第一篇:2014混子小学数学总复习:用比例解决问题、按比例分配问题
2014混子小学总复习:用比例解决问题、按比例分配问题
1、用同样的方砖铺地,铺20平方米要320块,如果铺42平方米,要用多少块方砖?(正比例问题)
2、我国发射的人造地球卫星绕地球运行3周约3.6小时,运行20周约需多少小时?
3、王叔叔开车从甲地到乙地,前2小时行了100km。照这样的速度,从甲地到乙地一共要用3小时,甲乙两地相距多远?
4、学校班车4分钟行驶了2400米,照这样的速度,从第1站到学校共行驶了30分钟,这 段路程有多少千米?(解比例)
5、小明家到学校共1200米。今天早上上学3分钟共走了180米,照这样的速度,还要走多少分钟才能到学校?
6、袋子里有绿球7个,黄球24个。增加多少个绿球,可使袋子里绿球与黄球的个数比是5:3?
7、每天跳绳600下,2分钟跳了240下,照这样计算,还要跳多少分钟能完成计划?
8、跃进机床厂原计划30天制造机床200台,结果做20天就只差40台没有做,照这样计算,可以提前几天完成任务?
1、一间教室,用面积是0.16平方米的方砖铺地,需要275块,如果用面积是0.25平方米的方砖铺地,需要方砖多少块?(反比例问题)
2、一间大厅,用边长6分米的方砖铺地,需用324块;若改铺边长4分米的方 砖,需要多用几块?
3、建筑工地原来用4辆汽车,每天运土60立方米,如果用6辆同样的汽车来运,每天可以运土多少立方米?
4、王叔叔开车从甲地到乙地一共用了3小时,每小时行50km,返回时每小时行60km,返回时用了多长时间?
5、一根皮带带动两个轮子,大轮直径30厘米,小轮直径10厘米;小轮每分钟转300转,大轮每分钟转几转?
6、食堂有一批煤,计划每天烧105千克可以烧30天。改进烧煤技术后,每天烧煤90千克,这批煤可以多烧多少天?
7、一本书,每天读10页,30天可以读完。如果每天多读5页,多少天可以读完?
8、一本文艺书,每天读6页,20天可以读完,要提前8天看完,每天要比原来多看几页?
1、三条绳长的和是84米,三条绳的比是3:4:5.三条绳各长多少米?
2、一个直角三角形,两个锐角度数的比是1:4,这两个锐角各多少度?
3、一个三角形铁框,三个内角度数的比是1:2:3,这个铁框的三个角分别是多少度?
4、一个等腰三角形的铁片,顶角和一个底角的度数的比是4:3,求这个等腰三角形的顶角和底角各是多少度?
5、42名同学到面积分别是60和80平方米的菜园去帮忙种菜。如果按面积大小分配人员,这两处菜园各应去多少名同学种菜?
6、学校把栽480棵树的任务,按着六年级三班的人数分配给各组,一组有47人,二组有38人,三组有35人,三个组各应栽树多少棵?
7、一个长方形的周长是28米,长与宽的比是4:3,这个长方形的面积是多少平方米?
8、长方体的长、宽、高的比是5:3:1,棱长之和是144米,这个长方体的体积是多少立方米?
9、甲乙丙三个班的平均人数是60,这三个班人数的比是2:3:5.这三个班人数各是多少?
10、两个城市相距760千米,货车和客车同是从两城市相对开出,经过4小时相遇。货车和客车的速度比是12:7。货车和客车各行多少千米?
11、甲乙丙三个组按2:3:5分配劳动力去完成一项任务,已知乙组要派120人,求甲丙两个组应各派多少人?
12.图书馆里科技书和连环画的比8:5,科技书比连环画多90本,科技书和连环画各有多少本?
13.把一批图书按4:5:6分借给二、三、四三个班,已知二班比四班少分得48本。三个班各分得多少本?
14、甲乙丙三个班人数的和是420人,甲班和乙班的比是2:3,乙班和丙班的比是4:5,甲乙丙三个班各是多少人?
第二篇:用比例解决问题
比例的应用
1、一条公路长25km,在一幅地图上长5cm,求这幅地图的比例尺。
2、一个手表的精密零件长5mm,画在设计图纸上是12cm,求这幅的纸的比例尺。
3、在一幅比例尺是1:30000000的地图上,量得北京到上海的距离是3.5km,北京到上海的实际距离是多少千米?
4、学校有一个长方形的操场,长是80米,宽是50米,把它画在一幅平面图上,长画了16cm,宽应当画多少厘米?
5、某实验小学的平面图的比例尺是1:30000,量得长是9cm,宽是5cm,学校的时间占地面积是多少公顷?
6、埃及金字塔是著名的景观,某科学家用测量影长的方法计算金字塔的高度。测量结果如下:竹竿长5m,它的影长是3m,这一时间段金字塔的影长是87.9m,这座金字塔的实际高度是多少米?
7、一颗人造卫星绕地球5周需要13小时,用同样的速度绕地球12周需要多少小时?
8、50千克花生仁可以榨油19千克,要榨200千克花生油需要多少千克花生仁?
9、修一条路,如果每天修180米,8天可以修完,如果每天修160米,几天可以修完?
10、一间大厅,用边长6分米的方砖铺地,需要324块,若改用边长4分米的方砖,需要这样的方砖多少块?
11、小华看一本240页的小说,4天看了64页,照这样计算,看完这本书还需要多少天?
12、在一幅比例尺是1:6000000的地图上量得甲地到乙地的长是2cm,一辆汽车以每小时70km的速度匀速行驶,如果这辆小汽车上午8:30出发,10:00能到达吗?
13、一个车间装配一批电视,如果每天装50台,60天完成任务,如果要少用20天完成任务,每天应装多少台?
14、在一幅比例尺是1:3500000的地图上,量得甲乙两地之间的距离是2.4cm,在另一幅地图上,量得这两地间的距离是2.8cm,求另一幅地图的比例尺?
15、新兴小学的学生去旅游,用4辆同样的客车每次可以运送224名学生,如果用13辆这样的客车,每次可以运送多少名学生?
16、一台碾米机5小时碾米2000千克,照这样计算,6.5小时可以碾米多少千克?要碾米3.6吨需要几小时?
17、小明家用收割机收割小麦。如果每小时收割0.3公顷,40小时可以完成任务。
(1)
现在想用30小时收割完,那么每小时应收割多少公顷?
(2)
每公顷产小麦8吨,这块地共产小麦多少吨?
18、(1)一个三角形的A点(1,1),B点(1,4),C点(4,8)请在方格图中画出这个三角形。
(2)如果把这个三角形按3:1放大,请画出放大后的三角形。
(3)请另一张在方格图中画一个和放大后图形大小相等的梯形。
18、奥运会一块金牌的黄金含量与金牌总重的比为6:412,一块金牌总重412g,302块金牌需要黄金多少克?
20、北京到济南的高速公路距离大约为430km,北京到天津大约为120km。一辆汽车从北京出发开往济南,当行驶到天津时用了1.5小时。按照这样的速度,从天津到济南需要多少小时?
第三篇:用比例解决问题
《用比例解决问题》 教学设计
潘涂小学 叶海堤
【教学内容】:人教版六年级下册第59--60页的例
5、例6及一些相关练习。
【教材分析】: 这部分内容是在学过比例的意义和性质,成正、反比例的量的基础上进行教学的,主要包括正、反比例的应用题,这是比和比例知识的综合运用。教材通过例5和例6两个例题,讲解正、反比例应用题的解法,使学生掌握正、反比例应用题的特点以及解题的步骤。
正、反比例应用题,首先要根据题意分析数量关系,能从题中找出两种相关联的量,这两种量中相对应的两个数的比值(或积)是一定,从而判断这两种量是否成正(或反)比例,然后设未知数X,用比例解答。判断过程也是正反比例意义实际应用的过程。为了加强知识之间的联系,先让学生用以前学过的方法解答,然后教学用比例的知识解答。正、反比例应用题中所涉及到的基本问题的数量关系是学生以前学过的,并能运用算术法解答,本节课学习内容是在原有解法的基础上,通过自主参与,合作交流、发现归纳出一种用正、反比例关系解决一些基本问题的思路和计算方法。从而进一步提高学生分析解答应用题的能力。【学情分析】: 学生已经认识了正比例意义和反比例意义,会判断生活中含有正、反比例意义的数量关系,也会解决生活中有关归
一、归总的实际问题。本节课主要学习用比例的知识来解决含有归一和归总数量关系的实际问题。教学应用正比例解决问题,教材由张大妈与李奶奶的对话引出求水费的实际问题,为加强知识间的联系,先让学生用学过的方法解决,然后学习用比例的知识解决。在学习用反比例的意义解决问题时,与学习正比例的方法相似,也是先让学生用已有的方法解决问题,然后学习用反比例的意义判断实际问题,解决问题。通过解决实际问题使学生进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,也为中学数学、物理、化学学科应用比例知识解决一些问题作较好的准备。同时,由于解决问题时是根据正、反比例的意义来列等式,也可以巩固和加深对所学的简易方程的认识。【设计思路】
新课程理念非常重视数学应用意识的培养。学习数学,不能仅仅停留在掌握知识的层面上,而必须学会应用,才能真正实现数学的价值。要培养学生面对实际问题时,能主动尝试着从数学的角度运用所学知识和方法寻求解决问题的策略。在学习本节课之前,生活中的一些数量关系,学生用自己的知识已经会解决了。本节课要让学生用另一种数学眼光,从比例知识的角度寻找一种新的解决这种特殊数量关系的方法。从而丰富学生解决问题的策略,加强数学应用意义的培养。在教学设计和实践上,能否真正有效的培养学生的应用意识,其关键重要的一环是,如何引导启发学生面对实际问题,能主动尝试着从数学的角度运用比例的知识去解决问题。要为学生运用比例知识解决实际问题创造条件和机会。【教学目标】:
1、使学生能正确判断实际问题中涉及的量成什么比例关系,能利用正、反比例正确解答实际问题。
2.引导学生利用已学知识,自主探索,培养学生解决问题的能力。
3.感受比例知识在现实生活中的广泛应用,体会数学与生活的联系。【教学重点】: 使学生能正确判断题中涉及的量是否成正、反比例关系,并能利用正、反比例的关系列出含有未知数的等式,运用比例知识正确解决问题。【教学难点】: 利用正反比例的关系列出含有未知数的等式。【教具准备】:多媒体课件
【教学过程】:
一、联系实际,复习迁移。(课件出示)
1、下列各题中的两个量成什么比例?为什么?
(1)、总价一定,单价和数量。
(2)、单价一定,总价和数量。
(3)、从A地到B地,摩托车的速度和所用时间。
(4)、摩托车的速度一定,所行驶的路程和所用时间。
2、联系生活,提出问题。
师:同学们,全社会都在节约水资源。请大家想一想,和我们息息相关的用水问题里藏着哪些数学问题呢?(1.用水的总量。2.应交的水费。3.每吨水的价格)
师:你能利用这3个量说一说它们之间存在着哪些数量关系吗?会构成什么样的比例关系?板书:水费/用水量=每吨水的价钱(一定)
【设计意图:通过复习生活中的具体例子,使学生加深对正、反比例的意义理解,能正确判断成正、反比例的量。从学生熟悉的水问题切入,引出水问题中的数量关系,来揭题。】
二、探究新知,培养能力
1、师:看来同学们能正确判断两种量成什么比例关系了,这节课我们一起来运用比例知识来解决一些实际问题。
2、请看例5情境图。
师:题中告诉了我们哪些数学信息?你能提出什么数学问题?
生:李奶奶家上个月的水费是多少钱? 师:你有办法帮她算一算吗?
(1)学生尝试解答,然后交流解答方法。
汇报:12.8÷8×10
=1.6×10
=16(元)
(2)激励引新:
师:像这样的问题还可以用比例的知识解答。今天我们就来学习用比例的知识进行解答。(板书:用比例解决问题)
①师:问题中有哪两种量?它们成什么关系,你是根据什么判断的?依据这样的比例关系,你能列出等式吗?(学生独立思考,再小组讨论交流,并回答:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。)【设计意图:教师提出自主探究,小组合作学习,明确学习的目标和任务、组织学生如何开展学习,是小组合作学习必不可少的部点,用比例解决问题的探究过程清晰地呈现出来,有利于学生建构用比例解决问题的策略。】
②根据比例的意义列出方程,并解方程。请一位学生上台板演。
解:设李奶奶家上个月的水费是X元.12.8∶8= X∶10 8X=12.8×10 8X=128 X=128÷8 X=16 答:设李奶奶家上个月的水费是16元。
(3)概括总结:像这样的题目,用比例解答应用题与算术方法解答应用题均可,如果题目中没有要求的,我们采用任何一种方法都可以,但如果题目要求用比例解的,就一定要用比例的方法解。3.变式练习。
师:刚才我们用归一法和比例法帮李奶奶解决了水费问题,同学们真不简单,瞧!王大爷又遇到了什么问题?
(1)出示课件:王大爷家上个月的水费是19.2元,它们家上个月用了多少吨水?
(2)让学生用比例的知识解答改编后的题。
(3)指名板演,并说一说你是怎么想的?
(4)比较一下改编后的题和例5有什么联系和区别?
【设计意图:巩固练习、拓展应用,让学生通过自己的努力获得用正比例的知识解决问题的能力】
三、自主探究
1、教学例6 师:让我们一起到印刷厂看看那里会有哪些数学知识。
①出示情境图,读题,理解题意。
②学生尝试完成,指名板演,集体订正。③叙述解题思路:因为书的总数一定,所以包数和每包的本数成反比例,也就是说,每包的本数×包数=书的总本书(一定)。2.灵活应用。
师:如果要捆15包,每包多少本?
学生独立完成,集体订正。
3、想一想:怎样用比例解决问题?
小结:用比例解决问题,应先分析题中的数量关系,判断相关联的两种量成什么比例关系,再根据问题中的等量关系列出方程,然后解方程。
【设计意图:有了例5用比例来解决问题的经验,放手让学生自主探究,在小组谈论交流,培养学生用比例的知识解决问题的方法,丰富解决问题的思路。】
四、巩固联系,拓展应用。(试一试你能不能用比例来解决下面这些问题)
1、王芳买了4枝圆珠笔用了6元。小刚想买3枝同样的圆珠笔,要用多少钱?
2、学校附近小商店有两种圆珠笔。小明带的钱 刚好可以买4枝单价是1.5元的,如果他想都买单价是2元的,可以买多少枝?
3、小明家到学校共1200米。今天早上上学3分钟共走了180米,照这样的速度,还要走多少分钟才能到学校?
4、一辆汽车从甲地开往乙地,每小时行50km,6小时可以到达乙地;如果每小时行60km,可提前几小时到达?
[设计意图] 通过不同层次的练习,循序渐进,围绕所学基础知识设计练习题,符合学生的知识水平和思维水平,使学生不仅会做,而且会想。练习形式多样,从而激发学生的练习兴趣,使他们从不同的途径和角度去加深理解和巩固知识。
五、全课总结,回顾新知。
通过这节课的学习,谁能向大家讲讲,你有什么收获?
板书设计: 用比例解决问题
例5:12.8÷8×10 解:设李奶奶家上个月的水费是X元
=1.6×10 12.8 ∶8= X ∶10
=16(元)8X=12.8×10 8X=128 X=128÷8 X=16 答:李奶奶家上个月的水费是16元。
例6:解:设要捆X包。30X=20×18 X=360÷30 X=12 答:要捆12包。
第四篇:按比例分配说课稿
按比例分配说课稿
一、说教材。
1、说课内容:九年义务教育人教版六年制小学数学第十一册第二单元61页例2。
2、本节课内容的地位与作用。
按比例分配在实际中有着广泛的应用,本节课注重了联系生产、生活和科技方面的实际,让学生能应用所学知识解决一些有关的问题。
按比例分配问题是把一个数量按照一定的比进行分配,它是在学生学习了“平均分”和“分数应用题”的基础上进行教学的延伸。教材是采用把比化为分数,用分数知识来解答。这样安捧学生容易接受,不仅加深了对分数应用题的理解,还有利于加强知识间的联系,为今后学习比例知识打下良好基础。
3、教学目标的确定。
目前,由应试教育转向素质教育是我们教育改革的总趋势,如何面向全体学生,使学生得到充分、自由、和谐、全面的发展是我们制定课堂教学目标的主导思想。因此,我们要端正教育思想,充分发挥数学的教育功能,这对于贯彻全面发展的教育方针,有着十分重要的意义。为此,我们制定了这堂课的教学目标。(1)、使学生明确按比例分配是比的一种应用,又是“平均分”的发展,进一步明确按比例分配的意义。
(2)、让学生掌握有关按比例分配应用题的特征和解题方法,并在实际生活中得到应用。
(3)、培养学生观察、归纳和语言表达能力,发扬尝试、合作、协调精神,促进思维能力的发展。
4、本节课教学内容的编排特点及重点难点。(1)、创设“分物情境”,建立表象。
通过学生动手操作和老师的点拨、启发,让学生从中发现规律,获得“按比例分配”的感知,为分散难点起到承上启下的作用。(2)、巧设“故事情境”,引出尝试题。
让学生听喜闻乐见的故事,激发学生学习兴趣,并从中设疑,使学生对新知识产生强烈的求知欲望,自然地把学生吸引到例题的自学中。
(3)、设计“”自学——尝试——讨论——归纳”的教学程序进行例题的教学。
通过自学例2,试做尝试题,组织讨论,引导学生动脑想,动口说并进行归纳总结,调动全体学生积极参与探求知识的全过程,促进学生思维系统性的发展。(4)、安排一个多层次的练习系统巩固,强化新知识。
运用触类旁通,举一反三和不同的训练方式,调动全体学生的积极性,达到训练的预期目的。
从上述分析可知,按比例分配的概念和有关应用题的解题方法是本节课的重点,可通过“操作感知——自学尝试——讨论总结”等环节来突破,教学难点是如何运用比和分数的关系加深对分数应用题算理的理解,课堂上采用“观察——比较——说理”等形式来分解难点。
二、说教法和学法
推广素质教育的主渠道在于我们的课堂教学,如何把学生由被动听变为主动参与,关键在于要打破传统的灌输式教学模式。因此,我们要树立起尊重学生,相信学生,放手让学生主动学习的观念。针对这种教学思想,本节课的教学,主要从以下几个方面来探讨。
1、营造一个愉快、和谐、民主的课堂气氛。
本节课通过老师的语言、动作、表情,传递给学生一种亲切、鼓励、信任的情感意识,在师生之间架起互尊、互爱的桥梁,形成和谐的课堂气氛,从而有效地引导学生主动探讨新知识。
2、调动学生学习的主动性,激发学习兴趣。
本节课不断为学生设置问题和悬念,调动学生积极性。(1)、动手操作,初步感知。
安排“分卡片”活动,折一折,看一看,想一想,说一说,促使多种感官的参与,在“平均分”的基础上进一步感知“按比例分配”的概念。(2)、故事引趣,设置悬念。
本节课通过“听故事”创设问题情景,使学生有问题学,激发他们思考,诱导他们发现问题,解决问题,使学生始终处于探求知识原由的状态中。
3、指导看书,培养自学能力。刚才的故事设疑调动了学生自学的积极性,老师在学生自学中也可以“扶一扶”,让学生带着问题边自学,边思考,达到学有所思,学有所获的目的。
4、放手尝试,主动探求新知。
学生自学课本后找到了办法,在老师的引导下,可以放手让学生尝试做故事里的题目,达到自主学习的目的。
5、讨论归纳,创造参与机会。
在自学尝试的基础上开展学生之间的讨论总结,这是把过去的满堂灌变为让学生自主学习的一个有效途径。
三、教学程序设计。
教学准备:电脑、录音机、投影、学生每人六张卡片。(一)、复习。
1、操作感知,导入新课。动手分一分:
(1)、按1:1把六张卡片分成两部分。(2)、按2:1把六张卡片分成两部分。’
通过动手操作,指出第一种情况是“平均分”,而第二种情况不是“平均分”。说明在我们日常生活和工农业生产中,常常要把一个数量按照一定的比来进行分配,除了第一种情况是“平均分”外,还有第二种情况,由此导入新课,“按比例分配”。
这样安排导入有利于学生把握知识的发展变化与延伸,从而激发学生学习兴趣。
2、复习旧知,故事设疑。(1)、比和分数关系的练习。
如:一个农场计划在100公顷的地里播种60公顷小麦和40公顷玉米;小麦和玉米的播种面积各占这块地的几分之几?小麦和玉米播种面积的比是多少?这样安排,目的是把握新旧知识和连接点,为分散难点起着积极的迁移作用。(2)、故事激趣,引出尝试题。
放录音、听故事:同学们,中秋节快到了,唐僧和猪八戒做了一些月饼,他们一共卖得80元,其中唐僧和猪八戒做月饼个数比是5 :3,正当他们准备分钱时,孙悟空走过来了,唐僧于是叫孙悟空来分钱,猪八戒见了连忙说:“把80元平均分成两份,我要拿其中的一份。”孙悟空听了笑起来。老师问:
(1)、同学们,你们认为孙悟空能不能按照猪八戒的要求来分钱?(2)、那么孙悟空应该怎样分钱?谁能动脑筋来解决这个问题?
(二)、进行新课。
1、指导自学,探讨原由。
出示尝试题后,学生肯定会产生兴趣,这时老师可引导学生尝试练习,遇到困难时再把他们吸引到自学课本例2上。自学的目的是让学生自己在课本中找出解决问题的方法,并出示自学提纲:这道题分配的是什么?按照什么分配?播种小麦和玉米的面积比是3 :2,表示播种的小麦占总播种面积的几分之几?播种的玉米占总播种面积的几分之几?
2、大胆尝试,初步探索。
学生自学课本后,可放手让他们做故事里的尝试题,老师可巡回视察,及时反馈尝试情况,学生可边尝试边看课本练习。学生板演。
3、组织讨论,交流意见。
针对学生的自学和尝试情况,组织学生开展讨论,汇报自学情况,校对尝试错误,发挥学生之间互补作用,让他们各抒己见。
4、教师讲解,课堂小结。
先检查自学情况,再评讲尝试练习,要求学生说:“你是怎样想的?”。最后让学生作概括性的总结:
(1)、按比例分配应用题是已知什么,求什么?
(2)、计算时先算什么,再算什么,后算什么。这样训练学生的归纳能力,让学生有一个自我评价的机会。5.质疑问难。
你们学习后,还有不明白的地方吗?培养学生大胆发问的好习惯。
(三)、多层训练,巩固新知识,形成技能。
练习是数学课堂教学一个重要环节,我W]的练习力求做到从易到难,由浅入深,有层次,有坡度,新旧知识融洽恰当,形成技能技巧,开拓思维,发展能力,达到练习的预期目的。
1、分解性练习。
某班男女学生人数的比是3:4,男生占全班人数的(),女生占全班人数的()。这种练习采用分散难点的办法促使知识结构的内化。
2、对应性练习。
62页的“做一做”第1题,采用讲练结合的形式巩固所学知识。
3、编题练习。
看图编题,后列式计算(略)
这种练习的目的是培养学生观察力,全面掌握题目特征与解法。
4、综合性练习。
(1)甲、乙两数的平均数是50,甲和乙的比是7 :3,甲、乙两数各是多少?(2)一块长方形地周长120米,长和宽的比是3 :1,它的长和宽各是多少米? 这种练习旨在加强对比,提高学生分析和综合运用知识的能力。
(四)、全课总结
你学会了什么知识?掌握了哪些方法? 这样做既检验了效果,又体现了课堂教学的整体性,从而培养学生的概括和口头表达能力。
这节课的教学设计我们从以下几方面考虑:
(1)、教学结构是否合理,层次是否分明,思路是否清晰;(2)、是不是学生学得愉快,老师教得轻松;
(3)、能否达到学前有设疑,学中有突破,学后有发展的要求;(4)、有没有体现以教为主导,学为主体、练为主线的教学原则。相信通过实践与改革,我们的课堂教学一定能得到素质教育的实现
第五篇:按比例分配 (教案)
教学内容 : 青岛版五年级上册第P84-85 的内容 教学目标:
1、使学生理解按比例分配的意义。
2、掌握按比例分配应用题的特征及解题方法。
3、培养学生应用所学知识解决实际问题的能力。教学重点: 掌握按比例分配应用题的特征及解题方法。教学难点: 按比例分配应用题的实际应用。教学过程:
一、复习引入
1、填空
已知六年级1班男生人数和女生人数的比是:3:2。(1)男生人数是女生人数的()
(2)女生人数是男生人数的(),女生人数和男生人数的比是()(3)男生人数占全班人数的(),男生人数和全班人数的比是()(4)全班人数是男生人数的(),全班人数和男生人数的比是()(5)女生人数占全班人数的(),女生人数和全班人数的比是()(6)全班人数是女生人数的(),全班人数和女生人数的比是()
2、口答应用题
六年级(1)班和二年级(1)班共同承担了面积为100平方米的卫生区保洁任务,平均每个班的保洁区是多少平方米?
口答:100÷2=50(平方米)
提问:这是一道分配问题,分谁?(100平方米)怎么分?(平均分)
六年级学生和二年级学生承担同样多的卫生区保洁任务,合理吗? 这样分还是平均分吗?
在日常生活中,很多分配问题都不是平均分配,那么,你们想知道还可以按照什么分配吗?今天我们继续研究分配问题。(板书:分配)
二、讲授新课
1、把复习题2增加条件“如果按3 :2分配,两个班的保洁区各是多少平方米?”
2、提问:分谁?(100平方米)怎么分?(按3 :2分)
求的是什么?(求二年级1班的保洁区是多少平方米?六年级1班的保洁区是多少平方米?)
3、思考:由“如果按3 :2分配”这句话你可以联想到什么?(1)六年级的保洁区面积是二年级的3/2倍(2)二年级的保洁区面积是六年级的2/3(3)六年级的保洁区面积占总面积的3/5(4)二年级的保洁区面积占总面积的2/5 … … 小组汇报结果
4、尝试解答:用你学过的知识解答例题,并说一说怎么想的? 方法
一、3+2=5
100÷5=20(平方米)20×3=60(平方米)
20×2=40(平方米)方法
二、3+2=5 100× 3/5=60(平方米)100× 2/5=40(平方米)
方法
三、100÷(1+2/3)=60(平方米)60× 2/3=40(平方米)或100-60=40(平方米)方法
四、100÷(1+3/2)=40(平方米)40× 3/2=60(平方米)或100-40=60(平方米)
5、比较思路:这几种方法中,你认为哪种方法好?为什么?(第二种,思路简捷,计算简便)说说第二种方法的思路? ①求出总份数
②各部分数占总份数的几分之几?
③按照求一个数的几分之几是多少的方法解答。
6、这道题做得对不对呢?我们怎么检验? ①两个班级的面积相加,是否等于原来的总面积。
②把六年级和二年级的面积化成比的形式,化简后的结果是不是等于3 :2
7、练习
一个农场计划在100公顷的地里播种大豆和玉米。播种面积的比是3 :2。两种作物各播种多少公顷?
(学生独立完成,集体订正,演示课件“比的应用”)下载
8、教学例3 学校把栽280棵树的任务,按照六年级三个班的人数,分配给各班。一班有47人,二班有45人,三班有48人。三个班各应栽树多少棵?
(1)讨论:这道题与前面所做的题有什么区别? 分配什么?按照什么来分?
怎样计算各班栽的棵数占总棵数的几分之几?(2)学生独立解题
①三个班的总人数:47+45+48=140(人)②一班应栽的棵数:280× 47/140=94(棵)③二班应栽的棵数:280×45/140 =90(棵)④三班应栽的棵数:280× 48/140=96(棵)答:一班、二班、三班各应栽94棵、90棵、96棵。
9、小结:观察我们今天学习的两个例题有什么共同特点?(已知总数量、各部分量的比,求各部分量)怎么解答?
(先求总份数,各部分量占总数量的几分之几,最后求各部分量)
我们把具备上述特点,用这种特定方法解答的分配问题叫做“按比例分配”应用题,板书(补充课题):按比例分谁?怎么分? 板书:把一个数量按照一定的比来进行分配。
三、巩固练习
1、六年级(2)班共有42人,男、女人数的比是3:4,男、女生各有多少人?
2、一个三角形三条边的长度比是3 :5 :4。这个三角形的周长是36厘米,三条边的长度分别是多少厘米?
(1)还是按比例分配问题吗?(2)如果是四个数的连比你还会解答吗?
3、一个长方形周长是20厘米,长与宽的比是7 :3,求长与宽各是多少厘米? 7+3=10
20×7/10=14(厘米)20×3/10=6(厘米)【错,要分的不是20厘米】
4、思考:平均分是不是按比例分配的应用题?按照几比几分配的?
四、课堂小结
今天我们学习了什么新知识?这种应用题有什么特点?应该怎样解答?
五、课后作业 练习十三2、3、4、6