推理习题

时间:2019-05-15 15:02:00下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《推理习题》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《推理习题》。

第一篇:推理习题

数学广角——推理作业

1有甲,乙,丙三人,一个是语文老师,一个是数学老师,一个是体育老师。甲和乙经常跟体育老师学打羽毛球,乙带学生去找数学老师加强数学能力。

甲,乙,丙分别是什么老师?

2小雨,小东,小松三个人进行跳绳比赛。小松说:“我不是最后一名。”小东说:“我也不是最后一名,但是小松比我的成绩好。”

他们各得了第几名?

3小冬,小雨和小伟三个人分别在一,二,三班。小伟是三班的,小雨下课后去一班找小冬玩。

他们个是几班的?

第二篇:推理与证明复数习题

推理证明与复数复习题

1.分析法是从要证明的结论出发,逐步寻求使结论成立的()A.充分条件 B.必要条件 C.充要条件 D.等价条件

2.类比“等差数列的定义”给出一个新数列“等和数列的定义”是()A.连续两项的和相等的数列叫等和数列

B.从第二项起,以后第一项与前一项的差都不相等的数列叫等和数列 C.从第二项起,以后每一项与前一项的和都相等的数列叫等和数列 D.从第一项起,以后每一项与前一项的和都相等的数列叫等和数列

3.已知数列1,aa2,a2a3a4,a3a4a5a6,,则数列的第k项是()A.akak1a2kB.ak1aka2k1 C.ak1aka2kD.ak1aka2k2

4.在等差数列an中,若an0,公差d0,则有a·4

a6a3·a7,类比上述性质,在等比数列bn中,若bn0,q1,则b4,b5,b7,b8的一个不等关系是()A.b4b8b5b7

B.b5b7b4b8C.b4b7b5b8

D.b4b5b7b8

5.(1)已知p3q32,求证

pq2,用反证法证明时,可假设pq2,(2)已知a,bR,ab1,求证方程x2axb0的两根的绝对值都小于1.用反证法证明时可假设方程有一根x1的绝对值大于或等于1,即假设x1≥1,以下结论正确的是()

A.(1)与(2)的假设都错误B.(1)与(2)的假设都正确

C.(1)的假设正确;(2)的假设错误D.(1)的假设错误;(2)的假设正确

6.如图,在梯形ABCD中,AB∥DC,ABa,CDb(ab).若EF∥AB,EF到CD与AB的距离之比为m:n,则可推算出EF

manb

mn

.试用类比的方法,推想出下述问题的结果.在上面的梯形ABCD中,延长梯形两腰AD,BC相交于O点,设△OAB,△OCD的面积分别为S1,S2,EF∥AB且EF到CD与AB的距离之比为m:n,则△OEF的面积S0与S1,S2的关系是()A.S1nS2

nS1mS2

0

mSmn

B.S0

mn

7.用数学归纳法证明(n1)(n2)(nn)2n··13··(2n1),从k到k1,左边需要增乘的代数式为()A.2k1

B.2(2k1)

C.

2k1

k1

D.

2k3

k1

8.下列表述正确的是().①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理; ③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理; ⑤类比推理是由特殊到特殊的推理.A.①②③; B.②③④; C.②④⑤; D.①③⑤.9.观察数列1121231234

2213214321

,则数6将出现在此数列的第()

A.21项B.22项C.23项D.24项 10.正整数按下表的规律排列

12510173611188 71219142023 22

则上起第2005行,左起第2006列的数应为()

213.下面是按照一定规律画出的一列“树型”图:

设第n个图有an个树枝,则an1与an(n≥2)之间的关系是.

14.由三角形的性质通过类比推理,得到四面体的如下性质:四面体的六个二面角的平分面交于一点,且这个点是四面体内切球的球心,那么原来三角形的性质为. 15.已知a是整数,a2是偶数,求证:a也是偶数.(请用反证法证明)

16.观察以下各等式:

sin2

300

cos2

600

sin300

cos600

34sin2200cos2500sin200cos500

4

sin2

150

cos2

450

sin150

cos450

3,分析上述各式的共同特点,猜想出反映一般规律的等式,并对等式的正确性作出证明.

17.已知命题:“若数列a

n是等比数列,且an0,则数列bnnN)也是等比数列”.类

比这一性质,你能得到关于等差数列的一个什么性质?并证明你的结论.

.已知abc,且abc

018

19.已知数列{an}满足Sn+an=2n+1,(1)写出a1, a2, a3,并推测an的表达式;(2)用数学归纳法证明所得的结论。

1.若复数zm2

5m6

m3i是实数,则实数m

2.若复数za21(a1)i是纯虚数(其中aR),则z=________.3.复数z=

2i,则z的共轭复数为__________ 4.若复数z1a2i, z234i,且z1

z为纯虚数,则实数a的值为2

5.复数

2i

1i

(i是虚数单位)的实部为6.已知复数zm2(1i)(mi)(mR),若z是实数,则m的值为。

7.已知

m

1i

1ni,其中m,n是实数,i是虚数单位,则z(mni)2在复平面内对应的点Z位于()

A.第一象限B.第二象限C.第三象限D.第四象限 8.复数z13i,z21i,则复数z1z在复平面内对应的点位于第__ ____象限.

9.数z

mi

1i

(mR,i为虚数单位)在复平面上对应的点不可能位于()A.第一象限

B.第二象限

C.第三象限

D.第四象限

10.复数z11i,|z2|3,那么|z1z2|的最大值是。11.已知zC,且z22i1,i为虚数单位,则z22i的最小值是()

(A)2.(B)3.(C)4.(D)5.12.化简(cos225isin225)2(其中i为虚数单位)的结果为13.若z,则z100z50

1____________ 14.x1iy12i513i,则xy__________ 15.已知复数z满足zz10,z1

z1

是纯虚数,求复数z

16.已知复数z2

1m(4m)i,z22cos(3sin)i,(,mR,[0,

]),z1z2,求的取值范围。

17.设z是虚数,z1z是实数,且12,(1)求|z|及z实部取值范围;(2)设u1z1z,那么u是不是纯虚数?说明理由;(3)求u2的最小值.

第三篇:推理与证明习题专题

推理与证明练习题

一、选择题:

1、用反证法证明:“a,b至少有一个为0”,应假设()A.a,b没有一个为0B.a,b只有一个为0C.a,b至多有一个为0D.a,b两个都为0

2、若函数f(x)sinx是为周期的奇函数,则f(x)可以是()(A)sin2x(B)cos2x(C)sinx(D)cosx

3、设函数f(x)

1,x01,x0,则

(ab)(ab)f(ab)

2(ab)的值为()

AaB b a,b中较小的数Da,b中较大的数

4、设a、b、m都是正整数,且ab,则下列不等式中恒不成立的是()(A)

abambm

1(B)

1b,b

ab1cambm

1(C)

ab

ambm

1(D)1

ambm

ab5、设a,b,c(,0),则a

a

A都不大于2B都不小于2C 至少有一个不大于2D 至少有一个不小于2

6、平面内有n个圆,其中每两个都相交于两点,每三个点都无公共点,它们将平面分成f(n)块区域,,c()

有f(1)2,f(2)4,f(3)8,则f(n)()(A)2(B)2(n1)(n2)(n3)(C)nn2(D)n5n10n4

7、设f(x)是定义在R上的函数且f(x)

1f(x2)1f(x2)

n

n

32,且f(3)2

3

3,则f(2007)()

(A)32(B)32(C)2

8、用数学归纳法证明

1n

1

1n

2

1n

3

3(D)2112

4nn1,nN时,由n=k到n=k+1时,不等式

左边应该添加的项是()(A)(C)

12(k1)12k1

(B)

12k2

1k1

2k11

12k212k2

1k1

1k2

(D)

2k1

9、已知数列{xn}满足xn1xnxn1(n2),x1a,x2b,Snx1x2xn,则下面正确的是()

(A)x100a,S1002ba(B)x100b,S1002ba(C)x100b,S100ba(D)x100a,S100ba10、、数列an中,a1=1,Sn表示前n项和,且Sn,Sn+1,2S1成等差数列,通过计算S1,S2,S3,猜

想当n≥1时,Sn=

A.

2n

()

2n

1n1

222211、已知f(x)是R上的偶函数,对任意的xR都有f(x6)f(x)f(3)成立,若f(1)2,则

B.

1n1

C.

n(n1)

n

D.1-

n1

f(2007)()

(A)2007(B)2(C)1(D)0 12、已知函数f(x)lg

1x1x,若f(a)b,则f(a)()

1b

(A)b(B)b(C)(D)

1b

*

13、已知数列{an}中,a11,a2an1nN,且n2),则a9可能是:()

n

2an

1A、1B、2C、1D、

1ax

n

91x

2,x

4x14、已知aR,不等式x

n

3,,可推广为x

2(n1)

n1,则a的值()

n

A 2BnC 2Dn15、定义A㊣B、B㊣C、C㊣D、D㊣A的运算分别对应下图中的(1)、(2)、(3)、(4)。

(1)))则图中的甲、乙的运算式可以表示为:(A、B㊣D、C㊣AB、B㊣D、A㊣C

C、D㊣B、C㊣AD、D㊣B、A㊣乙

16、根据下列图案中圆圈的排列规律,第2008个图案组成的情形是:()●☆☆☆●●●

☆●☆●☆●☆●☆●☆●●●☆☆● A、其中包括了1004×2008个☆B、其中包括了1003×2008+1个☆ C、其中包括了1003×2008+1个●D、其中包括了1003×2008个●

二、填空题:

17、从下列式子1,1+2+1,1+2+3+2+1,1+2+3+4+3+2+1,…计算得出的结果能得的一般性结论是_________________________________________________

18、已知a,b是不相等的正数,x

a

2b,yab,则x,y的大小关系是

19、若数列an中,a11,a235,a37911,a413151719,...则a10____20、f(n)1

2

3

1n

(nN),经计算的f(2)

32,f(4)2,f(8)

52,f(16)3,f(32)

72,推测当n2时,有

21、若数列an的通项公式an

1(n1)

(nN),记f(n)(1a1)(1a2)(1an),试通过

计算f(1),f(2),f(3)的值,推测出_______________________

22、为了保证信息安全传输,有一种称为秘密密钥密码系统,其加密、解密原理如下图:现在加密密

密文密文明文。钥为yloga(x4),明文如上所示,明文“4”

加密密钥密码发送解密密钥密码

通过加密加密后得到“3”再发送,接受方通过解密钥解密得明文“4”,问若接受方接到密文为“4”,则解密后得明文是______________________。

23、在等差数列an中,(n29且nN)若a200,则有a1a2a3ana1a2a39n 成立,类比上述性质,在等比数列bn中,若b201,则存在怎样的等式________________________.24、半径为r的圆的面积S(r)=r,周长C(r)=2r,若将r看作(0,+∞)上的变量,则(r)`

1,=2r○

1式可以用语言叙述为:圆的面积函数的导数等于圆的周长函数。○

1的式对于半径为R的球,若将R看作(0,+∞)上的变量,请你写出类似于○子:。○

2式可以用语言叙述为:。○

*

25、若f(x)

4x

x

2,则f(1100

1)f(26、已知数列an满足a12,an

110011001

1an*(nN),则a3的值为,1an)f(1000)=_____________。

a1a2a3a2007的值为.

三、解答题:

27、已知a + b + c > 0,ab + bc + ca > 0,abc > 0,用反证法证明:a, b, c > 028、已知:0a1,求证:

1a

41a

9

2n

28n9能被64整除。29、试证当n为正整数时,f(n)

330、是否存在常数a,b,c使等式

1(n1)2(n2)n(nn)anbnc对一切正整数n成立? 并证明你的结论。

31、由下列各式:1﹥

2,1+

3﹥1,1+

4

5

32,1+



115

﹥2,你能得出怎样的结论,并进行证明。

32、已知f10,afnbfn11,n2,a0,b0(1)求f3,f4,f5

(2)推测fn的表达式,并给出证明.33、已知数列{an}满足Sn+an=2n+1,(1)写出a1, a2, a3,并推测an的表达式;(2)用数学归纳法证明所得的结论。(12分)

第四篇:高二数学推理与证明习题

高二数学推理与证明单元测试卷

一、选择题:

1、下列表述正确的是().①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理.A.①②③; B.②③④; C.②④⑤; D.①③⑤.2、下面使用类比推理正确的是().A.“若a3b3,则ab”类推出“若a0b0,则ab”

B.“若(ab)cacbc”类推出“(ab)cacbc”

abab” (c≠0)ccc

nnD.“(ab)anbn” 类推出“(ab)anbn” C.“若(ab)cacbc” 类推出“

3、有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线 b平面,直线a平面,直线b∥平面,则直线b∥直线a”的结论显然是错误的,这是因为()

A.大前提错误B.小前提错误C.推理形式错误D.非以上错误

4、用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,反设正确的是()。

(A)假设三内角都不大于60度;(B)假设三内角都大于60度;

(C)假设三内角至多有一个大于60度;(D)假设三内角至多有两个大于60度。

5、在十进制中20044100010101022103,那么在5进制中数码2004折合成十进制为()

A.29B.254C.602D.20046、利用数学归纳法证明“1+a+a+„+a2n+11an

2=,(a≠1,n∈N)”时,在验证n=11a

成立时,左边应该是()

(A)1(B)1+a(C)1+a+a2(D)1+a+a2+a37、某个命题与正整数n有关,如果当nk(kN)时命题成立,那么可推得当nk1时命题也成立.现已知当n7时该命题不成立,那么可推得

8、用数学归纳法证明“(n1)(n2)(nn)212(2n1)”(nN)时,/ 6

n()A.当n=6时该命题不成立 C.当n=8时该命题不成立 B.当n=6时该命题成立 D.当n=8时该命题成立

从 “nk到nk1”时,左边应增添的式子是

9、已知n为正偶数,用数学归纳法证明1

A.2k

1B.2(2k1)

C.

D.

()

2k1

k12k

2k1

11111112()时,若已假设nk(k2为偶 234n1n2n42n

()

B.nk2时等式成立 D.n2(k2)时等式成立

数)时命题为真,则还需要用归纳假设再证

A.nk1时等式成立 C.n2k2时等式成立

10、数列an中,a1=1,Sn表示前n项和,且Sn,Sn+1,2S1成等差数列,通过计算S1,S2,S3,猜想当n≥1时,Sn=

()

2n

1A.n1

22n1B.n1

C.

n(n1)

n

D.1-

2n111、根据下列图案中圆圈的排列规律,第2008个图案的组成情形是().

A.其中包括了l003×2008 +1个◎B.其中包括了l003×2008 +1个●C.其中包括了l004×2008个◎D.其中包括了l003×2008个●

12、在实数的原有运算法则中,我们补充定义新运算“当a<b时,.则函数

”如下:当a≥b时,;的最大值等于()

A.―1B.1C.6D.1

2填空题:

13、一同学在电脑中打出如下若干个圈:○●○○●○○○●○○○○●○○○○○●„若将此若干个圈依此规律继续下去,得到一系列的圈,那么在前120个圈中的●的个数是。

14、类比平面几何中的勾股定理:若直角三角形ABC中的两边AB、AC互相垂直,则三角形三边长之间满足关系:AB2AC2BC2。若三棱锥A-BCD的三个侧面ABC、ACD、ADB两两互相垂直,则三棱锥的侧面积与底面积之间满足的关系为.15、从1=1,1-4=-(1+2),1-4+9=1+2+3,1-4+9-16=-(1+2+3+4),„,推广到第n个等式为_________________________.16、设平面内有n条直线(n3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f(n)表示这n条直线交点的个数,则f(4)=; 当n>4时,三、解答题:

17、(8分)求证:(1)6+7>22+

5(2)a2b23abab)

18、用数学归纳法证明:n5n能被6整除;

19、若a,b,c均为实数,且错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。,求证:a,b,c中至少有一个大于0。

20、用数学归纳法证明: 1

f(n)=(用含n的数学表达式表示)。

1111nn;2342

121、观察(1)tan10tan20tan20tan60tan60tan101;

(2)tan5tan10tan10tan75tan75tan51 由以上两式成立,推广到一般结论,写出你的推论并加以证明。

000000

00000022、已知正项数列an和{bn}中,a1 = a(0<a<1),b11a 当n≥2时,anan1bn,bn

n

1(1)证明:对任意nN,有anbn1;(2)求数列an的通项公式;

(3)记cnanbn1,Sn为数列cn的前n项和,求Sn

*

高二数学选修2-2《推理与证明测试题》答案

一、选择题:本大题共10小题,每小题3分,共30分.DCABBCABBB AC

二、填空题:本大题共4小题,每小题3分,共12分.13、1414、错误!未找到引用源。15、16、5三、解答题:本大题共6题,共58分。

17、证明:(1)∵a2b2

2ab,a23,b23;

将此三式相加得

2(a2b23)2ab,∴a2b23abab).(2)要证原不等式成立,2

2只需证(6+7)>(22+5),即证242240。∵上式显然成立,∴原不等式成立.18、可以用综合法与分析法---略

19、可以用反证法---略

20、(1)可以用数学归纳法---略(2)当nk1时,左边(1

1111k)(kk1)k 22122

11111

(kkk)k2kkk1=右边,命题正确 22

22k项

21、可以用数学归纳法---略

22、解:

(1)证明:用数学归纳法证明

① 当n=1时,a1+b1=a+(1-a)=1,命题成立:②假设n=k(k≥1且kN*)时命题成立,即ak+bk=1,则当nk1时,ak1bk1akbk1=

akbk

21ak

bk

21ak

bk1ak

21ak

bkb

k1 1akbk

∴当nk1时,命题也成立综合①、②知,anbn1对nN*

(2)解;∵an1anbn11an1

anbn

21an

an1an

21an

1anan111,即,∴

an1anan1an

11

1③∴数列是公差为1的等差数列,其首项是anan

1111∴ ,n11,从而an

a1aana2

(3)解:∵cnanbn1ananbn1anan1,③式变形为anan1anan1,∴cnanan1,∴Snc1c2cna1a2a2a3anan1a1an1a∴limSnlima

n

a

1na

na

 1na

第五篇:2015国家公务员考试数字推理习题

给人改变未来的力量

1.6,12,19,27,33,(),48

A.39 B.40 C.41 D.42

2.0,5,8,17,(),37

A.31 B.27 C.24 D.22

3.4,9,6,12,8,15,10,()

A.18 B.13 C.16 D.15

4.8,96,140,162,173,()

A.178.5 B.179.5 C 180.5 D.181.5

5.2,2,3,6,12,22,()

A.35B.36C.37D.38

1.B2.C3.A4.A5.C

下载推理习题word格式文档
下载推理习题.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    2014年国家公务员【行测习题】数字推理习题(19)

    1 1.16,17,36,111,448, A.2472 B.2245 C.1863 D.1679 2.15,28,54,,210 A.100 B.108 C.132 D.106 3.2/3,1/2,3/7,7/18, A.5/9 B.4/11 C.3/13 D.2/5 4.2,3,10,15,26, A.29 B.32 C.3......

    图形推理专项习题100道(附答案)[5篇]

    1. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 将下面左图进行折叠后,得到的图形是17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31.......

    高二数学推理与证明知识点与习题(共五篇)

    推理与证明★知识网络★1.推理 :前提、结论2.合情推理:合情推理可分为归纳推理和类比推理两类:(1)归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象具有这些特......

    2013年四川下半年公务员考试数字推理习题精解

    2013年四川下半年公务员考试数字推理习题精解 【推荐课程】:2013年下半年四川公务员考试名师辅导课程 【1】 1, 3, 3, 6,5,12,A.7 B.12 C.9 D.8【2】 2, 3, 13,175, A.255......

    行政职业能力测试题库:判断推理习题及解析(二十八)

    行政职业能力测试题库:判断推理习题及解析(二十八) 1.甲、乙、丙、丁四对夫妇参加一场交谊舞会。开始时,四位先生的舞伴都是自己的夫人,后来他们先后三次交换了舞伴:①乙先生和丙......

    推理读后感

    读《世界经典推理小说》有感 一本书勾起我的心,对他那么痴狂,因为他的智慧。 当我翻开这本书时,我就开始了一段奇异的旅程。虽然书中只是少少的收录了55篇推理小说,但是其中包括......

    推理教案

    9数学广角—推理 教学目标 知识与技能目标:1. 通过观察、猜测等活动,借助生活中简单的事件初步理解逻辑推理的含义,并能按一定的方式整理信息,进行推理;经历简单的推理过程,初步......

    2014广东乡镇公务员考试数字推理习题精解(5篇)

    给人改变未来的力量 1.12,2,2,3,14,2,7,1,18,3,2,3,40,10,,4 A.4B.3C.2D.1 2.3,4,6,12,36, A.186B.100C.216D.232 3.1,0,1,1,2,,5 A.5B.4C.3D.l6 4.4,3,1,12,9,3,17,5, A.12B.13C.14D.15 5.22,35,56,90,......