2,2/3,()

41.3 , 8 , 11 , 9 , 10 ,()A.10 B.18 C.16 D.14 42.4,3,1,12,9,3,17,5,()A.12 B.13 C.14 D.15 44.19,4,18,3,16,1,17,()A.5 B.4 C.3 D.2

45.1,2,2,4,8,()A.280 B.320 C.340 D.360

46.6,14,30,62,()A.85 B.92 C.126 D.250

48.12,2,2,3,14,2,7,1,18,3,2,3,40,10,(),4

A.4 B.3 C.2 D.1

49.2,3,10,15,26,35,()A.40 B.45 C.50 D.55 50.7 ,9 ,-1 , 5 ,(-3)A.3 B.-3 C.2 D.-1 51.3,7,47,2207,()A.4414 B 6621 C.8828 D.4870847 52.4,11,30,67,()A.126 B.127 C.128 D.129

53.5 , 6 , 6/5 , 1/5 ,()A.6 B.1/6 C.1/30 D.6/25 54.22,24,27,32,39,()A.40 B.42 C.50 D.52

55.2/51,5/51,10/51,17/51 ,()

A.15/51 B.16/51 C.26/51 D.37/51

56.20/9,4/3,7/9,4/9,1/4,()A.5/36 B.1/6 C.1/9 D.1/144 57.23,46,48,96,54,108,99,()

A.200 B.199 C.198 D.197

58.1.1,2.2,4.3,7.4,11.5,()

A.155 B.156 C.158 D.166

59.0.75,0.65,0.45,()

A.0.78 B.0.88 C.0.55 D.0.96

60.1.16,8.25,27.36,64.49,()

A.65.25 B.125.64 C.125.81 D.125.01

61.2,3,2,(),6

A.4 B.5 C.7 D.8

62.25,16,(),4

A.2 B.3 C.3 D.6

63.1/2,2/5,3/10,4/17,()

A.4/24 B.4/25 C.5/26 D.7/26

65.-2,6,-18,54,()

A.-162 B.-172 C.152 D.164

68.2,12,36,80,150,()

A.250 B.252 C.253 D.254

69.0,6,78,(),15620 A.240 B.252 C.1020 D.7771 74.5 , 10 , 26 , 65 , 145 ,()A.197 B.226 C.257 D.290 75. 76.65,35,17,3,(1)77.23,89,43,2,(3)

79.3/7,5/8,5/9,8/11,7/11,()

A.11/14 B.10/13 C.15/17 D.11/12 80.1,2,4,6,9,(),18 A.11 B.12 C.13 D.14 85.1,10,3,5,()A.11 B.9 C.12 D.4 88.1,2,5,29,()

A.34 B.846 C.866 D.37 89.1 , 2 , 1 , 6 , 9 , 10 ,()A.13

B.12 C.19

D.17 90.1/2,1/6,1/12,1/30,()

A.1/42 B.1/40 C.11/42 D.1/50 91.13 , 14 , 16 , 21 ,(), 76 A.23

B.35 C.27 92.1 , 2 , 2 , 6 , 3 , 15 , 3 , 21 , 4 ,(A.46

B.20 C.12 D.44 93.3 , 2 , 3 , 7 , 18 ,()A.47 B.24 C.36 D.70 94.4,5,(),40,104 A.7 B.9 C.11 D.13 95.0,12,24,14,120,16,()A.280 B.32 C.64 D.336 96.3 , 7 , 16 , 107 ,()98.1 , 10 , 38 , 102 ,()

A.221 B.223 C.225 D.227 101.11,30,67,()

102.102 ,96 ,108 ,84 ,132,()103.1,32,81,64,25,(),1,1/8 104.-2,-8,0,64,()105.2,3,13,175,()108.16,17,36,111,448,()

A.639

B.758 C.2245 D.3465 110.5,6,6,9,(),90 A.12 B.15 C.18 D.21 111.55 , 66 , 78 , 82 ,())A.98 B.100 C.96 D.102 112.1 , 13 , 45 , 169 ,()A.443 B.889 C.365 D.701 113.2,5,20,12,-8,(),10 A.7

B.8

C.12

D.-8 114.59 , 40 , 48 ,(),37 , 18 A.29 B.32 C.44 D.43 116.1/3 , 5/9 , 2/3 , 13/21 ,()A.6/17 B.17/27 C.29/28 D.19/27 117.1 , 2 , 1 , 6 , 9 , 10 ,()A.13

B.12 C.19

D.17 118.1 , 2/3 , 5/9 ,(), 7/15 , 4/9 , 4/9 119.-7,0,1,2,9,()120.2,2,8,38,()

A.76 B.81 C.144 D.182 121.63,26,7,0,-2,-9,()122.0,1,3,8,21,()123.0.003,0.06,0.9,12,()124.1,7,8,57,()125.4,12,8,10,()126.3,4,6,12,36,()127.5,25,61,113,()129.9,1,4,3,40,()A.81 B.80 C.121 D.120 130.5,5,14,38,87,()A.167 B.168 C.169 D.170 133.1 , 5 , 19 , 49 , 109 ,()A.170 B.180 C.190 D.200 134.4/9 , 1 , 4/3 ,(), 12 , 36 135.2 , 7 , 16 , 39 , 94 ,()A.227 B.237 C.242 D.257 136.-26 ,-6 , 2 , 4 , 6 ,()A.8 B.10 C.12 D.14 137.1 , 128 , 243 , 64 ,()A.121.5 B.1/6 C.5 D.358 1/3138.5 , 14,38,87,()

A.167 B.168 C.169 D.170 139.1,2,3,7,46 ,()

A.2109 B.1289 C.322 D.147 140.0,1,3,8,22,63,()142.5 , 6 , 6 , 9 ,(), 90 A.12 B.15 C.18 D.21 145.2 , 90 , 46 , 68 , 57 ,()

A.65 B.62.5 C.63 D.62 146.20 , 26 , 35 , 50 , 71 ,()A.95 B.104 C.100 D.102 147.18 , 4 , 12 , 9 , 9 , 20 ,(), 43 A.8 B.11 C.30 D.9 148.-1 , 0 , 31 , 80 , 63 ,(), 5 149.3 , 8 , 11 , 20 , 71 ,()A.168 B.233 C.91 D.304 150.2 , 2 , 0 , 7 , 9 , 9 ,()A.13 B.12 C.18 D.17 151.8 , 8 ,(), 36 , 81 , 169 A.16

B.27 C.8 D.26 152.102 , 96 , 108 , 84 , 132 ,()154.-2 ,-8 , 0 , 64 ,()155.2 , 3 , 13 , 175 ,()156.3 , 7 , 16 , 107 ,()166.求32+62+122+242+42+82+162+322 A.2225 B.2025 C.1725 D.2125 178.18 , 4 , 12 , 9 , 9 , 20 ,(), 43 179.5 , 7 , 21 , 25 ,()

A.30 B.31 C.32

D.34 180.1 , 8 , 9 , 4 ,(), 1/6 A.3 B.2 C.1

D.1/3 181.16 , 27 , 16 ,(), 1 A.5

B.6 C.7

D.8 182.2 , 3 , 6 , 9 , 18 ,()183.1 , 3 , 4 , 6 , 11 , 19 ,()184.1,2,9,121,()

A.251 B.441 C.16900 D.960 187.5 , 6 , 6 , 9 ,(), 90 A.12 B.15 C.18 D.21 188.1 , 1 , 2 , 6 ,()

A.19 B.27 C.30 D.24 189.-2 ,-1 , 2 , 5 ,(),29 190.3,11,13,29,31,()191.5,5,14,38,87,()A.167 B.68 C.169 D.170 192.102 , 96 , 108 ,84 , 132 ,()193.0,6,24,60,120,()

194.18 , 9 , 4 , 2 ,(), 1/6 A.3

B.2

C.1 D.1/3 198.4.5,3.5,2.8,5.2,4.4,3.6,5.7,()A.2.3 B.3.3 C.4.3 D.5.3 200.0,1/4,1/4,3/16,1/8,(5/64)201.16 , 17 , 36 , 111 , 448 ,()A.2472 B.2245 C.1863 D.1679 203.133/57 , 119/51 , 91/39 , 49/21 ,(), 7/3 A.28/12 B.21/14 C.28/9 D.31/15 204.0 , 4 , 18 , 48 , 100 ,()A.140 B.160 C.180 D.200 205.1 , 1 , 3 , 7 , 17 , 41 ,()A.89 B.99 C.109 D.119 206.22 , 35 , 56 , 90 ,(), 234 A.162 B.156 C.148 D.145 207.5 , 8 ,-4 , 9 ,(), 30 , 18 , 21 208.6 , 4 , 8 , 9 , 12 , 9 ,(), 26 , 30 A.12 B.16 C.18 D.22 209.1 , 4 , 16 , 57 ,()A.165 B.76 C.92 D.187

210.-7,0,1,2,9 ,()A.12 B.18 C.24 D.28 211.-3,-2,5,24,61 ,(122)A.125 B.124 C.123 D.122 212.20/9,4/3,7/9,4/9,1/4,(5/36)A.5/36 B.1/6 C.1/9 D.1/144 216.23,89,43,2,()A.3 B.239 C.259 D.269 217.1 , 2/3 , 5/9 ,(), 7/15 , 4/9 A.1/2 B.3/4 C.2/13 D.3/7 220.6 , 4 , 8 , 9 ,12 , 9 ,(), 26 , 30 223.4 , 2 , 2 , 3 , 6 , 15 ,(?)A.16 B.30 C.45 D.50 261.7 , 9 , 40 , 74 , 1526 ,()262.2 , 7 , 28 , 63 ,(), 215 263.3 , 4 , 7 , 16 ,(), 124 264.10,9,17,50,()

A.69 B.110 C.154 D.199 265.1 , 23 , 59 ,(), 715 A.12 B.34 C.214 D.37 266.-7,0,1,2,9,()A.12 B.18 C.24 D.28 267.1 , 2 , 8 , 28 ,()A.72 B.100 C.64 D.56 268.3 , 11 , 13 , 29 , 31()A.52 B.53 C.54 D.55 269.14 , 4 , 3 ,-2 ,(-4)A.-3 B.4 C.-4 D.-8 解析: 2除以3用余数表示的话,可以这样表示商为-1且余数为1,同理,-4除以3用余数表示为商为-2且余数为2,因此14,4,3,-2,(-4),每一项都除以3,余数为2、1、0、1、2 =>选C ps:余数一定是大于0的,但商可以小于0,因此,-2除以3的余数不能为-2,这与2除以3的余数是2是不一样的,同时,根据余数小于除数的原理,-2除以3的余数只能为1 270.-1,0,1,2,9,(730)271.2,8,24,64,(160)

272.4 , 2 , 2 , 3 , 6 , 15,(45)A.16 B.30 C.45 D.50 273.7,9,40,74,1526,(5436)274.0,1,3,8,21,(55)280.8 , 12 , 24 , 60 ,()289.5,41,149,329,(581)290.1,1,2,3,8,(13)291.2,33,45,58,(612)297.2 , 2 , 0 , 7 , 9 , 9 ,()A.13 B.12 C.18 D.17 299.3 , 2 , 5/3 , 3/2 ,()A.7/5 B.5/6 C.3/5 D.3/4

【例 1】-81、-

36、-9、0、9、36、()【广州2005-3】 A.49 B.64 C.81 D.100 【例 2】582、554、526、498、470、()A.442 B.452 C.432 D.462 【例 3】8、12、18、27、()【江苏2004A类真题】 A.39 B.37 C.40.5 D.42.5 【例 5】5、5、()、25、25 5 【云南2003真题】【山东2006-3】 A.5 5 B.5 5 C.15 5 D.15 5 【例 6】

18、-27、36、()、54 【河北2003真题】 A.44 B.45 C.-45 D.-44 【例 7】2、3、5、7、11、13、()【云南2003 真题】 A.15 B.17 C.18 D.19 【例 8】11、13、17、19、23、()【云南2005真题】 A.27 B.29 C.31 D.33

二级数列

【例 1】12、13、15、18、22、()【国2001-41】 A.25 B.27 C.30 D.34 【例 2】32、27、23、20、18、()【国2002B-3】 A.14 B.15 C.16 D.17 【例 3】-2、1、7、16、()、43【国2002B-5】 A.25 B.28 C.31 D.35 【例 4】2、3、5、9、17、()【国1999-28】 A.29 B.31 C.33 D.37 【例 5】-

2、-1、1、5、()、29【国2000-24】 A.17 B.15 C.13 D.11 【例 6】102、96、108、84、132、()【国2006一类-31】【国2006二类-26】A.36 B.64 C.70 D.72 【例 7】20、22、25、30、37、()【国2002A-2】

A.39 B.45 C.48 D.51 【例 8】1、4、8、13、16、20、()【国2003A-1】 A.20 B.25 C.27 D.28 【例 9】1、2、6、15、31()【国2003B-4】 A.53 B.56 C.62 D.87 【例 10】1、2、2、3、4、6、()【国2005二类-30】 A.7 B.8 C.9 D.10 【例 11】22、35、56、90、()、234【国2000-22】 A.162 B.156 C.148 D.145 【例 12】17、18、22、31、47、()【云南2003真题】 A.54 B.63 C.72 D.81 【例 13】3、5、8、13、20、()【广州2007-27】 A.31 B.33 C.37 D.44 【例 14】37、40、45、53、66、87、()【广州2007-28】 A.117 B.121 C.128 D.133 【例 15】67、54、46、35、29、()【国2008-44】 A.13 B.15 C.18 D.20

三级数列

【例 1】1、10、31、70、133、()【国2005 一类-33】 A.136 B.186 C.226 D.256 【例 2】0、4、18、48、100、()【国2005二类-33】 A.140 B.160 C.180 D.200 【例 3】0、4、16、40、80、()【国2007-44】 A.160 B.128 C.136 D.140 【例 4】()、36、19、10、5、2【国2003A-4】 A.77 B.69 C.54 D.48 【例 5】0、1、3、8、22、63、()【国2005 一类-35】 A.163 B.174 C.185 D.196 【例 6】-8、15、39、65、94、128、170、()【广东2006 上-2】 A.180 B.210 C.225 D.256 【例 7】-

26、-6、2、4、6、()【广州2005-5】 A.11 B.12 C.13 D.14

多级数列绝大部分题目集中在相邻两项两两做差的“做差多级数列”当中,除此之外还有相当一部分相邻两项两两做商的“做商多级数列” 【例 1】1、1、2、6、24、()【国2003B-2】 A.48 B.96 C.120 D.144 【例 2】2、4、12、48、()【国2005一类-26】 A.96 B.120 C.240 D.480 【例 3】3、3、6、18、()【广州2005-1】 A.24 B.72 C.36 D.48 【例 4】1、2、6、24、()【广州2005-4】 A.56 B.120 C.96 D.72

分组数列

【例 1】3、15、7、12、11、9、15、()【国2001-44】 A.6 B.8 C.18 D.19 【例 2】1、3、3、5、7、9、13、15、()、()【国2005 一类-28】 A.19、21 B.19、23 C.21、23 D.27、30 【例 3】1、4、3、5、2、6、4、7、()【国2005二类-35】 A.1 B.2 C.3 D.4 【例 4】1、1、8、16、7、21、4、16、2、()【国2005二类-32】 A.10 B.20 C.30 D.40 【例 5】400、360、200、170、100、80、50、()【江苏2006C-1】 A.10 B.20 C.30 D.40 【例 6】1、2、3、7、8、17、15、()A.31 B.10 C.9 D.25 【例 7】0、3、1、6、2、12、()、()、2、48【江苏2005真题】 A.3、24 B.3、36 C.2、24 D.2、36 【例 8】9、4、7、-4、5、4、3、-4、1、4、()、()【广州2005-2】 A.0,4 B.1,4 C.-1,-4 D.-1,4 【例 9】12、12、18、36、90、()【广州2007-30】 A.186 B.252 C.270 D.289

幂次修正数列

【例 1】2、3、10、15、26、()【国2005一类-32】 A.29 B.32 C.35 D.37 【例 2】0、5、8、17、()、37【浙江2004-6】 A.31 B.27 C.24 D.22 【例 3】5、10、26、65、145、()【浙江2005-5】 A.197 B.226 C.257 D.290 【例4】-

3、-

2、5、()、61、122【云南2005 真题】 A.20 B.24 C.27 D.31 【例 5】0、9、26、65、124、()【国2007-43】 A.165 B.193 C.217 D.239 【例 6】2、7、28、63、()、215【浙江2002-2】 A.116 B.126 C.138 D.142 【例 7】0、-

1、()、7、28【浙江2003-2】 A.2 B.3 C.4 D.5 【例 8】4、11、30、67、()【江苏2006A-2】 A.121 B.128 C.130 D.135 【例 9】-1、10、25、66、123、()A.214 B.218 C.238 D.240 【例 10】-3、0、23、252、()【广东2005下-2】 A.256 B.484 C.3125 D.3121 【例 11】14、20、54、76、()【国2008-45】 A.104 B.116 C.126 D.144

【例 1】1、3、4、7、11、()【国2002A-04】【云南2004 真题】 A.14 B.16 C.18 D.20 【例 2】0、1、1、2、4、7、13、()【国2005一类-30】 A.22 B.23 C.24 D.25 【例 3】18、12、6、()、0、6【国1999-29】 A.6 B.4 C.2 D.1 【例 4】25、15、10、5、5、()【国2002B-4】 A.10 B.5 C.0 D.-5 【例 5】1、3、3、9、()、243【国2003B-3】 A.12 B.27 C.124 D.169

【例 6】1、2、2、3、4、6、()【国2005二类-30】 A.7 B.8 C.9 D.10 【例 7】3、7、16、107、()【国2006一类-35】【国2006二类-30】 A.1707 B.1704 C.1086 D.1072 【例 9】144、18、9、3、4、()A.0.75 B.1.25 C.1.75 D.2.25 【例 10】172、84、40、18、()【云南2005 真题】 A.5 B.7 C.16 D.22 【例 11】1、1、3、7、17、41、()【国2005二类-28】 A.89 B.99 C.109 D.119 【例 12】118、60、32、20、()【北京应届2007-2】 A.10 B.16 C.18 D.20 【例 13】323,107,35,11,3,?【北京社招2007-5】 A.-5 B.13,C1 D2 【例 14】1、2、3、7、46、()【国2005一类-34】 A.2109 B.1289 C.322 D.147 【例 15】2、3、13、175、()【国2006 一类-34】【国2006 二类-29】 A.30625 B.30651 C.30759 D.30952 【例 16】6、15、35、77、()【江苏2004A类真题】 A.106 B.117 C.136 D.163 【例 17】1、2、5、26、()【广东2002-93】 A.31 B.51 C.81 D.677 【例 18】2、5、11、56、()【江苏2004A类真题】 A.126 B.617 C.112 D.92 【例 19】157、65、27、11、5、()【国2008-41】

A.4 B.3 C.2 D.1

数字推理题725道详解

【1】7,9,-1,5,()

A、4;B、2;C、-1;D、-3 分析:选D,7+9=16; 9+(-1)=8;(-1)+5=4;5+(-3)=2 , 16,8,4,2等比

【2】3,2,5/3,3/2,()A、1/4;B、7/5;C、3/4;D、2/5 分析:选B,可化为3/1,4/2,5/3,6/4,7/5,分子3,4,5,6,7,分母1,2,3,4,5

【3】1,2,5,29,()

A、34;B、841;C、866;D、37 分析:选C,5=12+22;29=52+22;()=292+52=866

【4】2,12,30,()

A、50;B、65;C、75;D、56;

分析:选D,1×2=2; 3×4=12; 5×6=30; 7×8=()=56

【5】2,1,2/3,1/2,()

A、3/4;B、1/4;C、2/5;D、5/6;

分析:选C,数列可化为4/2,4/4,4/6,4/8,分母都是4,分子2,4,6,8等差,所以后项为4/10=2/5,【6】 4,2,2,3,6,()

A、6;B、8;C、10;D、15;

分析:选D,2/4=0.5;2/2=1;3/2=1.5; 6/3=2; 0.5,1,1.5, 2等比,所以后项为2.5×6=15

【7】1,7,8,57,()

A、123;B、122;C、121;D、120;

分析:选C,12+7=8; 72+8=57; 82+57=121;

【8】 4,12,8,10,()A、6;B、8;C、9;D、24;

分析:选C,(4+12)/2=8;(12+8)/2=10;(8+10)/2=9

【9】1/2,1,1,(),9/11,11/13 A、2;B、3;C、1;D、7/9;

分析:选C,化成 1/2,3/3,5/5(),9/11,11/13这下就看出来了只能 是(7/7)注意分母是质数列,分子是奇数列。

【10】95,88,71,61,50,()

A、40;B、39;C、38;D、37;

分析:选A,思路一:它们的十位是一个递减数字 9、8、7、6、5 只是少开始的4 所以选择A。思路二:955 = 81;888 = 72;711 = 63;611 = 54;500 = 45;400 = 36,构成等差数列。

【11】2,6,13,39,15,45,23,()A.46;B.66;C.68;D.69;

分析:选D,数字2个一组,后一个数是前一个数的3倍

【12】1,3,3,5,7,9,13,15(),()

A:19,21;B:19,23;C:21,23;D:27,30;

分析:选C,1,3,3,5,7,9,13,15(21),(30)=>奇偶项分两组1、3、7、13、21和3、5、9、15、23其中奇数项1、3、7、13、21=>作差2、4、6、8等差数列,偶数项3、5、9、15、23=>作差2、4、6、8等差数列

【13】1,2,8,28,()A.72;B.100;C.64;D.56;

分析:选B,1×2+2×3=8;2×2+8×3=28;8×2+28×3=100

【14】0,4,18,(),100 A.48;B.58; C.50;D.38; 分析: A,思路一:0、4、18、48、100=>作差=>4、14、30、52=>作差=>10、16、22等差数列;

3232323232思路二:1-1=0;2-2=4;3-3=18;4-4=48;5-5=100; 思路三:0×1=0;1×4=4;2×9=18;3×16=48;4×25=100;

思路四:1×0=0;2×2=4;3×6=18;4×12=48;5×20=100 可以发现:0,2,6,(12),20依次相差2,4,(6),8,222222思路五:0=1×0;4=2×1;18=3×2;()=X×Y;100=5×4所以()=4×3

【15】23,89,43,2,()A.3;B.239;C.259;D.269; 分析:选A,原题中各数本身是质数,并且各数的组成数字和2+3=5、8+9=17、4+3=7、2也是质数,所以待选数应同时具备这两点,选A

【16】1,1, 2, 2, 3, 4, 3, 5,()分析:

思路一:1,(1,2),2,(3,4),3,(5,6)=>分1、2、3和(1,2),(3,4),(5,6)两组。

思路二:第一项、第四项、第七项为一组;第二项、第五项、第八项为一组;第三项、第六项、第九项为一组=>1,2,3;1,3,5;2,4,6=>三组都是等差

【17】1,52, 313, 174,()A.5;B.515;C.525;D.545;

分析:选B,52中5除以2余1(第一项);313中31除以3余1(第一项);174中17除以4余1(第一项);515中51除以5余1(第一项)

【18】5, 15, 10, 215,()A、415;B、-115;C、445;D、-112;

答:选B,前一项的平方减后一项等于第三项,5×5-15=10; 15×15-10=215; 10×10-215=-115

【19】-7,0, 1, 2, 9,()

A、12;B、18;C、24;D、28;

33333

3答: 选D,-7=(-2)+1;

0=(-1)+1; 1=0+1;2=1+1;9=2+1; 28=3+1

【20】0,1,3,10,()

A、101;B、102;C、103;D、104;

答:选B,思路一: 0×0+1=1,1×1+2=3,3×3+1=10,10×10+2=102;

2222思路二:0(第一项)+1=1(第二项)

1+2=3

3+1=10

10+2=102,其中所加的数呈1,2,1,2 规律。

思路三:各项除以3,取余数=>0,1,0,1,0,奇数项都能被3整除,偶数项除3余1;

【21】5,14,65/2,(),217/2

A.62;B.63;C.64;D.65;

3答:选B,5=10/2 ,14=28/2 , 65/2,(126/2), 217/2,分子=> 10=2+2;

28=3+1;65=4+1;(126)=5+1;217=6+1;其中2、1、1、1、1头尾相加=>1、2、3等差 3

3【22】124,3612,51020,()

A、7084;B、71428;C、81632;D、91836; 答:选B,思路一: 124 是1、2、4; 3612是 3、6、12; 51020是5、10、20;71428是 7,14 28;每列都成等差。

思路二: 124,3612,51020,(71428)把每项拆成3个部分=>[1,2,4]、[3,6,12]、[5,10,20]、[7,14,28]=>每个[ ]中的新数列成等比。

思路三:首位数分别是1、3、5、(7),第二位数分别是:2、6、10、(14);最后位数分别是:4、12、20、(28),故应该是71428,选B。

【23】1,1,2,6,24,()A,25;B,27;C,120;D,125 解答:选C。思路一:(1+1)×1=2,(1+2)×2=6,(2+6)×3=24,(6+24)×4=120 思路二:后项除以前项=>1、2、3、4、5 等差

【24】3,4,8,24,88,()A,121;B,196;C,225;D,344 解答:选D。

02468思路一:4=2 +3,8=2 +4,24=2 +8,88=2 +24,344=2 +88 思路二:它们的差为以公比2的数列:

024684-3=2,8-4=2,24-8=2,88-24=2,?-88=2,?=344。

【25】20,22,25,30,37,()A,48;B,49;C,55;D,81 解答:选A。两项相减=>2、3、5、7、11质数列

【26】1/9,2/27,1/27,()A,4/27;B,7/9;C,5/18;D,4/243;

答:选D,1/9,2/27,1/27,(4/243)=>1/9,2/27,3/81,4/243=>分子,1、2、3、4 等差;分母,9、27、81、243 等比

【27】√2,3,√28,√65,()

A,2√14;B,√83;C,4√14;D,3√14;

答:选D,原式可以等于:√2,√9,√28,√65,()2=1×1×1 + 1;9=2×2×2 + 1;28=3×3×3 + 1;65=4×4×4 + 1;126=5×5×5 + 1;所以选 √126,即 D 3√14

【28】1,3,4,8,16,()

A、26;B、24;C、32;D、16;

答:选C,每项都等于其前所有项的和1+3=4,1+3+4=8,1+3+4+8=16,1+3+4+8+16=32

【29】2,1,2/3,1/2,()A、3/4;B、1/4;C、2/5;D、5/6;

答:选C,2, 1 , 2/3 , 1/2 ,(2/5)=>2/1, 2/2, 2/3, 2/4(2/5)=>分子都为2;分母,1、2、3、4、5等差

【30】 1,1,3,7,17,41,()A.89;B.99;C.109;D.119 ;

答:选B,从第三项开始,第一项都等于前一项的2倍加上前前一项。2×1+1=3;2×3+1=7;2×7+3=17; …;2×41+17=99

【31】 5/2,5,25/2,75/2,()

答:后项比前项分别是2,2.5,3成等差,所以后项为3.5,()/(75/2)=7/2,所以,()=525/4

【32】6,15,35,77,()A. 106;B.117;C.136;D.163 答:选D,15=6×2+3;35=15×2+5;77=35×2+7;163=77×2+9其中3、5、7、9等差

【33】1,3,3,6,7,12,15,()A.17;B.27;C.30;D.24;

答:选D,1,3,3,6,7,12,15,(24)=>奇数项1、3、7、15=>新的数列相邻两数的差为2、4、8

作差=>等比,偶数项 3、6、12、24 等比

【34】2/3,1/2,3/7,7/18,()

A、4/11;B、5/12;C、7/15;D、3/16 分析:选A。4/11,2/3=4/6,1/2=5/10,3/7=6/14,…分子是4、5、6、7,接下来是8.分母是6、10、14、18,接下来是22

【35】63,26,7,0,-2,-9,()A、-16;B、-25;C;-28;D、-36 3333333分析:选C。4-1=63;3-1=26;2-1=7;1-1=0;(-1)-1=-2;(-2)-1=-9;(-3)()=146(22+34=56;34+56=90,56+90=146)

【46】32,98,34,0,()A.1;B.57;C.3;D.5219; 答:选C,思路一:32,98,34,0,3=>每项的个位和十位相加=>5、17、7、0、3=>相减=>-12、10、7、-3=>视为-1、1、1、-1和12、10、7、3的组合,其中-1、1、1、-1 二级等差12、10、7、3 二级等差。

思路二:32=>2-3=-1(即后一数减前一个数),98=>8-9=-1,34=>4-3=1,0=>0(因为0这一项本身只有一个数字, 故还是推为0),?=>?得新数列:-1,-1,1,0,?;再两两相加再得出一个新数列:-2,0,1.?;2×0-2=-2;2×1-2=0;2×2-3=1;2×3-3=?=>3

【47】5,17,21,25,()A.34;B.32;C.31;D.30 答:选C,5=>5 , 17=>1+7=8 , 21=>2+1=3 , 25=>2+5=7 ,?=>?得到一个全新的数列5 , 8 , 3 , 7 , ?前三项为5,8,3第一组, 后三项为3,7,?第二组,第一组:中间项=前一项+后一项,8=5+3,第二组:中间项=前一项+后一项,7=3+?,=>?=4再根据上面的规律还原所求项本身的数字,4=>3+1=>31,所以答案为31

【48】0,4,18,48,100,()A.140;B.160;C.180;D.200;

答:选C,两两相减===>?4,14,30,52,{()-100} 两两相减 ==>10.16,22,()==>这是二级等差=>0.4.18.48.100.180==>选择C。思路二:4=(2的2次方)×1;18=(3的2次方)×2;48=(4的2次方)×3;100=(5的2次方)×4;180=(6的2次方)×5

【49】 65,35,17,3,()A.1;B.2;C.0;D.4;

答:选A,65=8×8+1;35=6×6-1;17=4×4+1;3=2×2-1;1=0×0+1

【50】 1,6,13,()A.22;B.21;C.20;D.19; 答:选A,1=1×2+(-1);6=2×3+0;13=3×4+1;?=4×5+2=22

【51】2,-1,-1/2,-1/4,1/8,()

A.-1/10;B.-1/12;C.1/16;D.-1/14;

答:选C,分4组,(2,-1);(-1,-1/2);(-1/2,-1/4);(1/8,(1/16))===>每组的前项比上后项的绝对值是 2

【52】 1,5,9,14,21,()A.30;B.32;C.34;D.36;

答:选B,1+5+3=9;9+5+0=14;9+14+(-2)=21;14+21+(-3)=32,其中3、0、-

2、-3二级等差

【53】4,18, 56, 130,()A.216;B.217;C.218;D.219 答:选A,每项都除以4=>取余数0、2、0、2、0

【54】4,18, 56, 130,()A.26;B.24;C.32;D.16;

答:选B,各项除3的余数分别是1、0、-1、1、0,对于1、0、-1、1、0,每三项相加都为0

【55】1,2,4,6,9,(),18 A、11;B、12;C、13;D、18;

答:选C,1+2+4-1=6;2+4+6-3=9;4+6+9-6=13;6+9+13-10=18;其中1、3、6、10二级等差

【56】1,5,9,14,21,()A、30;B.32;C.34;D.36; 答:选B,思路一:1+5+3=9;9+5+0=14;9+14-2=21;14+21-3=32。其中,3、0、-

2、-3 二级等差,思路二:每项除以第一项=>5、9、14、21、32=>5×2-1=9;9×2-4=14;14×2-7=21; 21×2-10=32.其中,1、4、7、10等差

【57】120,48,24,8,()

A.0;B.10;C.15;D.20;

答:选C,120=112-1; 48=72-1; 24=52-1; 8=32-1; 15=(4)2-1其中,11、7、5、3、4头尾相加=>5、10、15等差

【58】48,2,4,6,54,(),3,9 A.6;B.5;C.2;D.3;

答:选C,分2组=>48,2,4,6 ; 54,(),3,9=>其中,每组后三个数相乘等于第一个数=>4×6×2=48 2×3×9=54

【59】120,20,(),-4 A.0;B.16;C.18;D.19;

3210答:选A,120=5-5;20=5-5;0=5-5;-4=5-5

【60】6,13,32,69,()

A.121;B.133;C.125;D.130 答:选B,6=3×2+0;13=3×4+1;32=3×10+2;69=3×22+3;130=3×42+4;其中,0、1、2、3、4 一级等差;2、4、10、22、42 三级等差

【61】1,11,21,1211,()

A、11211;B、111211;C、111221;D、1112211 分析:选C,后项是对前项数的描述,11的前项为1 则11代表1个1,21的前项为11 则21代表2个1,1211的前项为21 则1211代表1个2、1个1,111221前项为1211 则111221代表1个1、1个2、2个1

【62】-7,3,4,(),11 A、-6;B.7;C.10;D.13;

答:选B,前两个数相加的和的绝对值=第三个数=>选B

【63】3.3,5.7,13.5,()A.7.7;B.4.2;C.11.4;D.6.8;

答:选A,小数点左边:3、5、13、7,都为奇数,小数点右边:3、7、5、7,都为奇数,遇到数列中所有数都是小数的题时,先不要考虑运算关系,而是直接观察数字本身,往往数字本身是切入点。

【64】33.1, 88.1, 47.1,()A.29.3;B.34.5;C.16.1;D.28.9;

答:选C,小数点左边:33、88、47、16成奇、偶、奇、偶的规律,小数点右边:1、1、1、1 等差

【65】5,12,24, 36, 52,()A.58;B.62;C.68;D.72; 答:选C,思路一:12=2×5+2;24=4×5+4;36=6×5+6;52=8×5+12 68=10×5+18,其中,2、4、6、8、10 等差; 2、4、6、12、18奇数项和偶数项分别构成等比。

思路二:2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31,37质数列的变形,每两个分成一组=>(2,3)(5,7)(11,13)(17,19)(23,29)(31,37)=>每组内的2个数相加=>5,12,24,36,52,68

【66】16, 25, 36, 50, 81, 100, 169, 200,()A.289;B.225;C.324;D.441;

22222答:选C,奇数项:16,36,81,169,324=>分别是4, 6, 9, 13,18=>而4,6,9,13,18是二级等差数列。偶数项:25,50,100,200是等比数列。

【67】1, 4, 4, 7, 10, 16, 25,()A.36;B.49;C.40;D.42 答:选C,4=1+4-1;7=4+4-1;10=4+7-1;16=7+10-1;25=10+16-1;40=16+25-1

【68】7/3,21/5,49/8,131/13,337/21,()

A.885/34;B.887/34;C.887/33;D.889/3 答:选A,分母:3,5,8,13,21,34两项之和等于第三项,分子:7,21,49,131,337,885分子除以相对应的分母,余数都为1,【69】9,0,16,9,27,()

A.36;B.49;C.64;D.22;

答:选D,9+0=9;0+16=16;16+9=25;27+22=49;其中,9、16、25、36分别是32, 42, 52, 62,72,而3、4、5、6、7 等差

【70】1,1,2,6,15,()A.21;B.24;C.31;D.40;

答:选C,思路一两项相减=>0、1、4、9、16=>分别是02, 12, 22, 32, 42,其中,0、1、2、3、4 等差。思路二头尾相加=>8、16、32 等比 【71】5,6,19,33,(),101 A.55;B.60;C.65;D.70;

答:选B,5+6+8=19;6+19+8=33;19+33+8=60;33+60+8=101

【72】0,1,(),2,3,4,4,5 A.0;B.4;C.2;D.3 答:选C,思路一:选C=>相隔两项依次相减差为2,1,1,2,1,1(即2-0=2,2-1=1,3-2=1,4-2=2,4-3=1,5-4=1)。

思路二:选C=>分三组,第一项、第四项、第七项为一组;第二项、第五项、第八项为一组;第三项、第六项为一组=>即0,2,4;1,3,5;

2,4。每组差都为2。

【73】4,12, 16,32, 64,()A.80;B.256;C.160;D.128;

答:选D,从第三项起,每项都为其前所有项之和。

【74】1,1,3,1,3,5,6,()。A.1;B.2;C.4;D.10;

答:选D,分4组=>1,1; 3,1; 3,5; 6,(10),每组相加=>2、4、8、16 等比

【75】0,9,26,65,124,()

A.186;B.217;C.216;D.215;

3333 3答:选B,0是1减1;9是2加1;26是3减1;65是4加1;124是5减1;故6加1为217

【76】1/3,3/9,2/3,13/21,()

A.17/27;B.17/26;C.19/27;D.19/28;

答:选A,1/3,3/9,2/3,13/21,(17/27)=>1/

3、2/

6、12/

18、13/

21、17/27=>分子分母差=>2、4、6、8、10 等差

【77】1,7/8,5/8,13/32,(),19/128 A.17/64;B.15/128;C.15/32;D.1/4 答:选D,=>4/4, 7/8, 10/16, 13/32,(16/64), 19/128,分子:4、7、10、13、16、19 等差,分母:4、8、16、32、64、128 等比

【78】2,4,8,24,88,()A.344;B.332;C.166;D.164 答:选A,从第二项起,每项都减去第一项=>2、6、22、86、342=>各项相减=>4、16、64、256 等比

【79】1,1,3,1,3,5,6,()。

A.1;B.2;C.4;D.10;

答:选B,分4组=>1,1; 3,1; 3,5; 6,(10),每组相加=>2、4、8、16 等比

【80】3,2,5/3,3/2,()

A、1/2;B、1/4;C、5/7;D、7/3 分析:选C;

思路一:9/3,10/5,10/6,9/6,(5/7)=>分子分母差的绝对值=>6、5、4、3、2 等差,思路二:3/

1、4/

2、5/

3、6/

4、5/7=>分子分母差的绝对值=>2、2、2、2、2 等差

【81】3,2,5/3,3/2,()A、1/2;B、7/5;C、1/4;D、7/3 3分析:可化为3/1,4/2,5/3,6/4,7/5,分子3,4,5,6,7,分母1,2,3,4,5

【82】0,1,3,8,22,64,()A、174;B、183;C、185;D、190;

答:选D,0×3+1=1;1×3+0=3;3×3-1=8;8×3-2=22;22×3-2=64;64×3-2=190;其中1、0、-

1、-

2、-

2、-2头尾相加=>-

3、-

2、-1等差

【83】2,90,46,68,57,()

A.65;B.62.5;C.63;D.62

答:选B, 从第三项起,后项为前两项之和的一半。

【84】2,2,0,7,9,9,()

A.13;B.12;C.18;D.17;

答:选C,从第一项起,每三项之和分别是2,3,4,5,6的平方。

【85】 3,8,11,20,71,()A.168;B.233;C.211;D.304 答:选B,从第二项起,每项都除以第一项,取余数=>2、2、2、2、2 等差

【86】-1,0,31,80,63,(),5 A.35;B.24;C.26;D.37;

7654321答:选B,-1=0-1,0=1-1,31=2-1,80=3-1,63=4-1,(24)=5-1,5=6-1

【87】11,17,(),31,41,47 A.19;B.23;C.27;D.29;

答:选B,隔项质数列的排列,把质数补齐可得新数列:11,13,17,19,23,29,31,37,41,43,47.抽出偶数项可得数列: 11,17,23,31,41,47

【88】18,4,12,9,9,20,(),43 A.8;B.11;C.30;D.9 答:选D, 把奇数列和偶数列拆开分析:

偶数列为4,9,20,43.9=4×2+1, 20=9×2+2, 43=20×2+3,奇数列为18,12,9,(9)。18-12=6, 12-9=3, 9-(9)=0

【89】1,3,2,6,11,19,()

分析:前三项之和等于第四项,依次类推,方法如下所示: 1+3+2=6;3+2+6=11;2+6+11=19;6+11+19=36

【90】1/2,1/8,1/24,1/48,()A.1/96;B.1/48;C.1/64;D.1/81

答:选B,分子:1、1、1、1、1等差,分母:2、8、24、48、48,后项除以前项=>4、3、2、1 等差

【91】1.5,3,7.5(原文是7又2分之1),22.5(原文是22又2分之1),()

A.60;B.78.25(原文是78又4分之1);C.78.75;D.80 答:选C,后项除以前项=>2、2.5、3、3.5 等差

【92】2,2,3,6,15,()A、25;B、36;C、45;D、49 分析:选C。2/2=1 3/2=1.5 6/3=2 15/6=2.5 45/15=3。其中,1, 1.5, 2, 2.5, 3 等差

【93】5,6,19,17,(),-55 A.15;B.344;C.343;D.11; 答:选B,第一项的平方减去第二项等于第三项

【94】2,21,(),91,147 A.40;B.49;C.45;D.60;

答:选B,21=2(第一项)×10+1,49=2×24+1,91=2×45+1,147=2×73+1,其中10、24、45、73 二级等差

【95】-1/7,1/7,1/8,-1/4,-1/9,1/3,1/10,()A.-2/5;B.2/5;C.1/12;D.5/8;

答:选A,分三组=>-1/7,1/7; 1/8,-1/4;-1/9,1/3; 1/10,(-2/5),每组后项除以前项=>-1,-2,-3,-4 等差

【96】63,26,7,0,-1,-2,-9,()A、-18;B、-20;C、-26;D、-28;

33333333答:选D,63=4-1,26=3-1,7=2-1,0=1-1,-1=0-1,-2=(-1)-1,-9=(-2)-1-28=(-3)-1,【97】5,12 ,24,36,52,(), A.58;B.62;C.68;D.72 答:选C,题中各项分别是两个相邻质数的和(2,3)(5,7)(11,13)(17,19)(23,29)(31,37)

【98】1,3, 15,(),A.46;B.48;C.255;D.256

答:选C,3=(1+1)2-1

15=(3+1)2-1

255=(15+1)2-1

【99】3/7,5/8,5/9,8/11,7/11,()A.11/14;B.10/13;C.15/17;D.11/12;

答:选A,奇数项:3/7,5/9,7/11

分子,分母都是等差,公差是2,偶数项:5/8,8/11,11/14 分子、分母都是等差数列,公差是3

【100】1,2,2,3,3,4,5,5,()A.4;B.6;C.5;D.0 ;

答:选B,以第二个3为中心,对称位置的两个数之和为7

【101】 3,7, 47,2207,()A.4414;B.6621;C.8828;D.4870847 答:选D,第一项的平方5 => 16=3×7-5 107=16×7-5 1707=107×16-5

【128】2,3,13,175,()A.30625;B.30651;C.30759;D.30952;

222答:选B, 13(第三项)=3(第二项)+2(第一项)×2

175=13+3×2

30651=175+13×2

【129】1.16,8.25,27.36,64.49,()A.65.25;B.125.64;C.125.81;D.125.01;

答:选B,小数点左边:1,8,27,64,125分别是1,2,3,4,5的三次方,小数点右边:16,25,36,49分别是4,5,6,7,8的平方。

【130】,2,(),A.; B.; C.;D.;

答:选B,,2,=>,,【131】 +1,-1,1,-1,()A.;B.1 ;C.-1;D.-1;

答:选C, 选C=>第一项乘以第二项=第三项

【132】 +1,-1,1,-1,()A.+1;B.1;C.;D.-1;

答:选A,选A=>两项之和=>(+1)+(-1)=2 ;(-1)+1= ;1+(-1)= ;(-1)+(+1)=2 =>2 , , ,2 =>分两组=>(2 ,),(,2),每组和为3。

【133】,,()A.B.C.D.答:选B, 下面的数字=>2、5、10、17、26,二级等差

【134】,1/12,()A.; B.; C.;D.; 答:选C,,1/12,=>,,,外面的数字=>1、3、4、7、11 两项之和等于第三项。里面的数字=>5、7、9、11、13 等差

【135】 1,1,2,6,()A.21;B.22;C.23;D.24;

答:选D, 后项除以前项 =>1、2、3、4 等差

【136】1,10,31,70,133,()A.136;B.186;C.226;D.256 答:选C,思路一:两项相减=>9、21、39、63、93=>两项相减=>12、18、24、30 等差.思路二:10-1=9推出3×3=9 31-10=21推出3×7=21 70-31=39推出3×13=39 133-70=63推出3×21=63 而3,7,13,21分别相差4,6,8。所以下一个是10,所以3×31=9393+133=226

【137】0,1, 3, 8, 22,63,()A.163;B.174;C.185;D.196;

答:选C, 两项相减=>1、2、5、14、41、122 =>两项相减=>1、3、9、27、81 等比

【138】 23,59,(),715 A、12;B、34;C、213;D、37;

答:选D, 23、59、37、715=>分解=>(2,3)(5,9)(3,7)(7,15)=>对于每组,3=2×2-1(原数列第一项)9=5×2-1(原数列第一项),7=3×2+1(原数列第一项),15=7×2+1(原数列第一项)

【139】2,9,1,8,()8,7,2

A.10;B.9;C.8;D.7;

答:选B, 分成四组=>(2,9),(1,8);(9,8),(7,2),2×9 = 18 ; 9×8 = 72

【140】5,10,26,65,145,()A、197; B、226;C、257;D、290; 答:选D, 思路一:5=2+1,10=3+1,26=5+1,65=8+1,145=12+1,290=17+1,思路二:三级等差

【141】27,16,5,(),1/7 A.16;B.1;C.0;D.2;

答:选B,27=3,16=4,5=5,1=6,1/7=7差

【142】1,1,3,7,17,41,()

A.89;B.99;C.109;D.119;

答:第三项=第一项+第二项×2

【143】1, 1, 8, 16, 7, 21, 4, 16, 2,()A.10;B.20;C.30;D.40;

答:选A,每两项为一组=>1,1;8,16;7,21;4,16;2,10=>每组后项除以前项=>1、2、3、4、5 等差

【144】0,4,18,48,100,()A.140;B.160;C.180;D.200; 答:选C,思路一:0=0×1 4=1×4 18=2×9 48=3×16 100=4×25 180=5×36=>其中

3210

(-1)

2,其中,3,2,1,0,-1;3,4,5,6,7等0,1,2,3,4,5 等差,1,4,9,16,25,36分别为1、2、3、4、5的平方

思路二:三级等差

【145】1/6,1/6,1/12,1/24,()A.1/48;B.1/28;C.1/40;D.1/24;

答:选A,每项分母是前边所有项分母的和。

【146】0,4/5,24/25,()A.35/36;B.99/100;C.124/125;D.143/144;

答:选C,原数列可变为 0/1,4/5,24/25,124/125。分母是5倍关系,分子为分母减一。

【147】1,0,-1,-2,()A.-8;B.-9;C.-4;D.3;

答:选C,第一项的三次方-1=第二项

【148】0,0,1,4,()A、5;B、7;C、9;D、11 分析:选D。0(第二项)=0(第一项)×2+0,1=0×2+1

4=1×2+2

11=4×2+3

【149】0,6,24,60,120,()A、125;B、196;C、210;D、216 333233分析: 0=1-1,6=2-2,24=3-3,60=4-4,120=5-5,210=6-6,其中1,2,3,4,5,6等差

【150】34,36,35,35,(),34,37,()A.36,33;B.33,36; C.37,34;D.34,37;

答:选A,奇数项:34,35,36,37等差;偶数项:36,35,34,33.分别构成等差

【151】1,52,313,174,()

A.5;B.515;C.525;D.545 ;

答:选B,每项-第一项=51,312,173,514=>每项分解=>(5,1),(31,2),(17,3),(51,4)=>每组第二项1,2,3,4等差;每组第一项都是奇数。

【152】6,7,3,0,3,3,6,9,5,()

A.4;B.3;C.2;D.1;

答:选A,前项与后项的和,然后取其和的个位数作第三项,如6+7=13,个位为3,则第三项为3,同理可推得其他项

【153】1,393,3255,()

A、355;B、377;C、137;D、397;

答:选D,每项-第一项=392,3254,396 =>分解=>(39,2),(325,4),(39,6)=>每组第一个数都是合数,每组第二个数2,4,6等差。

【154】17,24,33,46,(),92 A.65;B.67; C.69 ;D.71 答:选A,24-17=7,33-24=9,46-33=13,65-46=19,92-65=27.其中7,9,13,19,27两项作差=>2,4,6,8等比

【155】8,96,140,162,173,()A.178.5;B.179.5;C 180.5;D.181.5 答:选A,两项相减=>88,44,22,11,5.5 等比数列 【156】(),11,9,9,8,7,7,5,6 A、10; B、11; C、12; D、13 答:选A,奇数项:10,9,8,7,6 等差;偶数项:11,9,7,5 等差

【157】1,1,3,1,3,5,6,()。A.1;B.2;C.4;D.10;

答:选D,1+1=2 3+1=4 3+5=8 6+10=16,其中,2,4,8,10等差

【158】1,10,3,5,()A.4;B.9;C.13;D.15;

答:选C,把每项变成汉字=>一、十、三、五、十三=>笔画数1,2,3,4,5等差

【159】1,3,15,()A.46;B.48;C.255;D.256 1248答:选C,21 = 3 ,21 = 255,【160】1,4,3,6,5,()A.4;B.3;C.2;D.7 答:选C,思路一:1和4差3,4和3差1,3和6差3,6和5差1,5和2差3。思路二:1,4,3,6,5,2=>两两相加=>5,7,9,11,7=>每项都除以3=>2,1,0,2,1

【161】14,4,3,-2,()A.-3;B.4;C.-4;D.-8 ;

答:选C,余数一定是大于0的,但商可以小于0,因此,-2除以3的余数不能为-2,这与2除以3的余数是2是不一样的,同时,根据余数小于除数的原理,-2除以3的余数只能为1。因此14,4,3,-2,(-4),每一项都除以3,余数为2、1、0、1、2

【162】8/3,4/5,4/31,()

A.2/47;B.3/47;C.1/49;D.1/47; 答:选D,8/3,4/5,4/31,(1/47)=>8/

3、40/50、4/

31、1/47=>分子分母的差=>-5、10、27、46=>两项之差=>15,17,19等差

【163】59,40,48,(),37,18 A、29;B、32;C、44;D、43; 答:选A,思路一:头尾相加=>77,77,77 等差。

思路二:59-40=19; 48-29=19; 37-18=19。

思路三:59 48 37 这三个奇数项为等差是11的数列。40、19、18 以11为等差

【164】1,2,3,7,16,(),191

A.66;B.65;C.64;D.63;

22222答:选B,3(第三项)=1(第一项)+2(第二项),7=2+3,16=3+7,65=7+16 191=16+65

【165】2/3,1/2,3/7,7/18,()A.5/9;B.4/11;C.3/13;D.2/5

答:选B,2/3,1/2,3/7,7/18,4/11=>4/6,5/10,6/14,7/18,8/22,分子4,5,6,7,8等差,分母6,10,14,18,22 等差

【166】5,5,14,38,87,()A.167;B.168;C.169;D.170;

22222答:选A,两项差=>0,9,24,49,80=>1-1=0,3-0=9,5-1=24,7-0=49,9-1=80,其中底数1,3,5,7,9等差,所减常数成规律1,0,1,0,1

【167】1,11,121,1331,()

A.14141;B.14641;C.15551;D.14441;

答:选B,思路一:每项中的各数相加=>1,2,4,8,16等比。

思路二:第二项=第一项乘以11。

【168】0,4,18,(),100 A.48;B.58;C.50;D.38;

答:选A,各项依次为1 2 3 4 5的平方,然后在分别乘以0 1 2 3 4。

【169】19/13,1,13/19,10/22,()A.7/24;B.7/25;C.5/26;D.7/26;

答:选C,=>19/13,1,13/19,10/22,7/25=>19/13,16/16,13/19,10/22,7/25.分子:19,16,13,10,7等差分母:13,16,19,22,25等差

【170】12,16,112,120,()A.140;B.6124;C.130;D.322 ; 答:选C,思路一:每项分解=>(1,2),(1,6),(1,12),(1,20),(1,30)=>可视为1,1,1,1,1和2,6,12,20,30的组合,对于1,1,1,1,1 等差;对于2,6,12,20,30 二级等差。

思路二:第一项12的个位2×3=6(第二项16的个位)第一项12的个位2×6=12(第三项的后两位),第一项12的个位2×10=20(第四项的后两位),第一项12的个位2×15=30(第五项的后两位),其中,3,6,10,15二级等差

【171】13,115,135,()A.165;B.175;C.1125;D.163 答:选D,思路一:每项分解=>(1,3),(1,15),(1,35),(1,63)=>可视为1,1,1,1,1和3,15,35,63的组合,对于1,1,1,1,1 等差;对于3,15,35,63.3=1×3,15=3×5,35=5×7,63=7×9每项都等于两个连续的奇数的乘积(1,3,5,7,9).思路二:每项中各数的和分别是1+3=4,7,9,10 二级等差

【172】-12,34,178,21516,()

A.41516;B.33132;C.31718;D.43132 ;

答:选C,尾数分别是2,4,8,16下面就应该是32,10位数1,3,7,15相差为2,4,8下面差就应该是16,相应的数就是31,100位1,2下一个就是3。所以此数为33132。

【173】3,4,7,16,(),124

1234分析:7(第三项)=4(第二项)+3(第一项的一次方),16=7+3,43=16+3 124=43+3,【174】7,5,3,10,1,(),()

A.15、-4 ;B.20、-2;C.15、-1;D.20、0 答:选D,奇数项=>7,3,1,0=>作差=>4,2,1等比;偶数项5,10,20等比

【175】81,23,(),127 A.103;B.114;C.104;D.57; 答:选C,第一项+第二项=第三项

【176】1,1,3,1,3,5,6,()。A.1;B.2;C.4;D.10;

答:选D,1+1=2 3+1=4 3+5=8 6+10=16,其中2 4 8 16等比

【177】48,32,17,(),43,59。A.28;B.33;C.31;D.27;

答:选A,59-18=11 43-32=11

28-17=11

【178】19/13,1,19/13,10/22,()a.7/24;b.7/25;c.5/26;d.7/26;

答:选B,1=16/16 , 分子+分母=22=>19+13=32 16+16=32

10+22=32

7+25=32

【179】3,8,24,48,120,()A.168;B.169;C.144;D.143;

222222答:选A,3=2-1 8=3-1 24=5-1 48=7-1

120=11-1 168=13-1,其中2,3,5,7,11质数数列

【180】21,27,36,51,72,()A.95;B.105;C.100;D.102; 答:选B,27-21=6=2×3,36-27=9=3×3,51-36=15=5×3,72-51=21=7×3,105-72=33=11×3,其中2、3、5、7、11质数列。

【181】1/2,1,1,(),9/11,11/13

A.2;B.3; C.1;D.9;

答:选C,1/2,1,1,(),9/11,11/13 =>1/2,3/3,5/5,7/7,9/11,11/13=>分子1,3,5,7,9,11等差;分母2,3,5,7,11,13 连续质数列。

【182】 2,3,5,7,11,()A.17;B.18;C.19;D.20 答:选C,前后项相减得到1,2,2,4 第三个数为前两个数相乘,推出下一个数为8,所以11+8=19

【183】2,33,45,58,()A、215;B、216;C、512;D、612

分析:答案D,个位2,3,5,8,12=>作差1,2,3,4等差;其他位3,4,5,6等差

【184】 20/9,4/3,7/9,4/9,1/4,()A、3/7;B、5/12;C、5/36;D、7/36 分析:选C。20/9,4/3,7/9,4/9,1/4,(5/36)=>80/36,48/36,28/36,16/36,9/36,5/36;分母36,36,36,36,36,36 等差;分子80,48,28,16,9,5 三级等差

【185】5,17, 21, 25,()A、29;B、36;C、41;D、49 分析:答案A,5×3+2=17,5×4+1=21,5×5=0=25,5×6-1=29

【186】2,4,3,9,5,20,7,()A.27;B.17;C.40;D.44;

分析:答案D,奇数项2,3,5,7连续质数列;偶数项4,9,20,44,前项除以后项=>4/9,9/20,20/44=>8/18,9/20,10/22.分子8,9,10等差,分母18,20,22等差

【187】2/3,1/4,2/5,(),2/7,1/16,A.1/5;B.1/17;c.1/22;d.1/9 分析:答案D,奇数项2/3,2/5,2/7.分子2,2,2等差,分母3,5,7等差;偶数项1/4,1/9,1/16,分子1,1,1等差,分母4,9,16分别为2,3,4的平方,而2,3,4等差。

【188】1,2,1,6,9,10,()

A.13;B.12;C.19;D.17;

分析:答案D,每三项相加=>1+2+1=4;2+1+6=9;1+6+9=16;6+9+10=25;9+10+X=36=>X=17

【189】8,12,18,27,()A.39;B.37;C.40.5;D.42.5;

分析:答案C,8/12=2/3,12/18=2/3,18/27=2/3,27/?=2/3

27/(81/2)=2/3=40.5,【190】2,4,3,9,5,20,7,()A.27;B.17;C.40; D.44 分析:答案D,奇数项2,3,5,7连续质数列;偶数项4,9,20,44=>4×2+1=9

9×2+2=20

20×2+4=44

其中1,2,4等比

【191】1/2,1/6,1/3,2,(),3,1/2 A.4;B.5;C.6;D.9

分析:答案C,第二项除以第一项=第三项

【192】1.01,2.02,3.04,5.07,(),13.16 A.7.09;B.8.10;C.8.11;D.8.12

分析:答案C,整数部分前两项相加等于第三项,小数部分二级等差

【193】256,269,286,302,()A.305;B.307;C.310;D.369

分析:答案B,2+5+6=13;256+13=269;2+6+9=17;269+17=286;2+8+6=16 286+16=302;3+0+2=5;302+5=307

【194】1,3,11,123,()

A.15131;B.1468;C16798;D.96543 2222分析:答案A,3=1+2 11=3+2 123=11+2()=123+2=15131

【195】1,2,3,7,46,()A.2109;B.1289;C.322;D.147

22分析:答案A,3(第三项)=2(第二项)-1(第一项),7(第四项)=3(第三项)-2(第二项),46=7-3,()=46-7=2109

【196】18,2,10,6,8,()A.5;B.6;C.7;D.8;

分析:答案C,10=(18+2)/2,6=(2+10)/2,8=(10+6)/2,()=(6+8)/2=7

【197】-1,0,1,2,9,()A、11;B、82;C、729;D、730;

33333分析:答案D,(-1)+1=0 0+1=1 1+1=2 2+1=9 9+1=730

【198】0,10,24,68,()

A、96;B、120;C、194;D、254;

33333分析:答案B,0=1-1,10=2+2,24=3-3,68=4+4,()=5-5,()=120

【199】7,5,3,10,1,(),()22A、15、-4;B、20、-2 ; C、15、-1 ;D、20、0;

分析:答案D,奇数项的差是等比数列 7-3=4 3-1=2 1-0=1 其中1、2、4 为公比为2的等比数列。偶数项5、10、20也是公比为2的等比数列

【200】2,8,24,64,()

A、88;B、98;C、159;D、160;

分析:答案D,思路一:24=(8-2)×4

64=(24-8)×4

D=(64-24)×4,思路二:2=2的1次乘以1

8=2的2次乘以2

24=2的3次乘以3

64=2的4次乘以4,(160)=2的5 次乘以5

【201】4,13,22,31,45,54,(),()A.60, 68;B.55, 61; C.63, 72;D.72, 80 分析:答案C,分四组=>(4,13),(22,31),(45,54),(63,72)=>每组的差为9

【202】9,15,22, 28, 33, 39, 55,()A.60;B.61;C.66;D.58;

分析:答案B,分四组=>(9,15),(22,28),(33,39),(55,61)=>每组的差为6

【203】1,3,4,6,11,19,()

A.57;B.34;C.22;D.27;

分析:答案B,数列差为2 1 2 5 8,前三项相加为第四项 2+1+2=5 1+2+5=8 2+5+8=15 得出数列差为2 1 2 5 8 15

【204】-1,64,27,343,()

A.1331;B.512;C.729;D.1000;

分析:答案D,数列可以看成 -1三次方, 4的三次方, 3的三次方, 7的三次方,其中-1,3,4,7两项之和等于第三项,所以得出3+7=10,最后一项为10的三次方

【205】3,8,24,63,143,()A.203,B.255,C.288,D.195,分析:答案C,分解成2-1,3-1,5-1,8-1,12-1;2、3、5、8、12构成二级等差数列,它们的差为1、2、3、4、(5)所以得出2、3、5、8、12、17,后一项为17-1 得288

【206】3,2,4,3,12,6,48,()A.18;B.8;C.32;D.9;

分析:答案A,数列分成 3,4,12,48,和 2,3,6,(),可以看出前两项积等于第三项

【207】1,4,3,12,12,48,25,()A.50;B.75;C.100;D.125 分析:答案C,分开看:1,3,12,25; 4,12,48,()差为2,9,13 8,36,? 因为2×4=8,9×4=36,13×4=52,所以?=52,52+48=100

【208】1,2,2,6,3,15,3,21,4,()

A.46;B.20;C.12;D.44;

分析:答案D,两个一组=>(1,2),(2,6),(3,15),(3,21),(4,44)=>每组后项除以前项=>2,3,5,7,11 连续的质数列

【209】 24,72,216, 648,()A.1296;B.1944;C.2552;D.3240

2分析:答案B,后一个数是前一个数的3倍

【210】4/17,7/13, 10/9,()A.13/6;B.13/5;C.14/5;D.7/3;

分析:答案B,分子依次加3,分母依次减4

【211】 1/2,1,1,(),9/11,11/13, A.2;B.3;C.1;D.7/9 ;

分析:答案C,将1分别看成3/3,5/5,7/7.分子分别为1,3,5,7,9,11.分母分别为2,3,5,7,11,13连续质数列

【212】13,14,16,21,(),76 A.23;B.35;C.27;D.22

分析:答案B,差分别为1,2,5,而这些数的差又分别为1,3,所以,推出下一个差为9和27,即()与76的差应当 为31。

【213】2/3,1/4,2/5,(),2/7,1/16,A.1/5;B.1/17;C.1/22; D.1/9 ;

分析:答案D,将其分为两组,一组为2/3,2/5,2/7,一组为1/4,(),1/16,故()选1/9

【214】3,2,3,7,18,()A.47;B.24;C.36;D.70; 分析:答案A,3(第一项)×2(第二项)--3(第一项)=3(第三项);3(第一项)×3(第三项)--2(第二项)=7(第四项);3(第一项)×7(第四项)--3(第三项)=18(第五项);3(第一项)×18(第五项)--7(第四项)=47(第六项)

【215】3,4,6,12,36,()

A.8;B.72;C.108;D.216 分析:答案D,前两项之积的一半就是第三项

【216】125,2,25,10,5,50,(),()

A.10,250;B.1,250; C.1,500 ; D.10,500;

分析:答案B,奇数项125,25,5,1等比,偶数项2,10,50,250等比

【217】15,28,54,(),210 A.78;B.106;C.165;D.171; 分析:答案B,思路一:15+13×1=28, 28+13x2=54,54+13×4=106, 106+13x8=210,其中1,2,4,8等差。思路二:2×15-2=28,2×28-2=54,2×54-2=106,2×106-2=210,【218】 2,4,8,24,88,()

A.344;B.332; C.166;D.164;

分析:答案A,每一项减第一项=>2,4,16,64,256=>第二项=第一项的2次方,第三项=第一项的4次方,第四项=第一项的6次方,第五项=第一项的8次方,其中2,4,6,8等差

【219】22,35,56,90,(),234 A.162;B.156;C.148;D.145;

分析:答案D,后项减前项=>13,21,34,55,89,第一项+第二项=第三项

【220】1,7,8, 57,()A.123;B.122;C.121;D.120;

222分析:答案C,1+7=8,7+8=57,8+57=121

【221】1,4,3,12,12,48,25,()A.50;B.75;C.100;D.125 分析:答案C,第二项除以第一项的商均为4,所以,选C100

【222】5,6,19,17,(),-55 A.15;B.344;C.343;D.11;

分析:答案B,5的平方-6=19,6的平方-19=17,19的平方-17=344,17平方-344=-55

【223】3.02,4.03,3.05,9.08,()A.12.11;B.13.12;C.14.13;D.14.14;

分析:答案B,小数点右边=>2,3,5,8,12 二级等差,小数点左边=>3,4,3,9,13 两两相加=>7,7,12,22 二级等差

【224】95,88,71,61,50,()A.40;B.39;C.38;D.37;

分析:答案A,955 = 81,888 = 72,711 = 63,611 = 54,500 = 45,400 = 36,其中81,72,63,54,45,36等差

【225】4/9,1,4/3,(),12,36 A.2;B.3;C.4;D.5;

分析:答案C,4/9,1,4/3,()12,36=>4/9,9/9,12/9,36/9,108/9,324/9,分子:

(1/2)14,9,12,36,108,324=>第一项×第二项的n次方=第三项,4×(9)=12,4×(9)=36,4×(9(3/2))=108,4×(9)=324,其中1/2,1,3/2,2等差,分母:9,9,9,9,9,9等差 2

【226】 1,2,9,121,()

A.251;B.441;C.16900;D.960;

分析:答案C,(1+2)的平方等于9,2+9的平方等于121,9+121的平方等于16900

【227】6,15,35,77,()A.106;B.117;C.136;D.163;

分析:答案D,15=6×2+3,35=15×2+5,77=35×2+7,?=77×2+9

【228】16,27,16,(),1 A.5;B.6;C.7;D.8;

43210分析:答案A,2=16 3=27 4=16

5=5 6=1

【229】4,3,1, 12, 9, 3, 17, 5,()

A.12;B.13;C.14;D.15;

分析:答案A,1+3=4,3+9=12,?+5=17,?=12,【230】1,3,15,()A.46;B.48;C.255;D.256 1248分析:答案C,2-1 = 1;2-1 = 3;2-1 = 15;所以 21 =第三项

【287】-1,0,31, 80, 63,(), 5 A.35, B.24, C.26, D.37 分析:选B,0×7-1=-1;1×6-1=0 ;2×5-1=31;3×4-1=80;4×3-1=63;5×2-1=24;6×1-1=5;

【288】-1,0,31,80,63,(),5

A.35;B.24;C.26;D.37 分析:选D,每项除以3=>余数列2、0、1、2、0、1

【289】102,96,108,84,132,()A.36;B.64;C.70;D.72

分析:选A,两两相减得新数列:6,-12,24,-48,?;6/-12=-12/24=24/-48=-1/2,那么下一项应该是-48/96=-1/2;根据上面的规律;那么132-?=96 ;=>36

【290】1,32,81,64,25,(),1 A.5,B.6,C.10,D.12

1分析:选B,M的递减和M的N次方递减,6=6

【291】2,6,13,24,41,()A.68;B.54;C.47;D.58

分析:选A,2=1二次方+1 6=2二次方+2 13=3二次方+4 24=4二次方+8 41=5二次方+16 ?=6二次方+32

【292】 8, 12, 16,16,(),-64

分析:1×8=8;2×6=12;4×4=16;8×2=16;16×0=0;32×(-2)=-64;

【293】0,4,18,48,100,()A.140;B.160;C.180;D.200 分析:选C,思路一:二级等差。

思路二:0=1的2次方×0;4=2的2次方×1…180=6的2次方×5。

22222思路三:0=1×0;4=2×1;18=3×2 ;48=4×3 ;100=5×4;所以最后一个数为6×5=180

【294】3,4,6,12,36,()A.8;B.72;C.108;D.216 分析:选D,(第一项*第二项)/2=第三项,216=12×36/2

【295】2,2,3,6,15,()A、30;B、45;C、18;D、24 分析:选B,后项比前项=>1,1.5,2,2.5,3 前面两项相同的数,一般有三种可能,1)相比或相乘的变式。两数相比等于1,最适合构成另一个等比或等差关系2)相加,一般都是前N项之和等于后一项。3)平方或者立方关系其中平方,立方关系出现得比较多,也比较难。一般都要经两次变化。像常数乘或者加上一个平方或立方关系。或者平方,立方关系减去一个等差或等比关系。还要记住1,2这两个数的变式。这两个特别是1比较常用的。

【296】1,3,4,6,11,19,()2A.57; B.34; C.22;D.27 分析:选B,差是2,1,2,5,8,?;前3项相加是第四项,所以?=15;19+15=34

【297】13,14,16,21,(),76 A.23; B.35;C.27;D.22 分析:选B,相连两项相减:1,2,5,();再减一次:1,3,9,27;()=14;21+14=35

【298】3,8,24,48,120,()

A.168;B.169;C.144;D.143 ;

222222分析:选A,2-1=3;3-1=8;5-1=24;7-1=48;11-1=120;13-1=168;质数的平方-1

【299】21,27,36,51,72,()A.95;B.105;C.100;D.102 ;

分析:选B,21=3×7;27=3×9;36=3×12;51=3×17;72=3×24;7,9,12,17,24两两差为2,3,5,7,? 质数,所以?=11;3×(24+11)=105

【300】2,4,3,9,5,20,7,()A.27;B.17;C.40;D.44 ;

分析:选D,偶数项:4,9,20,44 9=4×2+1;20=9×2+2;44=20×2+4其中1,2,4成等比数列,奇数项:2,3,5,7连续质数列

【301】1,8,9,4,(),1/6 A,3;B,2;C,1;D,1/3 43210(-1)分析:选C,1=1;8=2;9=3;4=4;1=5 ;1/6=6

【302】63,26,7,0,-2,-9,()

3333333分析:4-1=63;3-1=26;2-1=7;1-1=0;-1-1=-2;-2-1=-9 ;-3-1=-28

【303】8,8,12,24,60,()A,240;B,180;C,120;D,80 分析:选B,8,8是一倍12,24两倍关系60,(180)三倍关系

【304】-1,0,31,80,63,(),5 A.35;B.24; C.26;D.37;

765432分析:选B,-1 = 01 31= 21 63 = 41 5 = 6 – 1

【305】3,8,11,20,71,()A.168;B.233;C.91;D.304 分析:选B,每项除以第一项=>余数列2、2、2、2、2、2、2

【306】88,24,56,40,48,(),46 A.38;B.40;C.42;D.44 分析:选D,前项减后项=>64、-32、16、-

8、4、-2=>前项除以后项=>-

2、-

2、-

2、-

2、-2

【307】4,2,2,3,6,()A.10;B.15;C.8;D.6;

分析:选B,后项/前项为:0.5,1,1.5,2,?=2.5

所以6×2.5=15 1【308】49/800,47/400,9/40,()A.13/200;B.41/100;C.51/100;D.43/100 分析:选D,思路一:49/800,47/400,9/40, 43/100=>49/800、94/800、180/800、344/800=>分子 49、94、180、344

49×2-4=94;94×2-8=180;180×2-16=344;其中4、8、16等比。

思路二:分子49,47,45,43;分母800,400,200,100

【309】36,12,30,36,51,()

A.69 ;B.70; C.71; D.72 分析:选A,36/2=30-12;12/2=36-30;30/2=51-36;36/3=X-51; X=69

【310】5,8,-4,9,(),30,18,21 A.14;B.17;C.20;D.26 分析:选B,5+21=26;8+18=26;-4+30=26;9+17=26

【311】6,4,8,9,12,9,(),26,30 A.12;B.16;C.18;D.22 分析:选B,6+30=36;4+26=30;8+x=?;9+9=18;12 所以x=24,公差为6

【312】6, 3, 3, 4.5, 9,()A.12.5;B.16.5;C.18.5;D.22.5 分析:选D,6,3,3,4.5,9,(22.5)=>后一项除以前一项=>1/2、1、2/3、2、5/2(等差)

【313】3.3,5.7,13.5,()A.7.7;B.4.2;C.11.4;D.6.8 分析:选A,都为奇数

【314】5,17,21,25,()A.34;B.32;C.31;D.30; 分析:选C,都是奇数

【315】400,(),2倍的根号5,4次根号20 A.100;B.4; C.20;D.10 分析:选C,前项的正平方根=后一项

【316】1/2,1,1/2,1/2,()A.1/4;B.6/1; C.2/1;D.2 分析:选A,前两项乘积 得到 第三项

【317】 65,35,17,(),1 A.9;B.8;C.0;D.3;

分析:选D,65 = 8×8 + 1;35 = 6×6 – 1;17 = 4×4 + 1;3= 2×2 – 1;1= 0×0 + 1

【318】 60,50,41,32,23,()A.14;B.13;C.11; D.15; 分析:选B,首尾和为 73。

【319】16,8,8,12,24,60,()A、64;B、120;C、121;D、180 分析:选D。后数与前数比是1/2,1,3/2,2,5/2,---答案是180

【320】3,1,5,1,11,1,21,1,()A、0;B、1、C、4;D、35 分析:选D。偶数列都是1,奇数列是3、5、11、21、(),相邻两数的差是2、6、10、14是个二级等差数列,故选D,35。

【321】0,1,3,8,22,64,()A、174;B、183;C、185;D、190 答:选D,0×3+1=1;1×3+0=3;3×3-1=8;8×3-2=22;22×3-2=64;64×3-2=190;其中1、0、-

1、-

2、-

2、-2头尾相加=>-

3、-

2、-1等差

【322】0,1,0,5,8,17,()A、19;B、24;C、26;D、34; 答:选B,0 =(-1)1 5 =(2)+ 1.....24 =(5)-1

【323】0,0,1,4,()A、5;B、7;C、9;D、10 分析:选D。二级等差数列

【324】18,9,4,2,(),1/6 A、1;B、1/2;C、1/3;D、1/5 分析:选C。两个一组看。2倍关系。所以答案 是 1/3。

【325】6,4,8,9,12,9,(),26,30 A、16;B、18;C、20;D、25 分析:选A。头尾相加=>36、30、24、18、12等差

【326】 1,2,8,28,()A.72;B.100;C.64;D.56

答:选B,1×2+2×3=8;2×2+8×3=28;8×2+28×3=100

【327】1, 1, 2, 2, 3, 4, 3, 5,()A.6;B.4;C.5;D.7;

答:选A,1, 1, 2;2, 3, 4;3, 5 6=>分三组=>每组第一、第二、第三分别组成数列=>1,2,3;1,3,5;2,4,6

【328】0,1/9,2/27,1/27,()A.4/27;B.7/9;C.5/18;D.4/243;

答:选D,原数列可化为0/3,1/9,2/27,3/81;分子是0,1,2,3的等差数列;分母是3,9,27,81的等比数列;所以后项为4/243

【329】1,3,2,4,5,16,()。A、28;B、75;C、78;D、80 答:选B,1(第一项)×3(第二项)-1=2(第三项);3×2-2=4;2×4-3=5……5×16-5=75

【330】1,2,4,9,23,64,()A、87;B、87;C、92;D、186 答:选D,1(第一项)×3-1=2(第二项); 2×3-2=4....64×3-6=186

【331】2,2,6,14,34,()A、82;B、50;C、48;D、62 答:选A,2+2×2=6;2+6×2=14;6+14×2=34;14+34×2=82

222

2【332】 3/7,5/8,5/9,8/11,7/11,()A、11/14;B、10/13;C、15/17;D、11/12 答:选A,奇数项3/7,5/9,7/11.分子3,5,7等差;分母7,9,11等差。偶数项5/8,8/11,11/14,分子分母分别等差

【333】 2,6,20,50,102,()A、142;B、162;C、182;D、200 答:选C,思路一:三级等差。即前后项作差两次后,形成等差数列。也就是说,作差三次后所的数相等。

2222思路二:2(第一项)+3-5=6(第二项);6+4-2=20 20+5+5=50;50+6+16=102。其中-5,-2,5,16,可推出下一数为31(二级等差)所以,102+7+31=182

【334】 2,5,28,(),3126 A、65;B、197;C、257;D、352 答:选C,1的1次方加1(第一项),2的2次方加1等5,3的3次方加1等28,4的4次方加1等257,5的5次方加1等3126,【335】7,5,3,10,1,(),()

A.15、-4; B.20、-2; C.15、-1; D.20、0 答:选D,奇数项7,3,1,0=>作差=>4,2,1等比;偶数项5,10,20等比

【336】81,23,(),127

A.103;B.114;C.104;D.57 答:选C,第一项+第二项=第三项。81+23=104,23+104=127

【337】1,3,6,12,()A.20;B.24;C.18;D.32;

答:选B,3(第二项)/1(第一项)=3,6/1=6,12/1=12,24/1=24;3,6,12,24是以2为等比的数列

【338】7,10,16,22,()A.28;B.32;C.34;D.45;

答:选A,10=7×1+3;16=7×2+2;22=7×3+1;28=7×4+0

【339】11,22,33,45,(),71 A.50;B.53;C.57;D.61 答:选C,10+1=11;20+2=22;30+3=33;40+5=45;50+7=57;60+11=71;加的是质数!

【340】1,2,2,3,4,6,()

A.7;B.8;C.9;D.10 答:选C,1+2-1=2;2+2-1=3;2+3-1=4;3+4-1=6;4+6-1=9;

【341】3,4,6,12,36,()

A.8;B.72;C.108;D.216;

答:选D,前两项相乘除以2得出后一项,选D

【342】5,17,21,25,()

A.30;B.31;C.32;D.34 答:选B,思路一:5=>5+0=5 ,17=>1+7=>8,21=>2+1=>3,25=>2+5=7,?=>? 得到新数列5,8,3,27,?。三个为一组(5,8,3),(3,7,?)。第一组:8=5+3。第二组:7=?+3。?=>7。规律是:重新组合数列,3个为一组,每一组的中间项=前项+后项。再还原数字原有的项4=>3+1=>31。

思路二:都是奇数。

【343】12,16,112,120,()分析:答案:130。

把各项拆开=>分成5组(1,2),(1,6),(1,12),(1,20),(1,30)=>每组第一项1,1,1,1,1等差;第二项2,6,12,20,30二级等差。

【344】13,115,135,()

分析:答案:163。把各项拆开=>分成4组(1,3),(1,15),(1,35),(1,63)=>每组第一项1,1,1,1,1等差;第二项3,15,35,63,分别为奇数列1,3,5,7,9两两相乘所得。

【345】-12,34,178,21516,()分析:答案:33132。-12,34,178,21516,(33132)=>-12,034,178,21516,(33132),首位数:-1,0,1,2,3等差,末位数:2,4,8,16,32等比,中间的数:3,7,15,31,第一项×2+1=第二项。

【346】15, 80, 624, 2400,()A.14640;B.14641;C.1449;D.4098;

44444分析:选A,15=2-1;80=3-1;624=5-1; 2400=7-1;?=11-1;质数的4次方-1

【347】5/3,10/8,(),13/12 A.12/10;B.23/11; C.17/14; D.17/15 分析:选D。5/3,10/8,(17/15),13/12=>5/3,10/8,(17/15),26/24,分子分母分别为二级等差。

【348】2,8,24,64,()

A.128;B.160;C.198;D.216;

分析:选b。2=1×2;8=2×4;24=4×6;64=8×8;?=16×10;左端1,2,4,8,16等比;右端2,4,6,8,10等差。

【349】 2,15,7,40,77,()

A.96;B.126;C.138;D.156;

222答:选C,15-2=13=4-3;40-7=33=6-3;138-70=61=8-3

【350】 8,10,14,18,()

A.26;B.24;C.32;D.20 答:选A,8=2×4,10=2×5 14=2×7 18=2×9 26=2×13。其中4,5,7,9,13,作差1,2,2,4=>第一项×第二项=第三项

【351】13,14,16,21,(),76

A.23;B.35;C.27;D.22 答:选B,后项减前项=>1,2,5,14,41=>作差=>1,3,9,27等比

【352】1,2,3,6,12,()A.20;B.24;C.18;D.36 答:选B,分3组=>(1,2),(3,6),(12,?)偶数项都是奇数项的2倍,所以是24

【353】20/9,4/3,7/9,4/9,1/4,()A.1/6;B.1/9;C.5/36;D.1/144; 答:选C,20/9,4/3,7/9,4/9,1/4(5/36)=>80/36,48/36,28/36,16/36,9/36,5/36,其中80,48,28,16,9,5三级等差。

【354】4,8/9,16/27,(),36/125,216/49 A.32/45;B.64/25;C.28/75;D.32/15

323232答:选B,偶数项:2/3,4/5(64/25),6/7 规律:分子——2,4,6的立方,分母——3,5,7的平方

【355】13579,1358,136,14,1,()A.1;B.2;C.-3;D.-7 答:选b 第一项13579它隐去了1(2)3(4)5(6)7(8)9括号里边的;第二个又是1358先补了第一项被隐去的8;第三个又是136再补了第一项中右至左的第二个括号的6;第三个又是14;接下来答案就是12

【356】5,6,19,17,(),-55

A、15;B、344;C、343;D、170 答:选B,第一项的平方—第二项=第三项

【357】1,5,10,15,()A、20;B、25;C、30;D、35 分析:答案C,30。思路一:最小公倍数。

思路二:以1为乘数,与后面的每一项相乘,再加上1与被乘的数中间的数.即:1×5+0=5,1×10+5=15,1×15+5+10=30

【358】129,107,73,17,-73,()

A.-55;B.89;C.-219;D.-81;

答:选c,前后两项的差分别为:22、34、56、90,且差的后项为前两项之和,所有下一个差为146,所以答案为-73-146=219

【359】20,22,25,30,37,()A.39;B.45;C.48;D.51;

答:选c,后项--前项为连续质数列。

【360】2,1,2/3,1/2,()

A.3/4;B.1/4;C.2/5;D.5/6 答:选C,变形:2/1,2/2,2/3,2/4,2/5

【361】7,9,-1,5,()

A.3;B.-3;C.2;D.-1 答:选B,思路一:(前一项-后一项)/2思路二:7+9=16 9+(-1)=8;(-1)+5=4;5+(-3)=2其中2,4,8,16等比

【362】5,6,6/5,1/5,()

A.6;B.1/6;C.1/30;D.6/25 答:选B,第二项/第一项=第三项

【363】1,1/2,1/2,1/4,()A.1/4;B.1/8;C.1/16;D.3/4 答:选B,第一项*第二项=第三项 【364】1/2,1,1/2,2,()A.1/4;B.1/6;C.1/2;D.2 答:选a。第一项/第二项=第三项

【365】16,96,12,10,(),15 A、12;B、25;C、49;D、75 答:选D。75。通过前面3个数字的规律,推出后面3个数字的规律。前面12×16/2=96,因此下面15×10/2=75

【366】41,28,27,83,(),65 A、81;B、75;C、49;D、36 答:选D。36。(41-27)×2=28,(83-65)×2=36

【367】-1,1,7,17, 31,(),71

A.41;B.37;C.49;D.50 答:选c。后项-前项=>差是2,6,10,14,?。?=1831+18=49

【368】-1,0,1,2,9,()

A.11;B.82;C.729;D.730;

答:选D。前面那个数的立方+1所以9的立方+1==730

【369】 1, 3, 3, 6,5,12,()

A.7;B.12;C.9;D.8;

答:选a。奇数项规律:1 3 5 7等差;偶数项3,6,12等比。

【370】 2, 3, 13,175,()A、255;B、2556;C、30651;D、36666 答:选C,30651。前面项的两倍+后面项的平方=第三项

【371】 1/2,1/6, 1/12, 1/30,()

A.1/42;B.1/40;C.11/42;D.1/50;

答:选A。分子为2、6、12、30,分别是2的平方-2=2,3的平方-3=6,4的平方-4=14,6的平方-6=30,下一项应该为7的平方-7=42,所以答案因为A(1/42).【372】23,59,(),715 A、64;B、81;C、37;D、36 分析:答案C,37。拆开:(2,3)(5,9)(3,7)(7,15)=〉3=2×2—1;9=5×2—1;7=3×2+1;15=7×2+1

【373】 15,27,59,(),103 A、80;B.81;C.82;D.83 答:选B.15-5-1=9 ;27-2-7=18;59-5-9=45; XY-X-Y=?;103-1-3=99;成为新数列9,18,45,?,99 后4个都除9,得新数列2,5,()11为等差

()为8 时是等差数列

得出?=8×9=72 所以答案为B,是81

【374】2,12,36,80,150,()A、156;B、252;C、369;C、476 分析:答案B,252。2=1×2;12 =3×4;36 =6×6;80 =10×8;150=15×10;?=21×12,其中1,3,6,10,15二级等差,2,4,6,8,10等差。

【375】2,3,2,6,3,8,6,()A、8;B、9;C、4;D、16

第二篇:公务员行测数字推理技巧详解(全)

夜风非常冷整理

公务员数字推理技巧总结精华版

强烈推荐

数字推理技巧总结:

备考规律一:等差数列及其变式

(后一项与前一项的差d为固定的或是存在一定规律(这种规律包括等差、等比、正负号交叉、正负号隔两项交叉等)(1)后面的数字与前面数字之间的差等于一个常数。如7,11,15,(19)

(2)后面的数字与前面数字之间的差是存在一定的规律的,这个规律是一种等差的规律。如7,11,16,22,(29)(3)后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种等比的规律。如7,11,13,14,(14.5)(4)后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种正负号进行交叉变换的规律。【例题】7,11,6,12,(5)(5)后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种正负号每“相隔两项”进行交叉变换的规律。【例题】7,11,16,10,3,11,(20)

备考规律二:等比数列及其变式

(后一项与除以前一项的倍数q为固定的或是存在一定规律(这种规律包括等差、等比、幂字方等)(1)“后面的数字”除以“前面数字”所得的值等于一个常数。

【例题】4,8,16,32,(64)

(2)后面的数字与前面数字之间的倍数是存在一定的规律的,倍数加1。【例题】4,8,24,96,(480)(3)后面的数字与前面数字之间的倍数是存在一定的规律的,倍数乘2 【例题】4,8,32,256,(4096)(4)后面的数字与前面数字之间的倍数是存在一定的规律的,倍数为3的n次方。【例题】2,6,54,1428,(118098)(5)后面的数字与前面数字之间的倍数是存在一定的规律的,“倍数”之间形成了一个新的等差数列。【例题】2,-4,-12,48,(240)

备考规律三:“平方数”数列及其变式(an=n+d,其中d为常数或存在一定规律)

(1)“平方数”的数列【例题】1,4,9,16,25,(36)(2)每一个平方数减去或加上一个常数 【例题】0,3,8,15,24,(35)【例题变形】2,5,10,17,26,(37)

(3)每一个平方数加去一个数值,而这个数值本身就是有一定规律的。【例题】2,6,12,20,30,(42)

备考规律四:“立方数”数列及其变式(an=n+d,其中d为常数或存在一定规律)

(1)“立方数”的数列【例题】8,27,64,(125)

(2)“立方数”的数列,其规律是每一个立方数减去或加上一个常数 【例题】7,26,63,(124)【例题变形】9,28,65,(126)

32夜风非常冷整理

(3)每一个立方数加去一个数值,而这个数值本身就是有一定规律的。【例题】9,29,67,(129)

备考规律五:求和相加、求差相减、求积相乘、求商相除式的数列

(第三项等于第一项与第二项的运算结果,或者相差一个常量,或者相差一定的规律)第一项与第二项相加等于第三项【例题】56,63,119,182,(301)第一项减去第二项等于第三项【例题】8,5,3,2,1,(1)第一项与第二项相乘等于第三项【例题】3,6,18,108,(1944)第一项除以第二项等于第三项【例题】800,40,20,2,(10)

备考规律六:“隔项”数列

(1)相隔的一项成为一组数列,即原数列中是由两组数列结合而成的。【例题】1,4,3,9,5,16,7,(25)

备考规律七:混合式数列

【例题】1,4,3,8,5,16,7,32,(9),(64)将来数字推理的不断演变,有可能出现3个数列相结合的题型,即有可能出现要求考生填写3个未知数字的题型。所以大家还是认真总结这类题型。

【例题变形】1,4,4,3,8,9,5,16,16,7,32,25,(9),(64),(36)

1.数字推理

数字推理题给出一个数列,但其中缺少一项,要求考生仔细观察这个数列各数字之间的关系,找出其中的排列规律,然后从4个供选择的答案中选出自己认为最合适、合理的一个,来填补空缺项,使之符合原数列的排列规律。

在解答数字推理题时,需要注意的是以下两点:一是反应要快;二是掌握恰当的方法和规律。一般而言,先考察前面相邻的两三个数字之间的关系,在关脑中假设出一种符合这个数字关系的规律,并迅速将这种假设应用到下一个数字与前一个数字之间的关系上,如果得到验证,就说明假设的规律是正确的,由此可以直接推出答案;如果假设被否定,就马上改变思路,提出另一种数量规律的假设。另外,有时从后往前推,或者“中间开花”向两边推也是较为有效的。

两个数列规律有时交替排列在一列数字中,是数字推理测验中一种较为常见的形式。只有当你把这一列数字判断为单数项与双数项交替排列在一起时,才算找到了正确解答这道题的方向,你的成功就已经是80%了。

由此可见,即使一些表面看起来很复杂的排列数列,只要我们对其进行细致的分析和研究,就会发现,具体来说,将相邻的两个数相加或相减,相乘或相除之后,它们也不过是由一些简单的排列规律复合而成的。只要掌握它们的排列规律,善于开动脑筋,就会获得理想的效果。

需要说明一点:近年来数字推理题的趋势是越来越难,即需综合利用两个或者两个以上的规律。因此,当遇到难题时,可以先跳过去做其他较容易的题目,等有时间再返回来解答难题。这样处理不但节省了时间,保证了容易题目的得分率,而且会对难题的解答有所帮助。有时一道题之所以解不出来,是因为我们的思路走进了“死胡同”,无法变换角度思考问题。

此时,与其“卡”死在这里,不如抛开这道题先做别的题。在做其他题的过程中也许就会有新的解题思路,从而有助于解答这些少量的难题。

在做这些难题时,有一个基本思路:“尝试错误”。很多数字推理题不太可能一眼就看出规律、找到答案,而是要经过两三次的尝试,逐步排除错误的假设,最后找到正确的规律。

2.数学运算

数学运算题主要考查解决四则运算等基本数字问题的能力。在这种题型中,每道试题中呈现一道算术式子,或者是表述数字关系的一段文字,要求考生迅速、准确地计算出答案,并判断所计算的结果与答案各选项中

夜风非常冷整理

哪一项相同,则该选项即为正确答案,并在答卷纸上将相应题号下面的选项字母涂黑。

数学运算的试题一般比较简短,其知识内容和原理多限于小学数中的加、减、乘、除四则运算。尽管如此,也不能掉以轻心、麻痹大意,因为测验有时间限制,需要考生算得既快又准。

二、解题技巧及规律总结

数字推理主要是通过加、减、乘、除、平方、开方等方法来寻找数列中各个数字之间的规律,从而得出最后的答案。在实际解题过程中,根据相邻数之间的关系分为两大类:

一、相邻数之间通过加、减、乘、除、平方、开方等方式发生联系,产生规律,主要有以下几种规律:

1、相邻两个数加、减、乘、除等于第三数

2、相邻两个数加、减、乘、除后再加或者减一个常数等于第三数

3、等差数列:数列中各个数字成等差数列

4、二级等差:数列中相邻两个数相减后的差值成等差数列

5、等比数列 :数列中相邻两个数的比值相等

6、二级等比:数列中相邻两个数相减后的差值成等比数列

7、前一个数的平方等于第二个数

8、前一个数的平方再加或者减一个常数等于第二个数;

9、前一个数乘一个倍数加减一个常数等于第二个数;

10、隔项数列:数列相隔两项呈现一定规律,11、全奇、全偶数列

12、排序数列

二、数列中每一个数字本身构成特点形成各个数字之间的规律。

1、数列中每一个数字都是n 的平方构成或者是n 的平方加减一个常数构成,或者是n的平方加减n构成2、每一个数字都是n的立方构成或者是n的立方加减一个常数构成,或者是n的立方加减n

3、数列中每一个数字都是n的倍数加减一个常数

以上是数字推理的一些基本规律,必须掌握。但掌握这些规律后,怎样运用这些规律以最快的方式来解决问题呢?

这就需要在对各种题型认真练习的基础上,应逐步形成自己的一套解题思路和技巧。

第一步,观察数列特点,看是否存是隔项数列,如果是,那么相隔各项按照数列的各种规律来解答

第二步,如果不是隔项数列,那么从数字的相邻关系入手,看数列中相邻数字在加减乘除后符合上述的哪种规律,然后得出答案。

第三步,如果上述办法行不通,那么寻找数列中每一个数字在构成上的特点,寻找规律。

当然,也可以先寻找数字构成的规律,在从数字相邻关系上规律。这里所介绍的是数字推理的一般规律,在对各种基本题型和规律掌握后,很多题是可以直接通过观察和心算得出答案

一、看特征,做试探。

①首先观察数列的项数,如果项数比较长,或有两项是括号项,可考虑虑奇、偶项数列和两两分组数列。例如:25,23,27,25,29,27(奇、偶项数列)

②其次观察数列的数字特点,注意各项数字是否为整数的平方或立方,或是与它们左右相邻或相近的数字,如果是,则可考虑平方数列或立方数列。

例如:2,5,10,17,26(数列各项减1得一平方数列)

③再次观察数列数字间的变化幅度的大小,如果前几项较小,末项却突然增大数倍,则此是可考虑等比数列;如果数列的起伏不大,变化幅度小且逐渐递增或递减,则可考虑等差数列。例如:4,8,16,32,64,128(等比数列)3,5,8,12,17(二级等差数列)

④如果数列内有多项分数或者根式,则一般需要将其余项均化为分数或者根式。

二、单数字发散。

夜风非常冷整理

即从题目中所给出的某一个数字出发,寻找与之相关的各个特征数字,从而找到解析试题的“灵感”的思维方式。

①分解发散。针对某个数,联系其各个因子(即约数)及其因子的表示形式(包括幂次形式、阶乘形式等),牢记典型质数与“典型形似质数”的分解方式。

②相邻发散。针对某个数,联系与其相邻的各个具有典型特征的数字(即“基准数字”),将题干中数字与这些“基准数字”联系起来,从而洞悉解题的思想。例如:题目中出现了数字26,则从26出发我们可以联想到:

夜风非常冷整理

三、多数字联系。

即从题目中所给的某些数字组合出发,寻找之间的联系,从而找到解析例题的“灵感的思维方式”。多数字联系的基本思路:把握数字之间的共性;把握数字之间的递推关系。例如:题目出现了数字1、4、9,则从1、4、9出发我们可以联想到:

(1)2、3、10、15、(26)

解析:1的平方+1=2、2的平方-1=3、3的平方+1=10、4的平方-1=15、5的平方+1=(26)

(2)10、9、17、50、(199)

解析:10*1-1=9、9*2-1=17、17*3-1=50、50*4-1=(199)

(3)2、8、24、64、(160)

解析:2*2+4=8、8*2+8=24、24*2+16=64、64*2+32=(160)

(4)0、4、18、48、100、()

解析:这道题的关键是将每一项分解,0*1=0、2*2=4、6*3=18、12*4=48、20*5=100、30*6=(180)

夜风非常冷整理

(5)4、5、11、14、22、()

解析:

前项与后项的和是到自然数平方数列。

4+5=9、5+11=16、11+14=25、14+22=36、22+(27)=49

(6)2、3、4、9、12、15、22、()

解析:

每三项相加,得到自然数平方数列。2+3+4=9、3+4+9=16、4+9+12=25、9+12+15=36、12+15+22=49、15+22+(27)=64

(7)1、2、3、7、46、()

解析:

后一项的平方减前一项得到第三项,2的平方-1=3、3的平方-2=7、7的平方-3=46、46的平方-7=(2109)

(8)2、2、4、12、12、()、72

这是一个组合数列2*1=2、2*2=4、4*3=12、12*1=12、12*2=(24)、24*3=72

(9)4、6、10、14、22、()

每项除以2得到质数列 2、3、5、7、11、(26)/2=13

(10)5、24、6、20、()、15、10、()

5*24=120、6*20=120、(8)*15=120、10*(12)=120

(11)763951、59367、7695、967、()

本题并未研究计算关系,而只是研究项与项之间的数字规律。将第一项763951中的数字“1”去掉,并从后向前数得到下一项59367;将59367中的“3”去掉,并从后向前数得到7695;7695去掉“5”,从后向前数得到967;967去掉“7”,从后向前数得到(69)。

(12)13579、1358、136、14、1()

解析:各项除以10四舍五入后取整得到下一项,1/10=0.1,四舍五入取整为(0)

(13)3、7、16、107、(1707)

夜风非常冷整理

解析:3*7-5=16、7*16-5=107、16*107-5=(1707)

(14)2、3、13、175、(30651)

解析:3的平方+2*2=13、13的平方+3*2=175、175的平方+13*2=(30651)

(15)0、1、2、5、12、(29)

解析:中间一项的两倍加前一项的和为后一项,1*2+0=2、2*2+1=5、5*2+2=12、12*2+5=(29)

(16)

4、8/

9、16/

27、(64/25)、36/125、216/49

解析:将数列变化为 4/

1、8/

9、16/

27、(x/y)、36/125、216/49,按照第一项取分母1,第二项取分子8,第三项取分母27的顺序可以得到数列,1、8、27、(x)、125、216,很明显x应该是4的三次方即x=64。按照同样的方法在原数列中,第一项取分子4,第二项取分母9得到自然数的平方数列,5的平方=y=25,最后的答案为(64/25)

(17)1、2、3、6、11、()

解析:1+2=3、3+6=9、11+(16)=27组成等比数列。

(18)1、2、3、35、(11024)

解析:两项乘积的平方再减去一得到下一项,(1*2)的平方-1=

3、(2*3)的平方-1=

35、(3*35)的平方-1=(11024)

(19)3、3、9、15、33、(63)

解析:3*2-3=3、3*2+3=9、9*2-3=15、15*2+3=33、33*2-3=(63)

(20)8、12、18、27、(40.5)

解析:8*1.5=12、12*1.5=18、18*1.5=27、27*1.5=(40.5)1.256,269,286,302,()A.254 B.307 C.294 D.316 解析: 2+5+6=13 256+13=269 2+6+9=17 269+17=286 2+8+6=16 286+16=302 ?=302+3+2=307 2.72 , 36 , 24 , 18 ,()A.12 B.16 C.14.4 D.16.4 解析:(方法一)相邻两项相除, 72 36 24 18 / / / 2/1 3/2 4/3(分子与分母相差1且前一项的分子是后一项的分母)接下来貌似该轮到5/4,而18/14.4=5/4.选C

夜风非常冷整理

(方法二)

6×12=72,6×6=36,6×4=24,6×3 =18,6×X 现在转化为求X 12,6,4,3,X 12/6,6/4,4/3,3/X化简得2/1,3/2,4/3,3/X,注意前三项有规律,即分子比分母大一,则3/X=5/4-

可解得:X=12/5 再用6×12/5=14.4

3.8 , 10 , 14 , 18 ,()A.24 B.32 C.26 D.20 分析:8,10,14,18分别相差2,4,4,?可考虑满足2/4=4/?则?=8 所以,此题选18+8=26 4.3 , 11 , 13 , 29 , 31 ,()A.52 B.53 C.54 D.55 分析:奇偶项分别相差11-3=8,29-13=16=8×2,?-31=24=8×3则可得?=55,故此题选D 5.-2/5,1/5,-8/750,()。

A 11/375 B 9/375 C 7/375 D 8/375 解析:-2/5,1/5,-8/750,11/375=> 4/(-10),1/5,8/(-750),11/375=> 分子 4、1、8、11=>头尾相减=>7、7 分母-10、5、-750、375=>分2组(-10,5)、(-750,375)=>每组第二项除以第一项=>-1/2,-1/2 所以答案为A 6.16 , 8 , 8 , 12 , 24 , 60 ,()A.90 B.120 C.180 D.240 分析:相邻两项的商为0.5,1,1.5,2,2.5,3,所以选180 10.2,3,6,9,17,()A.18 B.23 C.36 D.45 分析:6+9=15=3×5

3+17=20=4×5 那么2+?=5×5=25 所以?=23 11.3,2,5/3,3/2,()A.7/5 B.5/6 C.3/5 D.3/4 分析:通分 3/1 4/2 5/3 6/4----7/5

13.20,22,25,30,37,()A.39 B.45 C.48 D.51 分析:它们相差的值分别为2,3,5,7。都为质数,则下一个质数为11 则37+11=48 16.3 ,10 ,11 ,(),127 A.44 B.52 C.66 D.78 解析:3=1^3+2 10=2^3+2 11=3^2+2 66=4^3+2

夜风非常冷整理

127=5^3+2 其中

指数成3、3、2、3、3规律

25.1,2/3,5/9,(1/2),7/15,4/9,4/9 A.1/2 B.3/4 C.2/13 D.3/7 解析:1/1、2/3、5/

9、1/2、7/

15、4/

9、4/9=>规律以1/2为对称=>在1/2左侧,分子的2倍-1=分母;在1/2时,分子的2倍=分母;在1/2右侧,分子的2倍+1=分母 31.5,5,14,38,87 ,()A.167 B.168 C.169 D.170 解析:前三项相加再加一个常数×变量(即:N1是常数;N2是变量,a+b+c+N1×N2)5+5+14+14×1=38 38+87+14+14×2=167

32.(),36,19,10,5,2 A.77 B.69 C.54 D.48 解析:5-2=3 10-5=5 19-10=9 36-19=17 5-3=2 9-5=4 17-9=8 所以X-17应该=16 16+17=33 为最后的数跟36的差 36+33=69 所以答案是 69

33.1,2,5,29,()A.34 B.846 C.866 D.37 解析:5=2^2+1^2 29=5^2+2^2()=29^2+5^2 所以()=866,选c

34.-2/5,1/5,-8/750 ,()

A.11/375 B.9/375 C.7/375 D.8/375 解析:把1/5化成5/25 先把1/5化为5/25,之后不论正负号,从分子看分别是:2,5,8 即:5-2=3,8-5=3,那么?-8=3 ?=11 所以答案是11/375 36.1/3,1/6,1/2,2/3,()解析:1/3+1/6=1/2 1/6+1/2=2/3 1/2+2/3=7/6 41.3 , 8 , 11 , 9 , 10 ,()A.10 B.18 C.16 D.14

夜风非常冷整理

解析:答案是A 3, 8, 11, 9, 10, 10=> 3(第一项)×1+5=8(第二项)3×1+8=11 3×1+6=9 3×1+7=10 3×1+10=10 其中 5、8、6、7、7=> 5+8=6+7 8+6=7+7 42.4,3,1,12,9,3,17,5,()A.12 B.13 C.14 D.15 解析:本题初看较难,亦乱,但仔细分析,便不难发现,这是一道三个数字为一组的题,在每组数字中,第一个数字是后两个数字之和,即4=3+1,12=9+3,那么依此规律,()内的数字就是17-5=12。故本题的正确答案为A。

44.19,4,18,3,16,1,17,()A.5 B.4 C.3 D.2 解析:本题初看较难,亦乱,但仔细分析便可发现,这是一道两个数字为一组的减法规律的题,19-4=15,18-3=15,16-1=15,那么,依此规律,()内的数为17-2=15。故本题的正确答案为D。45.1,2,2,4,8,()A.280 B.320 C.340 D.360 解析:本题初看较难,但仔细分析后便发现,这是一道四个数字为一组的乘法数列题,在每组数字中,前三个数相乘等于第四个数,即2×5×2=20,3×4×3=36,5×6×5=150,依此规律,()内之数则为8×5×8=320。故本题正确答案为B。46.6,14,30,62,()A.85 B.92 C.126 D.250 解析:本题仔细分析后可知,后一个数是前一个数的2倍加2,14=6×2+2,30=14×2+2,62=30×2+2,依此规律,()内之数为62×2+2=126。故本题正确答案为C。

48.12,2,2,3,14,2,7,1,18,3,2,3,40,10,(),4 A.4 B.3 C.2 D.1 解析:本题初看很乱,数字也多,但仔细分析后便可看出,这道题每组有四个数字,且第一个数字被第二、三个数字连除之后得第四个数字,即12÷2÷2=3,14÷2÷7=1,18÷3÷2=3,依此规律,()内的数字应是40÷10÷4=1。故本题的正确答案为D。

49.2,3,10,15,26,35,()A.40 B.45 C.50 D.55 解析:本题是道初看不易找到规律的题,可试着用平方与加减法规律去解答,即2=12+1,3=22-1,10=32+1,15=42-1,26=52+1,35=62-1,依此规律,()内之数应为72+1=50。

夜风非常冷整理

故本题的正确答案为C。50.7 ,9 ,-1 , 5 ,(-3)A.3 B.-3 C.2 D.-1 解析:7,9,-1,5,(-3)=>从第一项起,(第一项 减 第二项)×(1/2)=第三项

第三篇:公务员行测-经典数字推理题型总结

经典数字推理题型总结

第1题:1,2,3,7,16(B)A66 B65 C64 D63 1的平方+2=3 2的平方+3=7 3的平方+7=16 7的平方+16=65

第2题: 0,1,3,8,21()A53 B54 C55 D56(0+1)*2+1(1+3)*2+0(3+8)*2-1(8+21)*2-2=56

第3题: 2,8,24,64(D)A88 B98 C159 D160 1X2=2 2X4=8 3X8=24 4X16=64 5X32=160 第4题:0 , 10, 24, 68,(B)A,96 B120 C194 D254 1的立方-1=0 2的立方+2=10 3的立方-3=24 4的立方+4=68 5的立方-5=120

第5题:6,15,35,77(C)A161 B162 C163 D164 6X2+3=15 15X2+5=35 35X2+7=77 77X2+9=163

第6题:(69),36,19,10,5,2 2X2+1=5 5X2+0=10 10X2+(-1)=5 19X2+(-2)=5 36X2+(-3)=69 第7题:95、88、71、61、50、()A 40 B 39 C 38 D 37

第8题:0,1/4,1/4,3/16,1/8,(B)A 1/16,B 5/64,C 1/8,D 1/4 0/2 1/4 2/8 3/16 4/32 5/64

第9题:1/2,1/9,1/28,(A)A、1/65,B、1/32 C、1/56 D、1/48 分母1的立方+1=2 2的立方+1=9 3的立方+1=28 4的立方+1=65

第10题:400,(),二倍根号5,4倍根号20 A、100 B、4 C、20 D、10

第11题:4、12、8、10,(C)A、6 B、8 C、9 D、24 4+12/2=8 12+8/2=10 8+10/2=9

第12题:7、5、3、10、1、(D)、()A、15、-4 B、20、-2 C、15、-1 D、20、0 7、3、1、(0)之差4、2、1等比,5、10、(20)之差5、10等比

第13题:2,1,2/3,1/2,(C)

A、3/4,B、1/4 C、2/5 D、5/6 2,1,2/3,1/2,(2/5)之差1/1,1/3,1/6,1/10的分母之差等差

第14题:124,3612,51020,(B)

A、7084 B、71428 C、81632 D、91836 3 5 7,2 6 10 14,4 12 20 28 答案71428 B

第15题:2,4,10,28,(C)

A、30,B、52,C、82,D、56

2X3-2=4 4X3-2=10 10X3-2=28 28X3-2=82

第16题:2,12,30,(D)A,50,B,65,C,75,D,56 1的平方+1=2 3的平方+3=12 5的平方+5=30 7的平方+7=56

第17题:16,81,256,(C)

A,500,B,441,C,625,D,1025

4的立方

9的立方

16的立方

25的立方

第18题:1,2,3,6,12,(C)

A.16 B.20 C.24 D.36

1+2=3 1+2+3=6 1+2+3+6=12 1+2+3+6+12=24 第19题:2, 4, 12, 44,(D)A.88 B.176 C.132 D.172 2, 4, 12, 44,(172)之差2, 8, 32, 128等比

第20题:1,3,6,12,(B)

A.20 B.24 C.18 D.32 1、1,52,313,174,(515)2、65,35,17,3,(1)3、23,89,43,2,(3)1,52,313,174,(515)分别观察每个数的个位、十位、百位。

65,35,17,3,(1)

8平方加一,6平方减一,4平方加一,2平方减一,0平方加一。

23,89,43,2,(3)

取前三个数,分别提取个位和百位的相同公约数列在后面。

第四篇:2014年江苏公务员数字推理练习题

江苏中公教育:http://js.offcn.com/ 2014年江苏公务员数字推理练习题(3)

【1】48,65,80,103,120,149,168,()A.202 B.203 C.221 D.233 【2】2,14,84,420,1680,()A.2400 B.3360 C.4210 D.5040 【3】14, 4, 3,-2,()A.-3 B.4 C.-4 D.-8 【4】8/3,4/5,4/31,()A.2/47 B.3/47 C.1/49 D.1/47 【5】0,4,18,48,100,()A.140 B.160 C.180 D.200

参考答案及解析:

1.B【解析】将数列每两个数字分为一组,得48,65;80,103;120,149;168,()。它们的差分别为:17,23,29,这是一个等差数列,因此答案应该为168+29+6=203,故应选B。

2.D【解析】2×7=14,14×6;84,84×5=420,420×4=1680,故()=1680×3=5040,正确答案为D。

3.C【解析】-2除以3用余数表示的话,可以这样表示商为-1且余数为1,同理,-4除以3用余数表示为商为-2且余数为2。因此14,4,3,-2,(-4),每一项都除以3,余数为2、1、0、1、2 =>选C。根据余数的定义,余数一定是大于0的,但商可以小于0,因此,-2除以3的余数不能为-2,这与2除以3的余数是2是不一样的,同时,根据余数小于除数的原理,-2除以3的余数只能为1。

4.D【解析】8/3,4/5,4/31,(1/47)=>8/

3、40/50、4/

31、1/47=>分子分母的差=>-5、10、27、46二级等差

5.C【解析】 思路一:二级等差。

思路二:0=1的2次方×0;4=2的2次方×1…180=6的2次方×5。

思路三:0=12×0;4=22×1;18=32×2;48=42×3;100=52×4;所以最后一个数为62×5=180

江苏中公微博:江苏中公教育

http://weibo.com/jszgy

微信:jsoffcn

第五篇:行测数列总结

数 列 总 结

数列形式:等差数列、等比数列、和数列、积数列、多次方数列、(及其变式)、分式数列、组合数列、整数拆分数列、创新数列。

一、等差数列

1、定义:前后项之差等于常数。,二级等差数列:一次作差。三级等差数列:两次作差。

2、变式:持续作差,含减法运算的递推数列;两项分别变换后相减得第三项;两项变换后相减得第三项。

3、特征:数列中出现质数、含0、单调增减或增减交替。

二、等比数列

1、定义:相邻项作商后呈规律。二级等比数列: 一次作商。三级等比数列:二次作商。

2、数列变式:二级等比数列变式。

前项倍数+常数(基本数列)=后项。

3、特征:良好的整除性,单调递增(减)、先增后减。

三、和数列

1、定义:项与项间作和,寻求规律。两项和数列:前两项之和等于第三项。三项和数列:前三项之和等于第四项。,,2、数列变式:(第一项+第二项)×常数(基本数列)=第三项。

第一项+第二项+常数(基本数列)=第三项。第一项×常数+第二项×常数=第三项。

3、特征:数项偏小,数列整体趋势不明,非单调。

四、积数列

1、定义:项与项之间作积,寻求规律。两项积数列:前两项乘积等于第三项。三项积数列:前三项乘积等于第四项。

2、变式:相邻项作积后变化得后项。

两项积+常数(基本数列)=第三项。两项积构成基本数列。

3、特征:两项积数列:1,A,A〃〃〃〃,数列递增(减)明显。

五、多次方数列

1、定义:数列呈多次方数,底数、指数各具规律。

平方数列:数列逐项可改为平方数,底数呈规律。立方数列:数列逐项可改为立方数,底数呈规律。

多次方数列:数列各项可以改为指数、底数均不同的数列,底数、指数分别具有规律。

2、变式:多次方数+常数。

多次方数×常数(基本数列),通常会有0。第一项的平方(立方)±第二项=第三项。

要点:对各项进行多次方改写,并加入常数后运算得原数列。

数字1为非零数的0次方,分数可写成-1次方

3、特征:数列增幅明显、选项数字大。数列中有三项不加变化的多次方数。

六、分数数列

定义:分数本身可以通分和约分。

分子分母分别变化型:有意识的构造简单变化数列。

分子分母与原数列的分子分母整体增减趋势一致。分子分母关联变化型:

(1)依次变化型:分子分母依次排列,得基本数列。

(2)交错变化型:两基本数列在分子、分母位置交错排列(类似分子分母分别变化型)。

(3)递推变化型:各项分子(分母)是前一项的分子分母简单运算结果。

七、组合数列

定义:

1、间隔组合数列。

奇偶项分别构成某个基本数列及变式。奇偶

2、分组组合数列

相邻数字分为独立的几组,以两项为一组居多,增减不定。

3、数位组合数列:

各项对应位置上的数组成一个简单数列,数位对应型。

数列的每项分成几部分有联系,数位关系型。

八、整数拆分数列

定义:每项数字拆分为两部分,简单运算后得到该项数字。乘积拆分:整数拆为两个数字的积。

和差拆分:整数拆为两个数字的和差。

九、创新数列

数字和:各项数字和相等或组成简单数列。数字排序:数项之间相似,各位数字排列不同。运算关系的创新

下载公务员行测-数列-数字推理-练习题word格式文档
下载公务员行测-数列-数字推理-练习题.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    公务员考试行测 跟我学数字推理

    跟我学数字推理一、 一些有趣的现象 你一定很想学习怎样把数字推理题做好,对不对?不过别着急,我们慢慢来。下面,请先回答第一题:例1: 1,2,3,4,5,6,( ) 括号里应该填个什么数字呢?显然是7......

    2014年国家公务员【行测习题】数字推理习题(19)

    1 1.16,17,36,111,448, A.2472 B.2245 C.1863 D.1679 2.15,28,54,,210 A.100 B.108 C.132 D.106 3.2/3,1/2,3/7,7/18, A.5/9 B.4/11 C.3/13 D.2/5 4.2,3,10,15,26, A.29 B.32 C.3......

    09年国家公务员行测复习:解密数字推理

    09年国家公务员行测复习:解密数字推理 数字推理作为考生普遍难以拿分的考察部分,往往会被考生轻易的放弃掉,今年通过审核的考生达到105万,在如此激烈的竞争环境下,一分往往就能改......

    2018年国家公务员行测数字推理猜题技巧

    2018年国家公务员行测数字推理猜题技巧 2017年省公务员考试已经结束一半,没有通过笔试的考生也,不要气馁,还有2018国家公务员考试现在已经进入备考阶段,很多考生痛感自己复习不......

    2018年公务员行测考试判断推理部分

    第四部分 判断推理 (共40题,参考时限35分钟) 一、图形推理。请按每道题的答题要求作答。 76.从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性( ) 77.从所给的四......

    2014年江苏公务员数字推理练习题(5篇范例)

    江苏中公教育:http://js.offcn.com/ 【1】48,65,80,103,120,149,168,( ) A.202 B.203 C.221 D.233 【2】2,14,84,420,1680,( ) A.2400 B.3360 C.4210 D.5040 【3】14, 4, 3,-2, A.-3 B.4 C.......

    行测图形推理经典总结范文合集

    图形推理 (一)图形推理的技巧: 一,解答图形推理题时,第一步就是要仔细观察。对两套图形都要做细致的观察,观察的要点集中在以下几个方面:图形大小的变化,图形的旋转方向,图形的笔画,......

    2014年台州大学生村官考试备考—行测数字推理练习题及解析(一

    2014年台州大学生村官考试备考—行测数字推理练习题及解析(一) 【1】1,11,21,1211, A.11211;B.111211;C.111221;D.1112211 答:选C,后项是对前项数的描述,11的前项为1 则11代表1个1......