第一篇:高一物理典型例题2
典型例题
【例1】如图6-8-1-1所示,在匀速转动的圆筒内壁上,有一物体随圆筒一起转动而未滑动。当圆筒的角速度增大以后,下列说法正确的是()
(A)物体所受弹力增大,摩擦力也增大了
(B)物体所受弹力增大,摩擦力减小了
(C)物体所受弹力和摩擦力都减小了
(D)物体所受弹力增大,摩擦力不变
分析与解:物体随圆筒一起转动时,受到三个力的作用:重力G、筒壁对
它的弹力FN、和筒壁对它的摩擦力F1(如图6-8-1-2所示)。其中G和F1是
一对平衡力,筒壁对它的弹力FN提供它做匀速圆周运动的向心力。当圆筒
匀速转动时,不管其角速度多大,只要物体随圆筒一起转动而未滑动,则物体所受的(静)摩擦力F1大小等于其重力。而根据向心力公式,FNmr,当角速度较大时FN也较大。故本题应选D。2图
6-8-1-
1【例2】如图6-8-1-3所示的传动装置中,已知大轮半径是小轮半径的3倍,图6-8-1-
2A点和B点分别在两轮边缘,C点离大轮距离等于小轮半径,若不打滑,则它们的线速度之比vA∶vB∶vC=,角速度之比ωA∶ωB∶ωC=,向心加速度之比aA∶aB∶aC=。
分析与解:A、C两点在同一轮上,所以角速度相等,即ωA=ωC由v=ωr得vA=3vC;又因为不打滑,所以vA= vB,由v=ωr得:
A13B。∴vA∶vB∶vC=3∶3∶1;ωA∶ωB∶ωC=1∶3∶1;
2aA∶aB∶aC=ArA∶BrB∶CrC=1∶3∶1。
学能提升 图6-8-1-
3★1.如图6-8-1-4所示,小物体A与圆柱保持相对静止,跟着圆盘一起
作匀速圆周运动,则A受力情况是受()
(A)重力、支持力
(B)重力、向心力
(C)重力、支持力和指向圆心的摩擦力
(D)重力、支持力、向心力和摩擦力
★2.如图6-8-1-5所示,a、b是地球上不同纬度上的两点,a、b
随地球自转做匀速圆周运动,则该两点具有相同的()
(A)运动半径(B)线速度大小
(C)角速度(D)线速度 图6-8-1-4 ★3.用长短不同,材料相同的同样粗细的绳子,各拴着一个质量相同的小球在光滑水平面上作匀速圆周运动,那么()
(A)两个小球以相同的线速度运动时,长绳易断
(B)两个小球以相同的角速度运动时,短绳易断
(C)两个小球以相同的角速度运动时,长绳易断
(D)不管怎样都是短绳易断
★4.如图6-8-1-6所示,汽车以速度v通过一半圆形式拱桥的顶端时,汽车受力的说法正确的是()
(A)汽车的向心力就是它所受的重力
(B)汽车的向心力是它所受的重力和支持力的合力,方向指向圆心
(C)汽车受重力、支持力、牵引力、摩擦力和向心力的作用(D)以上均不正确
★★5.火车轨道在转弯处外轨高于内轨,其高度差由转弯半径与火车速度确定.若在某转弯处规定行驶的速度为v,则下列说法中正确的是()
①当火车以v的速度通过此弯路时,火车所受重力与轨道面支持力的合力提供向心力
②当火车以v的速度通过此弯路时,火车所受重力、轨道面支持力和外轨对轮缘弹力的合力提供向心力
③当火车速度大于v时,轮缘挤压外轨④当火车速度小于v时,轮缘挤压外轨
(A)①③(B)①④(C)②③(D)②④
★★6.由上海飞往美国洛杉矶的飞机在飞越太平洋的过程中,如果保持飞机速度的大小和距离海面的高度均不变,则下列说法中正确的是()
(A)飞机做的是匀速直线运动。
(B)飞机上的乘客对座椅的压力略大于地球对乘客的引力。
(C)飞机上的乘客对座椅的压力略小于地球对乘客的引力。
(D)飞机上的乘客对座椅的压力为零。
★★★7.有一质量为m的小木块,由碗边滑向碗底,碗内表面是半径为R的圆弧,由于摩擦力的作用,木块运动的速率不变,则()
(A)它的加速度为零(B)它所受合力为零
(C)它所受合力大小一定,方向改变(D)它的加速度恒定
★★8.如图6-8-1-7所示,半径为r的圆筒绕竖直中心轴OO′转动,小物
块A靠在圆筒的内壁上,它与圆筒的静摩擦因数为μ,现要使A不下落,则圆筒转动的角速度ω至少应为图
6-8-1-7 ★★9.如图6-8-1-8所示,一个大轮通过皮带拉着小轮转动,皮带和两轮之间无滑动,大轮的半径是小轮的2倍,大轮上的一点s离转动轴的距离等于小轮
2的半径,当大轮边缘上P点的向心加速度是10m/s时,大轮上的S点和小轮上的Q点的向心加速度为aS=______m/s2,aQ=______m/s 图6-8-1-8 ★★★10.一个圆盘边缘系一根细绳,绳的下端拴着一个质量为m的小球,圆
盘的半径是r,绳长为L,圆盘匀速转动时小球随着一起转动,并且细绳与竖直
方向成θ角,如图6-8-1-9所示,则圆盘的转速是。
★★★11.如图6-8-1-10所示,直径为d的纸筒以角速度ω绕轴O
匀速转动,从枪口发射的子弹沿直径穿过圆筒.若子弹在圆筒旋转不到
半周时在圆筒上留下a、b两个弹孔,已知aO和b0夹角为φ,则子弹的速度大小为
★★12.下述各种现象,属于利用离心现象的是;属于防止离心
现象的是。
A.洗衣机脱水B.离心沉淀器分离物质
C.汽车转弯时减速D.汽车过桥时减速
E.转动雨伞,去除雨伞上的一些水
F.站在公交车里的乘客,在汽车转弯时用力拉住扶手
2图6-8-1-9 图
6-8-1-10
答案:1.C;2.C;3.C;4.B;5.A;6.C;7.C;8.g
r;9.aS=
5、aQ=20;10.12gtanrlsin 11.d
; 12.利用离心现象的是A、B、E;防止离心现象的是C、D、F
第二篇:高一物理牛顿第二定律典型例题
高一物理牛顿第二定律典型例题讲解与错误分析
北京市西城区教育研修学院(原教研中心)编
【例1】在光滑水平面上的木块受到一个方向不变,大小从某一数值逐渐变小的外力作用时,木块将作 [ ]
A.匀减速运动
B.匀加速运动
C.速度逐渐减小的变加速运动
D.速度逐渐增大的变加速运动
【分析】 木块受到外力作用必有加速度,已知外力方向不变,数值变小,根据牛顿第二定律可知,木块加速度的方向不变,大小在逐渐变小,也就是木块每秒增加的速度在减少,由于加速度方向与速度方向一致,木块的速度大小仍在不断增加,即木块作的是加速度逐渐减小速度逐渐增大的变加速运动.
【答】 D.
【例2】 一个质量m=2kg的木块,放在光滑水平桌面上,受到三个大小均为F=10N、与桌面平行、互成120°角的拉力作用,则物体的加速度多大?若把其中一个力反向,物体的加速度又为多少?
【分析】 物体的加速度由它所受的合外力决定.放在水平桌面上的木块共受到五个力作用:竖直方向的重力和桌面弹力,水平方向的三个拉力.由于木块在竖直方向处于力平衡状态,因此,只需由水平拉力算出合外力即可由牛顿第二定律得到加速度.
(1)由于同一平面内、大小相等、互成120°角的三个力的合力等于零,所以木块的加速度a=0.
(2)物体受到三个力作用平衡时,其中任何两个力的合力必与第三个力等值反向.如果把某一个力反向,则木块所受的合力F合=2F=20N,所以其加速度为:
它的方向与反向后的这个力方向相同.
【例3】 沿光滑斜面下滑的物体受到的力是 [ ]
A.力和斜面支持力
B.重力、下滑力和斜面支持力
C.重力、正压力和斜面支持力
D.重力、正压力、下滑力和斜面支持力
【误解一】选(B)。
【误解二】选(C)。
【正确解答】选(A)。
【错因分析与解题指导】 [误解一]依据物体沿斜面下滑的事实臆断物体受到了下滑力,不理解下滑力是重力的一个分力,犯了重复分析力的错误。[误解二]中的“正压力”本是垂直于物体接触表面的力,要说物体受的,也就是斜面支持力。若理解为对斜面的正压力,则是斜面受到的力。
在用隔离法分析物体受力时,首先要明确研究对象并把研究对象从周围物体中隔离出来,然后按场力和接触力的顺序来分析力。在分析物体受力过程中,既要防止少分析力,又要防止重复分析力,更不能凭空臆想一个实际不存在的力,找不到施力物体的力是不存在的。
【例4】 图中滑块与平板间摩擦系数为μ,当放着滑块的平板被慢慢地绕着左端抬起,α角由0°增大到90°的过程中,滑块受到的摩擦力将 [ ]
A.不断增大
B.不断减少
C.先增大后减少
D.先增大到一定数值后保持不变
【误解一】 选(A)。
【误解二】 选(B)。
【误解三】 选(D)。
【正确解答】选(C)。
【错因分析与解题指导】要计算摩擦力,应首先弄清属滑动摩擦力还是静摩擦力。
若是滑动摩擦,可用f=μN计算,式中μ为滑动摩擦系数,N是接触面间的正压力。若是静摩擦,一般应根据物体的运动状态,利用物理规律(如∑F=0或∑F = ma)列方程求解。若是最大静摩擦,可用f=μsN计算,式中的μs是静摩擦系数,有时可近似取为滑动摩擦系数,N是接触面间的正压力。
【误解一、二】 都没有认真分析物体的运动状态及其变化情况,而是简单地把物体受到的摩擦力当作是静摩擦力或滑动摩擦力来处理。事实上,滑块所受摩擦力的性质随着α角增大会发生变化。开始时滑块与平板将保持相对静止,滑块受到的是静摩擦力;当α角增大到某一数值α0时,滑块将开始沿平板下滑,此时滑块受到滑动摩擦力的作用。当α角由0°增大到α0过程中,滑块所受的静摩擦力f的大小与重力的下滑力平衡,此时f = mgsinα.f 随着α增大而增大;当α角由α0增大到90°过程中,滑块所受滑动摩擦力f=μN=μmgcosα,f 随着α增大而减小。
【误解三】 的前提是正压力N不变,且摩擦力性质不变,而题中N随着α的增大而不断增大。
【例5】 如图,质量为M的凹形槽沿斜面匀速下滑,现将质量为m的砝码轻轻放入槽中,下列说法中正确的是 [ ]
A.M和m一起加速下滑
B.M和m一起减速下滑
C.M和m仍一起匀速下滑
【误解一】 选(A)。
【误解二】 选(B)。
【正确解答】 选(C)。
【错因分析与解题指导】[误解一]和[误解二]犯了同样的错误,前者片面地认为凹形槽中放入了砝码后重力的下滑力变大而没有考虑到同时也加大了正压力,导致摩擦力也增大。后者则只注意到正压力加大导致摩擦力增大的影响。
事实上,凹形槽中放入砝码前,下滑力与摩擦力平衡,即Mgsinθ=μMgcosθ;当凹形槽中放入砝码后,下滑力(M + m)gsinθ与摩擦力μ(M + m)gcosθ仍平衡,即(M + m)gsinθ=μ(M + m)gcosθ凹形槽运动状态不变。
【例6】图1表示某人站在一架与水平成θ角的以加速度a向上运动的自动扶梯台阶上,人的质量为m,鞋底与阶梯的摩擦系数为μ,求此时人所受的摩擦力。
【误解】 因为人在竖直方向受力平衡,即N = mg,所以摩擦力f=μN=μmg。
【正确解答】如图2,建立直角坐标系并将加速度a沿已知力的方向正交分解。水平方向加速度
a2=acosθ
由牛顿第二定律知
f = ma2 = macosθ
【错因分析与解题指导】计算摩擦力必须首先判明是滑动摩擦,还是静摩擦。若是滑动摩擦,可用f=μN计算;若是静摩擦,一般应根据平衡
条件或运动定律列方程求解。题中的人随着自动扶梯在作匀加速运动,在水平方向上所受的力应该是静摩擦力,[误解]把它当成滑动摩擦力来计算当然就错了。另外,人在竖直方向受力不平衡,即有加速度,所以把接触面间的正压力当成重力处理也是不对的。
用牛顿运动定律处理平面力系的力学问题时,一般是先分析受力,然后再将诸力沿加速度方向和垂直于加速度方向正交分解,再用牛顿运动定律列出分量方程求解。
有时将加速度沿力的方向分解显得简单。该题正解就是这样处理的。
【例7】 在粗糙水平面上有一个三角形木块abc,在它的两个粗糙斜面上分别放两个质量m1和m2的木块,m1>m2,如图1所示。已知三角形木块和两个物体都是静止的,则粗糙水平面对三角形木块 [ ]
A.有摩擦力作用,摩擦力方向水平向右
B.有摩擦力作用,摩擦力方向水平向左
C.有摩擦力作用,但摩擦力方向不能确定
D.以上结论都不对
【误解一】 选(B)。
【误解二】 选(C)。
【正确解答】 选(D)。
【错因分析与解题指导】[误解一]根据题目给出的已知条件m1>m2,认为m1对三角形木块的压力大于m2对三角形木块的压力,凭直觉认为这两个压力在水平方向的总效果向右,使木块有向右运动的趋势,所以受到向左的静摩擦力。[误解二]求出m1、m2对木块的压力的水平分力的合力
F=(m1cosθ1sinθ1—m2cosθ2sinθ2)g
后,发现与m1、m2、θ
1、θ2的数值有关,故作此选择。但因遗漏了m1、m2与三角形木块间的静摩擦力的影响而导致错误。
解这一类题目的思路有二:
1.先分别对物和三角形木块进行受力分析,如图2,然后对m1、m2建立受力平衡方程以及对三角形木块建立水平方向受力平衡方程,解方程得f的值。若f=0,表明三角形木块不受地面的摩擦力;若f为负值,表明摩擦力与假设正方向相反。这属基本方法,但较繁复。
2.将m1、m2与三角形木块看成一个整体,很简单地得出整体只受重力(M + m1 + m2)g和支持力N两个力作用,如图3,因而水平方向不受地面的摩擦力。
【例8】质量分别为mA和mB的两个小球,用一根轻弹簧联结后用细线悬挂在顶板下(图1),当细线被剪断的瞬间,关于两球下落加速度的说法中,正确的是 [ ]
A.aA=aB=0 B.aA=aB=g
C.aA>g,aB=0 D.aA<g,aB=0
分析 分别以A、B两球为研究对象.当细线未剪断时,A球受到竖直向下的重力mAg、弹簧的弹力T,竖直向上细线的拉力T′;B球受到竖直向下的重力mBg,竖直向上弹簧的弹力T图2.它们都处于力平衡状态.因此满足条件
T = mBg,T′=mAg + T =(mA+mB)g.
细线剪断的瞬间,拉力T′消失,但弹簧仍暂时保持着原来的拉伸状态,故B球受力不变,仍处于平衡状态,aB=0;而A球则在两个向下的力作用下,其瞬时加速度为
答 C.
说明
1.本题很鲜明地体现了a与F之间的瞬时关系,应加以领会.
2.绳索、弹簧以及杆(或棒)是中学物理中常见的约束元件,它们的特性是不同的,现列表对照如下:
【例9】 在车箱的顶板上用细线挂着一个小球(图1),在下列情况下可对车厢的运动情况得出怎样的判断:
(1)细线竖直悬挂:______;
(2)细线向图中左方偏斜:_________
(3)细线向图中右方偏斜:___________。
【分析】作用在小球上只能有两个力:地球对它的重力mg、细线对它的拉力(弹力)T.根据这两个力是否处于力平衡状态,可判知小球所处的状态,从而可得出车厢的运动情况。
(1)小球所受的重力mg与弹力T在一直线上,如图2(a)所示,且上、下方向不可能运动,所以小球处于力平衡状态,车厢静止或作匀速直线运动。
(2)细线左偏时,小球所受重力mg与弹力T不在一直线上[如图2(b)],小球不可能处于力平衡状态.小球一定向着所受合力方向(水平向右方向)产生加速度.所以,车厢水平向右作加速运动或水平向左作减速运动.
(3)与情况(2)同理,车厢水平向左作加速运动或水平向右作减速运动[图2(c)].
【说明】 力是使物体产生加速度的原因,不是产生速度的原因,因此,力的方向应与物体的加速度同向,不一定与物体的速度同向.如图2(b)中,火车的加速度必向右,但火车可能向左运动;图2(c)中,火车的加速度必向左,但火车可能向右运动.
【例10】如图1,人重600牛,平板重400牛,如果人要拉住木板,他必须用多大的力(滑轮重量和摩擦均不计)?
【误解】对滑轮B受力分析有
2F=T
对木板受力分析如图2,则N+F=N+G板
又N=G人
【正确解答一】对滑轮B有
2F=T
对人有
N+F=G人
对木板受力分析有F+T=G板+N
【正确解答二】对人和木板整体分析如图3,则
T+2F=G人+G板
由于T=2F
【错因分析与解题指导】[误解]错误地认为人对木板的压力等于人的重力,究其原因是没有对人进行认真受力分析造成的。
【正确解答一、二】选取了不同的研究对象,解题过程表明,合理选取研究对象是形成正确解题思路的重要环节。如果研究对象选择不当,往往会使解题过程繁琐费时,并容易发生错误。通常在分析外力对系统的作用时,用整体法;在分析系统内物体(或部分)间相互作用时,用隔离法。在解答一个问题需要多次选取研究对象时,可整体法和隔离法交替使用。
【例11】如图1甲所示,劲度系数为k2的轻质弹簧,竖直放在桌面上,上面压一质量为m的物块,另一劲度系数为k1的轻质弹簧竖直地放在物块上面,其下端与物块上表面连接在一起,要想使物块在静止时,下面弹簧承受物重的2/3,应将上面弹簧的上端A竖直向上提高的距离是多少?
【分析】
由于拉A时,上下两段弹簧都要发生形变,所以题目给出的物理情景比较复杂,解决这种题目最有效的办法是研究每根弹簧的初末状态并画出直观图,清楚认识变化过程
如图1乙中弹簧2的形变过程,设原长为x20,初态时它的形变量为△x2,末态时承重2mg/3,其形变量为△x2′,分析初末态物体应上升△x2-△x2′.
对图丙中弹簧1的形变过程,设原长为x10(即初态).受到拉力后要承担物重的1/3,则其形变是为△x1,则综合可知A点上升量为
d=△x1+△x2-△x2′
【解】末态时对物块受力分析如图2依物块的平衡条件和胡克定律
F1+F2′=mg(1)
初态时,弹簧2弹力
F2 = mg = k2△x2(2)
式(3)代入式(1)可得
由几何关系
d=△x1+△x2-△x2′(4)
【说明】
从前面思路分析可知,复杂的物理过程,实质上是一些简单场景的有机结合.通过作图,把这个过程分解为各个小过程并明确各小过程对应状态,画过程变化图及状态图等,然后找出各状态或过程符合的规律,难题就可变成中档题,思维能力得到提高。
轻质弹簧这种理想模型,质量忽略不计,由于撤去外力的瞬时,不会立即恢复形变,所以在牛顿定律中,经常用到;并且由于弹簧变化时的状态连续性,在动量等知识中也经常用到,这在高考中屡见不鲜.
【例12】如图1所示,在倾角α=60°的斜面上放一个质量m的物体,用k=100N/m的轻弹簧平行斜面吊着.发现物体放在PQ间任何位置恰好都处于静止状态,测得AP=22cm,AQ=8cm,则物体与斜面间的最大静摩擦力等于多少?
物体位于Q点时,弹簧必处于压缩状态,对物体的弹簧TQ沿斜面向下;物体位于P点时,弹簧已处于拉伸状态,对物体的弹力Tp沿斜面向
上.P,Q两点是物体静止于斜面上的临界位置,此时斜面对物体的静摩擦力都达到最大值fm,其方向分别沿斜面向下和向上.
【解】 作出物体在P、Q两位置时的受力图(图2),设弹簧原长为L0,则物体在Q和P两处的压缩量和伸长量分别为
x1=L0-AQ,x2=AP-L0.
根据胡克定律和物体沿斜面方向的力平衡条件可知:
kx1 =k(L0-AQ)=fm-mgsinα,kx2 =k(AP-L0)=fm + mgsinα.
联立两式得
【说明】 题中最大静摩擦力就是根据物体的平衡条件确定的,所以画出P、Q两位置上物体的受力图是至关重要的.
【例13】质量均为m的四块砖被夹在两竖直夹板之间,处于静止状态,如图1。试求砖3对砖2的摩擦力。
【误解】隔离砖“2”,因有向下运动的趋势,两侧受摩擦力向上,【正确解答】先用整体法讨论四个砖块,受力如图2所示。由对称性可知,砖“1”和“4”受到的摩擦力相等,则f=2mg;再隔离砖“1”和“2”,受力如图3所示,不难得到f′=0。
【错因分析与解题指导】[误解]凭直觉认为“2”和“3”间有摩擦,这是解同类问题最易犯的错误。对多个物体组成的系统内的静摩擦力问题,整体法和隔离法的交替使用是解题的基本方法。
本题还可这样思考:假设砖“2”与“3”之间存在摩擦力,由对称性可知,f23和f32应大小相等、方向相同,这与牛顿第三定律相矛盾,故假设不成立,也就是说砖“2”与“3”之间不存在摩擦力。
利用对称性解题是有效、简便的方法,有时对称性也是题目的隐含条件。本题砖与砖、砖与板存在五个接触面,即存在五个未知的摩擦力,而对砖“1”至“4”只能列出四个平衡方程。如不考虑对称性,则无法求出这五个摩擦力的具体值。
第三篇:高一物理超重和失重典型例题解析
3eud教育网 http://www.3edu.net 百万教学资源,完全免费,无须注册,天天更新!
超重和失重·典型例题解析
【例1】竖直升降的电梯内的天花板上悬挂着一根弹簧秤,如图24-1所示,弹簧秤的秤钩上悬挂一个质量m=4kg的物体,试分析下列情况下电梯的运动情况(g取10m/s2):
(1)当弹簧秤的示数T1=40N,且保持不变.(2)当弹簧秤的示数T2=32N,且保持不变.(3)当弹簧秤的示数T3=44N,且保持不变.
解析:选取物体为研究对象,它受到重力mg和竖直向上的拉力T的作用.规定竖直向上方向为正方向.
(1)当T1=40N时,根据牛顿第二定律有T1-mg=ma1,解得这时
电梯的加速度a1=T1-mg40-4×10=m/s2=0,由此可见,电梯处于 m4静止或匀速直线运动状态.
(2)当T2=32N时,根据牛顿第二定律有T2-mg=ma2,解得这
时电梯的加速度a2=T2mg3240=m/s2=-2m/s2.式中的负号表 m4示物体的加速度方向与所选定的正方向相反,即电梯的加速度方向竖直向下.电梯加速下降或减速上升.
(3)当T3=44N时,根据牛顿第二定律有T3-mg=ma3,解得这时
T3mg44-40电梯的加速度a3==m/s2=1m/s2.a3为正值表示电梯
m4的加速度方向与所选的正方向相同,即电梯的加速度方向竖直向上.电梯加速上升或减速下降.
点拨:当物体加速下降或减速上升时,亦即具有竖直向下的加速度时,物3eud教育网 http://www.3edu.net 教学资源集散地。可能是最大的免费教育资源网!3eud教育网 http://www.3edu.net 百万教学资源,完全免费,无须注册,天天更新!
体处于失重状态;当物体加速上升或减速下降时,亦即具有竖直向上的加速度时,物体处于超重状态.
【例2】举重运动员在地面上能举起120kg的重物,而在运动着的升降机中却只能举起100kg的重物,求升降机运动的加速度.若在以2.5m/s2的加速度加速下降的升降机中,此运动员能举起质量多大的重物?(g取10m/s2)解析:运动员在地面上能举起120kg的重物,则运动员能发挥的向上的最大支撑力F=m1g=120×10N=1200N,在运动着的升降机中只能举起100kg的重物,可见该重物超重了,升降机应具有向上的加速度
Fm2g1200-100×10对于重物,F-m2g=m2a1,所以a1==m2100 m/s2=2m/s2;当升降机以2.5m/s2的加速度加速下降时,重物失重.对于重物,m3g-F=m3a2,得m3=F1200=kg=160kg.
ga210-2.5点拨:题中的一个隐含条件是:该运动员能发挥的向上的最大支撑力(即举重时对重物的最大支持力)是一个恒量,它是由运动员本身的素质决定的,不随电梯运动状态的改变而改变.
【例3】如图24-2所示,是电梯上升的v~t图线,若电梯的质量为100kg,则承受电梯的钢绳受到的拉力在0~2s之间、2~6s之间、6~9s之间分别为多大?(g取10m/s2)解析:从图中可以看出电梯的运动情况为先加速、后匀速、再减速,根据v-t图线可以确定电梯的加速度,由牛顿运动定律可列式求解
对电梯的受力情况分析如图24-2所示:
(1)由v-t图线可知,0~2s内电梯的速度从0均匀增加到6m/s,其加速度a1=(vt-v0)/t=3m/s2
由牛顿第二定律可得F1-mg=ma1
3eud教育网 http://www.3edu.net 教学资源集散地。可能是最大的免费教育资源网!3eud教育网 http://www.3edu.net 百万教学资源,完全免费,无须注册,天天更新!
解得钢绳拉力
F1=m(g+a1)=1300 N(2)在2~6s内,电梯做匀速运动.F2=mg=1000N(3)在6~9s内,电梯作匀减速运动,v0=6m/s,vt=0,加速度a2=(vt-v0)/t=-2m/s2
由牛顿第二定律可得F3-mg=ma2,解得钢绳的拉力F3=m(g+a2)=800N.
点拨:本题是已知物体的运动情况求物体的受力情况,而电梯的运动情况则由图象给出.要学会从已知的v~t图线中找出有关的已知条件.
【问题讨论】在0~2s内,电梯的速度在增大,电梯的加速度恒定,吊起电梯的钢绳拉力是变化的,还是恒定的?
在2~6s内,电梯的速度始终为0~9s内的最大值,电梯的加速度却恒为零,吊起电梯的钢绳拉力又如何?
在6~9s内,电梯的速度在不断减小,电梯的加速度又是恒定的,吊起电梯的钢绳拉力又如何?
请你总结一下,吊起电梯的钢绳的拉力与它的速度有关,还是与它的加速度有关?
【例4】如图24-3所示,在一升降机中,物体A置于斜面上,当升降机处于静止状态时,物体A恰好静止不动,若升降机以加速度g竖直向下做匀加速运动时,以下关于物体受力的说法中正确的是
[
] A.物体仍然相对斜面静止,物体所受的各个力均不变 B.因物体处于失重状态,所以物体不受任何力作用
C.因物体处于失重状态,所以物体所受重力变为零,其它力不变 D.物体处于失重状态,物体除了受到的重力不变以外,不受其它力的作用
点拨:(1)当物体以加速度g向下做匀加速运动时,物体处于完全失重状态,其视重为零,因而支持物对其的作用力亦为零.
(2)处于完全失重状态的物体,地球对它的引力即重力依然存在. 答案:D
【例5】如图24-4所示,滑轮的质量不计,已知三个物体的质量关系是:3eud教育网 http://www.3edu.net 教学资源集散地。可能是最大的免费教育资源网!3eud教育网 http://www.3edu.net 百万教学资源,完全免费,无须注册,天天更新!
m1=m2+m3,这时弹簧秤的读数为T.若把物体m2从右边移到左边的物体m1上,弹簧秤的读数T将
A.增大
B.减小
C.不变
D.无法判断
[
]
点拨:(1)若仅需定性讨论弹簧秤读数T的变化情况,则当m2从右边移到左边后,左边的物体加速下降,右边的物体以大小相同的加速度加速上升,由于m1+m2>m3,故系统的重心加速下降,系统处于失重状态,因此T<(m1+m2+m3)g.
而m2移至m1上后,由于左边物体m1、m2加速下降而失重,因此跨过滑轮的连线张力T0<(m1+m2)g;由于右边物体m3加速上升而超重,因此跨过滑轮的连线张力T0>m3g.
(2)若需定量计算弹簧秤的读数,则将m1、m2、m3三个物体组成的连接体使用隔离法,求出其间的相互作用力T0,而弹簧秤读数T=2T0,即可求解.
答案:B
跟踪反馈
1.金属小筒的下部有一个小孔A,当筒内盛水时,水会从小孔中流出,如果让装满水的小筒从高处自由下落,不计空气阻力,则在小筒自由下落的过程中
[
] 3eud教育网 http://www.3edu.net 教学资源集散地。可能是最大的免费教育资源网!3eud教育网 http://www.3edu.net 百万教学资源,完全免费,无须注册,天天更新!
A.水继续以相同的速度从小孔中喷出 B.水不再从小孔中喷出
C.水将以较小的速度从小孔中喷出 D.水将以更大的速度从小孔中喷出
2.一根竖直悬挂的绳子所能承受的最大拉力为T,有一个体重为G的运动员要沿这根绳子从高处竖直滑下.若G>T,要使下滑时绳子不断,则运动员应该
[
] A.以较大的加速度加速下滑 B.以较大的速度匀速下滑 C.以较小的速度匀速下滑 D.以较小的加速度减速下滑
3.在以4m/s2的加速度匀加速上升的电梯内,分别用天平和弹簧秤称量一个质量10kg的物体(g取10m/s2),则
[
] A.天平的示数为10kg B.天平的示数为14kg C.弹簧秤的示数为100N D.弹簧秤的示数为140N 4.如图24-5所示,质量为M的框架放在水平地面上,一根轻质弹簧的上端固定在框架上,下端拴着一个质量为m的小球,在小球上下振动时,框架始终没有跳起地面.当框架对地面压力为零的瞬间,小球加速度的大小为
[
] A.g C.0 B.(Mm)gm
(Mm)g D.m
参考答案:1.B 2.A 3.AD 4.D
3eud教育网 http://www.3edu.net 教学资源集散地。可能是最大的免费教育资源网!
第四篇:高二物理选修3-1典型例题
典型例题
例1关于电场线,下述说法中正确的是:
A.电场线是客观存在的B.电场线与电荷运动的轨迹是一致的.
C.电场线上某点的切线方向与与电荷在该点受力方向可以不同.
D.沿电场线方向,场强一定越来越大.
解析:电场线不是客观存在的,是为了形象描述电场的假想线,A选项是错的.B选项也是错的,静止开始运动的电荷所受电场力方向应是该点切线方向,下一时刻位置应沿切线方向上,可能在电场线上,也可能不在电场线上,轨迹可能与电场线不一致.何况电荷可以有初速度,运动轨迹与初速度大小方向有关,可能轨迹很多,而电场线是一定的.正电荷在电场中受的电场力方向与该点切线方向相同,而负电荷所受电场力与该点切线方向相反,选项C是正确的.场强大小与场强的方向无关,与电场线方向无关,D选项是错的.
本题答案应是:C.
例2正电荷q在电场力作用下由 向Q做加速运动,而且加速度越来越大,那么可以断定,它所在的电场是下图中的哪一个:
()
解析:带电体在电场中做加速运动,其电场力方向与加速度方向相同,加速度越来越大电荷所受电场力应越来越大,电量不变,电场力,应是E越来越大.电场线描述电场强度分布的方法是,电场线密度越大,表示场强越大,沿PQ方向.电场线密度增大的情况才符合题的条件,应选D.
例3用细线将一质量为m,电荷量为q的小球悬挂在天花板的下面,没空气中存在有沿水平方向的匀强电场,当小球静止时把细线烧断,小球将做()
A.自由落体运动
B.曲线运动
C.沿悬线的延长线的匀加速运动
D.变加速直线运动
【解析】烧断细线前,小球受竖直向下的重力G,水平方向的电场力F和悬线的拉力T,并处于平衡状态,现烧断细线,拉力T消失,而重力G和电场力F都没有变化,G和F的合力为恒力,方向沿悬线的延长线方向,所以小球做初速为零的匀加速直线运动.
带电小球的匀强电场中所受的电场力在运动过程中保持不变,初速为零的物体开始运动的方向必沿合外力方向.
正确选项为C.
例4质量为m,电荷量为+q的小球,用一根绝缘细线悬于O点.开始时,它在A、B之间来回摆动,OA、OB与竖直方向OC的夹角均为,如图所示.
(1)如果当它摆动到B点时突然施加一竖直向上的,大小为E=mg/q的匀强电场,则此时线中拉力T1=_________.
(2)如果这一电场是在小球从A点摆到最低点C时突然加上去的,则当小球运动到B点时线中的拉力T2=________.
【解析】(1)因为匀强电场的方向竖直向上,所以电场力,电场力和重力相平衡,小球到B点时速度为零,因此突
然加上电场后使小球在B点保持静止,悬线中的张力T1=0.
(2)小球经C点时具有一定的运动速度,突然加上电场,小球所受的合力即为细线对它的拉力,小球以O为圆心做匀速圆周运动,小球到达C时的速率可由机械能守恒定律得到.
小球到B点时,vB= vC,由牛顿第二定律得 .物体的运动情况由初始条件和受力情况共同决定,尽管加上匀强电场后,电场力总与重力相平衡,但加上匀强电场时小球的速度不同(即初始条件不同),所以运动的情况也不相同.
例5如图所示MN是电场中的一条电场线,一电子从a点运动到b点速度在不断地增大,则下列结论正确的是:
A.该电场是匀强电场.
B.该电场线的方向由N指向M.
C.电子在a处的加速度小于在b处的加速度.
D.因为电子从a到b的轨迹跟MN重合,所以电场线实际上就是带电粒子在电场中的运动轨迹.
【解析】仅从一根直的电场线不能判断出该电场是否为匀强电场,因为无法确定电场线的疏密程度,该电场可能是匀强电场,可能是正的点电荷形成的电场,也可能是负的点电荷形成的电场,因此不能比较电子在a、b两处所受电场力的大小,即不能比较加速度的大小,但电子从a到b做的是加速运动,表明它所受的电场力方向由M指向见由于负电荷所受的电场力方向跟场强方向相反,所以电场线的方向由N指向M,电场线是为了形象地描述电场而假想的曲线,带电粒子的运动轨迹是真实存在的曲线,两者的重合是在特定条件下才成立的,在一般情况下两者并不重合.例如氢原子的核外电子绕核做匀速圆周运动时,轨迹跟原子核(质子)产生电场的电场线垂直.
正确选项为B.
第五篇:初三物理热学典型例题解析
初三物理热学典型例题解析
例1把正在熔化的冰,放到0℃的房间内(它们与外界不发生热传递),冰能不能继续熔化?
解答冰完成熔化过程需要满足两个条件:一是达到它的熔点0℃,二是必须继续吸热.题中正在熔化的冰,温度是0℃的冰和0℃的房间没有温度差,它们之间不发生热传递,因此冰不能继续吸热,它不会继续熔化.
本题常见错误是片面认为晶体只要达到了它的熔点,就会熔化,得出冰能继续熔化的结论.
例2“水的温度升高到100℃,水就一定会沸腾起来.”这种说法对吗?
解答这是常见的一种错误看法.在学习了沸腾知识后,要会用它的规律来分析.这种说法有两点错误.
第一,100℃不一定是水的沸点,只有在标准大气压下,水的沸点才是100℃.液体的沸点与气压有关,气压增大,沸点升高;气压减小,沸点降低.
第二,即使在标准大气压下,水温达到100℃,水也不一定能沸腾.这是因为完成液体沸腾,条件有两个:一是液体的温度达到沸点,二是液体要继续吸热,这两个条件缺一不可,因此不能说,水到了100℃,就一定会沸腾.
例3在很冷的地区,为什么常使用酒精温度计而不使用水银温度计测气温?而在实验室中,为什么用煤油温度计而不使用酒精温度计测沸水的温度?
解答酒精、水银及煤油温度计都是利用液体的热胀冷缩的性质来测量温度的.如果酒精、水银、煤油凝固成了固态或变成气体就无法用它来测温了.查熔点表可知:酒精的熔点是—117℃,水银的熔点是—39℃.又因为同一物质的凝固点跟它的熔点相同,也就是说酒精降至—117℃才凝固,而水银降至—39℃就会凝固,很冷的地区气温可低至—40~—60℃,这种情况下水银凝固,而酒精还是液态的,可以用来测气温.又查沸点表可知:酒精的沸点是78.5℃,而煤油的沸点约为150℃,凝固点约为-30℃,而水的沸点是100℃,实验时若用酒精制成的温度计测沸水的温度,酒精有可能变成气体而无法进行测量,而煤油仍是液体,还可以测高温.
例4(天津中考试题)质量和温度均相同的铁块和铝块,吸收相同的热量后相互接触(铁的比热<铝的比热=,则()
A.热从铝块传到铁块B.热从铁块传到铝块
C.铁块和铝块之间没有热传递D.条件不足,无法判断
精析考查对物体吸、放热公式的理解,并知道热是从高温物体传向低温物体.
∵Q吸=cm△t
m相同,∵c铁<c铝
∴△t铁<△t铝初温相同,铁末温高.
∴热从铁传向铝.
答案B 例5 夏天,剥开冰棒纸后,可以看到冰棒周围会冒“白气”,这是属于下面的哪种状态变化()
A.熔化
B.汽化
C.液化
D.升华
解答 如果认为“白气”是水蒸气,就会误选B或D.水蒸气是空气的组成部分,人们用肉眼是看不见的,那么“白气”是什么?
“白气”是许许多多的水滴悬浮在空气中形成的小雾滴,光射到它们上面发生了散射,使我们看到了它.
在一定的条件下,水蒸气遇冷变成水,就形成了“白气”.例如,水烧开时,从壶嘴里冒出的“白气”.冬天,人们呼出的“白气”都是水蒸气遇冷放热,形成了许许多多悬浮在空中的小水滴,这就是“白气”,因此,形成“白气”是水蒸气液化的结果.
夏天,为什么在冰棒周围会出现“白气”呢?是因为空气中有大量的水蒸气,它们在冰棍附近遇冷放热,形成了许许多多的小冰滴.可见,冰棒周围出现“白气”,也是水蒸气液化的现象.
答案 C 例6(陕西省中考试题)关于热量、温度、内能之间的关系,下列说法正确的是()
A.物体温度升高,内能一定增加
D.物体吸收热量,温度一定升高
C.物体温度不变,一定没有吸热
D.物体温度升高,一定吸收热量
方法点拨 了解内能变化与什么有关,了解物态变化的条件.
分析 A选项正确.
B选项:晶体熔化过程吸收热量,但温度不变.
C选项:与B相似,不正确.
D选项:物体温度升高,可能吸收了热量,也可能是外界对物体做了功.
答案 A
例7(南京市中考试题)下列说法正确的是()
A.没有吸热过程和放热过程,说热量是毫无意义的
B.物质的比热容与物体吸收的热量、物体的质量及物体温度的变化有关
C.两个物体升高相同的温度,吸收的热量也一定相同
D.热总是从含有热量多的物体传递给热量少的物体
精析 正确理解热量、内能的概念,并知道Q=cm△t.
热量反应的是吸、放热过程,A选项正确.
B选项:比热容是物质的特性之一,与热量、质量、温度变化无关.
C选项:根据Q=cm△t,由于c和m没有给定,Q不能确定.
D选项:热传递的过程是内能从高温物体传到低温物体的过程.说热量多、热量少不正确.
答案 A
例8(甘肃省中考试题)质量相等的金属块A和B,放在沸水壶中煮10min后取出,马上分别投入质量相同、温度也相同的两杯水里,到两杯水的温度不再升高时,测量发现放A的水温高于放B的水温,则()
A.金属块A的比热容大
B.金属块A原来的温度高
C.金属块A有较多的热量
D.金属块A有较好的导热性
精析 根据Q=cm△t分析.
设放A的水吸收热量为QA,QA=cAm△tA(其中m为A的质量)
设放B的水吸收热量为QB
QB=cBm△tB
题目给出放A的水温升得高,而A、B初温相同,可知:△tA<△tB.
又知:QA>QB ∴ cA=
??? cA>cB
选项A正确.
A、B初温相同,都与沸水温度相同,B选项不正确.
A放出较多的热量,而不是有较多的热量,C选项不正确.
答案 A 初中物理热学趣味题目答案:
1.纸片是热的不良导体,曝晒后纸片的上表面升温较多,下表面升温较少,因此上表面的热膨胀也就比下表面的大,于是纸片向上凸起,如双金属片一样。
2.自动调温电烫斗的调温器是由调温螺钉和双金属片等组成。它利用双金属片的热胀冷缩现象实现自动切断或接通电路,从而达到自动控制电熨斗熨烫温度的目的。当接通电源后,电热元件发热,熨斗温度逐渐上升,双金属片也随之受热膨胀;当达到一定温度时,双金属片向上弯曲而使两触头断开,电路被切断,电热元件停止发热,经过一段时间,由于熨斗温度下降,双金属片恢复原来的形状又使两触点接通,于是,电热元件又通电继续发热,使熨斗温度再上升。如此往复,使得熨斗温度始终保持在某一温度附近。电熨斗所保持温度的高低的控制,是通过调温螺钉调节电路中两个触头间的距离来实现的。
3.可以根据气体能通过对流来传递热量的特点设计实验。实验过程如下:点燃电灯,用手触摸灯泡的上方和下方的玻璃。如果各个方向上的玻璃都同时均匀变热,则说明它们都只接受了灯丝的热辐射,因此这只灯泡是真空型的;如果灯泡的土方比下方的玻璃热得快,说明灯泡内存在着气体的对流,因此这只灯泡必定是充气灯泡,同学们可以用这个方法来检查一下,通常的民用灯泡到底是哪种类型的灯。
4.实验中蜡烛的熄灭是由于缺乏氧气。这是因为长玻璃筒底部燃烧的蜡烛,使筒内空气受热上升,堵塞了含有氧气的新鲜空气的补充通道。如果在长玻璃筒内隔一硬纸片,把玻璃筒一分为二,如图13所示,冷热空气各有通道可行,形成对流,这样蜡烛就可以继续燃烧了。如果玻璃筒底是开口的,那么只要使它与桌面间图13稍留缝隙,也能起到同样的作用。
5.设计测定花生米燃烧值的实验时,要考虑到以下几个问题:怎样使花生米完全燃烧?怎样尽量降低燃烧过程中热量的损失?怎样测定花生米燃烧中释放出的热量?我们可以用大头针将花生米支持起来燃烧;燃烧过程中用纸板或铁皮将实验装置围住;通过被加热水的温升来计算花生米燃烧时释放出的热量。这样,整个实验中所需的仪器与器材为:一粒花生米、一枚大头针、一支温度计、一只小杯子、适当的水、一块纸板、一架天平、火柴。
6.锅盖的作用应该从汽化吸热的角度来认识。水汽化,需要吸收大量的热。如果不盖锅盖,加热着的水蒸发(汽化的一种)就快,同时随着水蒸汽的上升逃逸,蒸发所吸收的大量热量就会不断损失。盖上锅盖,不仅可以截留住水蒸汽,把这部分热量保持在锅内,同时在一定程度上减缓了蒸发,使得加热着的水温度提高快得多,所以沸腾就快了。
7.我们可以这样思考:如果压力锅不加限压阀,这时锅内的气压即为大气的压强(通常算作一个大气压),水的沸点是100℃,现在盖上限压阀,锅内水沸腾时的气压是多少呢?显然,这时的气压是原先的一个大气压和限压阀所产生的附加压强之和。这样,只要测算得附加压强,就能得知锅内的总压强,于是就可通过查表获得压力锅内水的沸点了。你可试测一下限压阀的质量及阀座上小孔的直径,就可以估算出一般压力锅内的水是在约2×103帕斯卡的气压下沸腾,因而通过查表可以知道,这时锅内水的沸点约120℃。
8.卫生球成分是萘粉,它是碳、氢元素组成的易燃物质。包布上的火就是萘燃烧时发出的。但棉布不会被烧坏。因为一方面萘的蒸汽燃烧,放出了热量,但另一方面萘的升华过程却是吸热的,需要消耗很大一部分热量。同时还有一部分热消耗在使萘蒸汽达到燃点上,这样,棉布温度比较低,低于它的燃点,所以棉布烧不起来。但时间不能过长,否则因卫生球消耗过多,包布和卫生球之间会逐渐离开,形成较大的空隙。棉布处在火焰内部,温度就较高而烧着。
试题
1、用温度为t1=30℃的水注满一个容积为0.3升的小茶杯,水温每下降1℃,需要5分钟,为了使水的温度不下降,从热水龙头不断向杯中滴入45℃的水,若每滴水的质量为0.2克,为了使茶杯中的水温保持不变,每分钟需滴入20 20 滴水.(说明:①茶杯不参与吸放热;②可认为热平衡进行得非常快,多余的水从茶杯溢出;③周围空气的温度为20℃)
考点:热量的计算;热平衡方程的应用.专题:计算题;应用题.分析:解决此题关键是利用热平衡方程,即Q吸=Q放,这样茶杯内水的温度就不会改变.解答:解:已知小茶杯,水温每下降1℃,需要5分钟,所以要让水温不变,那么茶杯内的水应该吸收的热量:
Q吸=cm△t=4.2×103J/(kg•℃)×0.3kg×1℃=1.26×103J;
一滴热水降到30℃释放的热量Q′=cm′△t′=4.2×103J/(kg•℃)×0.2×10-3kg×15℃=12.6J; 那么5min内需要滴入热水的滴数为n==100,所以每分钟需要滴入=20滴热水;
故答案为:20.点评:解决此类问题要结合热量公式及热平衡进行分析计算.
2、我国北方地区冬季用燃煤取暖所造成的大气污染,已越来越引起人们的关注.现在有些家庭已经改用燃油取暖,以降低对大气的污染.小明家的住房面积约110m2,若将住房的门窗关闭好,用燃烧柴油来取暖,并使室温升高10℃,已知柴油的热值为4.3×lO7J/kg,空气的密度约为1.3kg/m3,空气的比热容为1.0×103J/(kg/℃)所需的柴油约为()A.0.0lkg B.0.1kg C.1kg D.10kg 考点:热平衡方程的应用;密度的计算;燃料的热值.专题:计算题.分析:首先利用m=ρV求住房里空气的质量,再利用热量公式Q=cm△t求出室温升高10℃时空气所吸收的热量;
根据Q放=Q吸可知柴油需放出的热量,最后利用m=求出需的柴油质量.解答:解:由题知,S=110m2,住房高度h一般为3m,ρ空气=1.3kg/m3,则住房房间里的空气质量为:
m空气=ρ空气Sh=1.3kg/m3×110m2×3m=429kg,室温升高10℃时空气所吸收的热量:
Q吸=c空气m空气△t=1.0×103J/(kg/℃)×429kg×10℃=4.29×106J ∵Q放=Q吸,∴又Q=mq得:
m===0.1kg.
故选B点评:本题考查热平衡方程,同时也考查了空气质量的计算和热值的应用,是一道基础知识的应用.
3、质量相同的三杯水,初温分别是t1,t2,t3,而且t1<t2<t3,把它们混合后,不计热损失,则混合温度是()
A. B.C.+t2 D.t3-t1+
考点:热平衡方程的应用.专题:应用题.分析:热传递是从高温物体向低温物体传递,则一定是初温t3的水放热,初温为t1的水吸热,初温为t2的水可以假设为吸热或放热,然后根据热平衡方程列出的等式,然后即可解答.解答:解:设混合后的温度为t,因质量相同的三杯水,则设质量为m,水的比热为c; ∴初温t3的水放出的热量为:
Q放=cm(t3-t),初温为t1和t2的吸收的热量为:
Q吸=Q吸1+Q吸2=cm(t-t1)+cm(t-t2)根据热平衡方程得:Q放=Q吸,即:cm(t3-t)=cm(t-t1)+cm(t-t2)解得:t=.
故选B.点评:本题考查热量公式Q=cm△t和热平衡方程的理解,分析解答时注意多种物质发生热传递时会有几个物质同时吸热或会几种物质同时放热,但仍然是Q放=Q吸.
4、冷水的温度为t1,热水的温度为t2,现要把冷水和热水混合成温度为t3的温水,若不计热量损失,冷水和热水的质量比应为()
A. B.C. D.
考点:热平衡方程的应用.专题:推理法.分析:冷水和热水混合,冷水吸收热量、温度升高,热水放出热量、温度降低,不考虑热损失,则Q吸=Q放,根据热平衡方程求冷水和热水的质量比.解答:解: 冷水吸收的热量: Q吸=cm1(t3-t1),热水放出的热量: Q放=cm2(t2-t3),由题知,Q吸=Q放,∴cm1(t3-t1)=cm2(t2-t3),解得: =.
故选C.点评:本题考查了学生对吸热公式、放热公式、热平衡方程的掌握和运用,因为是求比值,要细心,防止因颠倒而出错!
5、甲、乙两种材料不同的金属块,它们的质量相等,同时投入沸水中充分加热,先把甲金属块从沸水中取出投入一杯冷水中,热平衡后,水的温度升高了△t取出甲金属块(不计水的质量变化),再把乙金属块由沸水投入该杯水中,热平衡后又使水温升高了△t,则两金属块的比热关系是()A.c甲<c乙 B.c甲=c乙C.c甲>c乙 D.以上情况都有可能
考点:热平衡方程的应用.专题:应用题;推理法.分析:(1)由题知,两次水升高的温度相同,也就是水吸收的热量相同,因为不计热量损失,由热平衡方程可知,甲乙两金属块放出的热量相同;(2)而甲、乙两金属块的质量相等、初温相同,经放热后,甲金属块比乙多降低了△t,根据c=即可得出:质量相同的甲乙两金属块,放出相同的热量,降低的温度多的甲金属块,比热容小.解答:解:先后将甲乙两金属块投入到同一杯水中,水升高的温度相同,水吸收的热量相同; ∵不计热量损失,∴Q水吸=Q放,∴甲乙两金属块放出的热量相同;
由题知,甲金属块比乙多降低了△t,根据c=可知:
质量相同的甲乙两金属块,放出相同的热量,降低的温度多的甲金属块,比热容小.
故选A.点评:本题考查了比热容的概念、热平衡方程、热量公式,能确定出甲乙两金属块的温度变化量的关系是本题的关键.
6、将50克、0℃的雪(可看成是冰水混合物)投入到装有450克、40℃水的绝热容器中,发现水温下降5℃.那么在刚才已经降温的容器中再投入100克上述同样的雪,容器中的水温将又要下降()A.6℃ B.7.5℃ C.9℃ D.10℃
考点:热平衡方程的应用.专题:计算题.分析:可看成是冰水混合物的0℃的雪熔化成0℃的水需吸收热量,根据热平衡,可知Q放=Q熔化吸+Q吸,然后列出热量关系式,先求出1kg0℃的这种可看成是冰水混合物的雪熔化成0℃的水时随所吸收的热量,最后再根据第二次的Q放=Q熔化吸+Q吸列出关系式即可解答.解答:解:热水原来的温度t1=40℃,热水和质量50g的冰水混合后的温度为t′=40℃-5℃=35℃,∵不计热量损失,∴Q放=Q熔化吸+Q吸1 设1kg0℃的这种可看成是冰水混合物的雪,熔化成0℃的水时需吸收的热量为q熔化,则第一次,质量为m1、温度为O℃的雪与质量为450g的热水混合后,cM△t1=m1q熔化+cm1(t′-0℃)
即:4.2×103J/(kg•℃)×0.45kg×5℃=0.05kg×q熔化+4.2×103J/(kg•℃)×0.05kg×35℃ 解得:q熔化=4.2×104J 第二次质量为m2、温度为O℃的雪与质量为(M+m1)的热水混合后,水温又要下降的温度为△t,则:c(M+m1)△t=m2q熔化+cm2[(t′-△t)-0℃] 即:c(M+m1)△t=m2q熔化+cm2(t′-△t)
∴4.2×103J/(kg•℃)×(0.45kg+0.05kg)×△t=0.1kg×4.2×104J/kg+4.2×103J/(kg•℃)×0.1kg×(35℃-△t)
解得:△t=7.5℃.
故选B.点评:本题考查热平衡方程的应用,能确定第二次使用的热水的质量、知道温度为O℃的雪熔化成温度为O℃的水需要吸收热量,都是本题的关键.
7、冷水的质量为m,温度为t1,吸收一定热量后,温度升高到t;另有质量为2m的热水,如果先放出同样热量后温度也降到t,那么热水原来的温度应是()
A.(3t1-t)/2 B.(2t-t1)/3 C.(3t-t1)/2 D.(3t-2t1)/3 考点:热平衡方程的应用.专题:计算题.分析:根据吸热公式求出冷水吸收的热量,因为Q吸=Q放,再根据放热公式求出热水原来的初温.解答:解:设热水原来的温度为t0: 冷水吸收的热量: Q吸=cm(t-t1),∵Q吸=Q放,∴热水放出的热量:
Q放=c2m(t0-t)=cm(t-t1),解得:
t0=,故C正确.
故选C.点评:本题考查了学生对吸热公式和放热公式的掌握和运用,弄清冷水和热水的初温和末温是本题的关键.
8、在冬季室温下的A、B两物体质量相等,把A物体放入一杯热水中达到热平衡后,水温降低了5℃;取出A物体后再把B物体放入这杯水中,达到热平衡后水的温度又降低了5℃.如果没有热损失,这两个物体比热大小的关系是()
A.A物体的比热较小 B.B两物体的比热相等C.B物体的比热较小 D.无法比较
考点:热平衡方程的应用.分析:先判断出在达到热平衡时,A、B两物体哪个物体温度变化大,再判断物体比热的大小.解答:解:在室温下A、B两物体温度与室温相等,则物体A、B的初始温度相等,设为t0,设开始时水温为t.A在水中达到热平衡后温度变化了△tA=t-5-t0,B在水中达到热平衡后温度变化了△tB=t-5-5-t0=t-10-t0,所以△tA>△tB.在这两种情况下,水释放出的热量Q=m水c水△t水=5m水c水相等.而Q=mAcA△tA,Q=mBcB△tB,又因为mA=mB,△tA>△tB,所以cA<cB.
故选A.点评:判断A、B两物体达到热平衡时,哪个温度变化大是解题的关键.
9、洗澡时将11°C的冷水与66°C的热水充分混合成550kg、36°C的温水,在混合的过程中有2.31×106J的热量损失掉了,则所用冷水为290kg,所用热水为260kg.
考点:热平衡方程的应用.专题:计算题;方程法.分析:(1)设热水的质量为m,则冷水的质量为550kg-m,已知热水的初温和末温,利用放热公式求热水放出的热量;又知道冷水的初温和末温,利用吸热公式求冷水吸收的热量,(2)因为在混合的过程中有2.31×106J的热量损失掉了,所以热水放出的热量减去损失的热量就等于冷水吸收的热量,据此可求所用热水和冷水的质量解答:解:设热水的质量为m1,则冷水的质量为m2=m-m1=550kg-m1--------------① 热水放出的热量:
Q放=cm1(t-t01)=4.2×103J/(kg•℃)×m1×(66℃-36℃)------------② Q吸=cm2(t02-t)=4.2×103J/(kg•℃)×m2×(36℃-11℃)------------③ 因为Q损失=2.31×106J-------------------④
所以,Q吸=Q放-Q损失---------------------⑤
将①②③④代入⑤式即可解得:m1=260kg,m2=290kg.
故答案为:290;260.点评:本题考查了学生对吸热公式和放热公式的掌握和运用,利用好热平衡方程Q吸=Q放时,注意混合的过程中的热量损失是本题的关键。
10、质量相等的甲、乙两金属块,其材质不同.将它们放入沸水中,一段时间后温度均达到100℃,然后将它们按不同的方式投入一杯冷水中,使冷水升温.第一种方式:先从沸水中取出甲,将其投入冷水,当达到热平衡后将甲从杯中取出,测得水温升高20℃;然后将乙从沸水中取出投入这杯水中,再次达到热平衡,测得水温又升高了20℃.第二种方式:先从沸水中取出乙投入冷水,当达到热平衡后将乙从杯中取出;然后将甲从沸水中取出,投入这杯水中,再次达到热平衡.则在第二种方式下,这杯冷水温度的变化是()
A.升高不足40℃ B.升高超过40℃C.恰好升高了40℃ D.条件不足,无法判断
考点:热平衡方程的应用.专题:计算题;比较思想.分析:根据Q放=Q吸和Q=cm(t-t0)列出金属块不同方式下的热量表达式,然后得出关于温度的代数式,即可解答.解答:解:设冷水的温度为t0,甲投入冷水后放热Q放=C甲m(100℃-20℃-t0),水吸收的热量为Q吸=C水m水20℃,∵不考虑热传递过程热量的损失,则有Q放=Q吸,∴C甲m(100℃-20℃-t0)=C水m水20℃,即:=-----------------------①
乙投入冷水后放热Q放′=C乙m(100℃-20℃-20℃-t0),水吸收的热量仍为Q吸=C水m水20℃,同理则有:=-----------------② 第二种方式:
设乙投入冷水热平衡后,水温为t1,甲投入冷水热平衡后的水温为t2,则有: C乙m(100℃-t1)=C水m水(t1-t0),即:=---------------------③ C甲m(100℃-t2)=C水m水(t2-t1),即:=---------------------④
综合①②③④式,解得t2-t0=40℃
故选C.点评:本题需要假设的量和列出的计算等式有点多,需要认真分析需要假设的量,由于冷水的初温设为t0,计算过程比较繁杂,如果我们把t0设为0℃,则解题过程大大地简化了.
11、铝的比热容大于铁的比热容,把铝块放入一杯冷水中,热平衡后水温升高5℃;将铝块取出后,立即将质量相同的铁块放入这杯水中,热平衡后水温又升高5℃.若各种损失忽略不计,则下列判断正确的是()
A.铁块的温度变化大于铝块的温度变化B.铝块放出的热量大于铁块放出的热量
C.铝块的初温低于铁块的初温
D.水先后两次吸收的热量相等
考点:热平衡方程的应用;比热容的概念;热量的计算.专题:应用题.分析:①铝和铁两金属块,先后投入到同一杯水中,铝和铁两金属块放出热量、温度降低,水吸收热量、温度升高;
由题知,两次水升高的温度相同,也就是水吸收的热量相同,因为不计热量损失,由热平衡方程可知,甲乙两金属块放出的热量相同;从而可以判断出B和D是否符合题意.
②质量相同的铝和铁两金属块,放出相同的热量,铝的比热容大于铁的比热容,可利用公式△t=分析温度的变化,从而可以判断出A是否符合题意.
③而铝和铁两金属块的质量相等,经放热后,铝金属块比铁金属块多降低了5℃,从而可以判断出C是否符合题意.
解答:解:①先后将铝和铁两金属块投入到同一杯水中,水升高的温度相同,即水吸收的热量相同,故D正确;
∵不计热量损失,∴Q吸=Q放,∴铝和铁两金属块放出的热量相同,故B不正确;
②由上述分析可知,质量相同的铝和铁两金属块,放出相同的热量,而铝的比热容大于铁的比热容,由公式△t=可知,铝块的温度变化小于铁块的温度变化,即铁块的温度变化大于铝块的温度变化,故A正确;
③由题知,铝金属块比铁金属块多降低了5℃,而铝块的温度变化小于铁块的温度变化,所以铝块的初温低于铁块的初温,故C正确.
故选A、C、D.点评:本题考查了比热容的概念、热平衡方程、热量公式,能确定甲乙两金属块的末温关系是本题的关键.
12、比热容是2.44×103焦/(千克•℃)的酒精和水(4.19×103焦/千克•℃)均匀混合后,比热容变成了2.94×103焦/(千克•℃),则混合液中酒精和水质量之比是()A.5:2 B.2:5 C.29:35 D.29:50 考点:热平衡方程的应用;热量的计算.分析:设酒精、水的质量分别为m1、m2,升高温度△t,则酒精溶液吸收的热量等于水吸收的热量加上酒精吸收的热量,知道溶液的比热容,可求酒精和水的质量关系.解答:解:
混合液温度升高△t吸收的热量:
Q总=c液m液△t=c液(m1+m2)△t,酒精吸收的热量: Q酒=c酒m1△t,水吸收的热量: Q水=c水m2△t,则Q总=Q水+Q酒,c液(m1+m2)△t=c酒m1△t+c水m2△t,(c液-c酒)m1=(c水-c液)m2,∴m1:m2=(c水-c液):(c液-c酒)=(4.19g/cm3-2.94g/cm3):(2.94g/cm3-2.44g/cm3)=5:2. 故选A.点评:本题考查了学生对吸热公式的掌握和运用,知道混合液升高温度吸收的热量等于水和酒精吸收的热量之和是本题的关键.
13、在冬天,为使室内保持一定的温度,每小时大约需要提供1.26×107J的热量,若进入散热器的水的温度是80℃,从散热器中流出水的温度是65℃,则每小时需要提供给散热器80℃的水200kg. 考点:热平衡方程的应用.专题:计算题;应用题.分析:知道进入散热器的水温和流出散热器的水温,从而可以计算出水的温度变化,又知道所需要的热量,从而可以利用放热公式Q放=cm△t求每小时需要水的质量.解答:解:∵Q放=cm△t,∴m===200kg.
故答案为:200.点评:本题考查了学生对放热公式Q放=cm△t的掌握和运用,属于基础题目.