第一篇:证明二垂直平分线(经典)(共)
线段的垂直平分线
[知识要点总结]
(1)定义:一条线段的叫线段的垂直平分线。
(2)性质:①线段垂直平分线上的点相等。
②三角形三边的垂直平分线,且到相等。
(3)判定:到一条线段两个端点的点,在这条线段的垂直平分线上。
诊断训练:
一.填空题:
1.如图,已知直线MN是线段AB的垂直平分线,垂足为D,点P是MN上一点,若AB=10 cm,则BD=__________cm;若PA=10 cm,则PB=__________cm;此时,PD=__________cm.2.已知线段AB及一点P,PA=PB=3cm,则点P在__________上.3..如图,在△ABC中,∠C=90°,∠A=30°,BD平分∠ABC交BC于D,则点D在______上.第1题第3题
二、选择题
4.如果三角形三边的垂直平分线的交点正好在三角形的一条边上,那么这个三角形是()
(A)直角三角形(B)锐角三角形(C)钝角三角形(D)以上都有可能
5.下列命题中正确的命题有()
①线段垂直平分线上任一点到线段两端距离相等;②线段上任一点到垂直平分线两端距离相等;③经过线段中点的直线只有一条;④点P在线段AB外且PA=PB,过P作直线MN,则MN是线段AB的垂直平分线;⑤过线段上任一点可以作这条线段的中垂线.A.1个B.2个C.3个D.4个
三:例题讲解:
例1.已知:如图所示△ABC,∠ACB=90°,D为BC延长线上一点,E是AB上一点,EM垂直平分BD,M为垂足,DE交AC于F,求证:E在AF的垂直平分线上.1 AEFBMC
例2:如图1,在△ABC中,已知AC=27,AB的垂直平分线交AB于点D,交AC于点E,△BCE的周长等于50,(1)求BC的长.(2)若∠BEC=70°,则∠A=?
变式2:如图3,在Rt△ABC中,AB的垂直平分线交BC边于点E。若BE=2,∠B =15°求:AC的长。
[变式练习2]:如图6,在△ABC中,AB=AC, BC=12,∠BAC =130°,AB的垂直平分线交BC边于点E, AC的垂直平分线交BC边于点N.(1)求△AEN的周长.(2)求∠EAN的度数.(3)判断△AEN的形状.B
B
A
D
E
B
图
图
A
D
C
E
B
图
3M
C
图
四.反馈练习:
1如图,△ABC中,AD为∠BAC的平分线,AD的垂直平分线EF交BC的延长线于点F,连接AF。
求证:∠B=∠CAF
2.如图,AD为△ABC的高,∠B=2∠C,BD=5,BC=20,求AB.3.如图,已知:线段CD垂直平分AB,AB平分DAC.求证:AD//BC.4.如图,已知:在ABC中,ABAC,B2A,DE垂直平分线AC交AB于D,交AC于E.求证:ADBC.作图训练:
1.公路边要建一个家乐福超市,使它到A、B两居民点的距离相等,如何确定家乐福超市的位置? A
1a
B
M N
2.已知线段a,求作以a为底,以
2为高的等腰三角形。
3.如图,有A、B、C三个工厂,现要建一个供水站,使它到这三个工厂的距离相等,求供水站的位置(要求尺规作图,只保留作图痕迹,不写作法)
C
A
第二篇:线段垂直平分线教学反思
《线段的垂直平分线》教学反思
一、构建崭新的交互环境,师生互动性更强
本节课我采用了电子白板授课,改变了以往PPT课件授课模式,PPT课件的程序是预先设定好的,伴随着一步步的点击,投影出幻灯片,教师与学生的交互性很受局限。通过使用交互式电子白板,教师操作课件可以直接在触屏上进行,例如:在电子白板上演示用尺规作线段的垂直平分线等,避免了在讲台与黑板之间来回走动过程中分散学生注意力。白板教学环境下加强了集体共同参与的学习过程,师生之间的交流更直接,例如:探究新知2中方法的多样性可以让学生在电子白板上尽情的展示自己的方法,而不会出现黑板不够用的状况。电子白板的使用,可以真正实现人与人之间的交流,而不是人与课件之间的交流。同时,白板课件每个页面中的素材都可以根据学生的具体情况来灵活处理。
二、建立符合学生的认知结构
在进行创设情境中,我没有采用课本上的形式,而是改用七年级学习过的建水电站问题,即将水电站建在何处到在河同一侧的两个村庄的距离之和最短?在学生回忆并解决后将问题变为“建在何处到两个村庄的距离相等?”,这样的设计避免了死板的套入教学内容,不但符合学生的元认知结构,还可以极大的调动学生的学习积极性,使学生快速融入到教学之中,而且题目设计实现知识的纵向迁移,加深了学生对知识的理解、内化,形成自我知识体系,教学实践证明效果显著。
三、充分发挥教师在教学中的的主导性
在这一节中,所介绍的定理实际是在七年级曾经探索过的命题,如线段垂直平分线的性质定理,当时采用的方法是折纸法,作为探索活动的自然延续和必要发展,我们作为老师要善于引导学生从问题出发,根据观察、实验的结果,先得出猜想,然后再进行证明,要求学生掌握证明的基本要求和方法,注意数学思想方法的强化和渗透,例如:归纳法、数形结合思想和分类讨论在教学中的应用。
四、创新性的使用教材
线段垂直平分线性质定理的证明,我没有直接采用课本中的方法,而是在教学设计时引入分类思想,从两个方面进行证明:(1)当点P在线段AB 上,即点P与垂足重合时,显然点P是线段的中点,因此有PA=PB;(2)当点P不在线段AB上,同教材中的证明,分两种情况考虑这个定理的证明。还有在逆定理的说理过程中,课本上没有给出证明,我也引入了分类思想,分两种情况证明:(1)如果点P满足PA=PB,且在线段AB上,那么,点P显然是线段AB的中点,而线段的中点自然在线段的垂直平分线上.(2)如果点P不在线段AB上,且满足PA=PB。让学生探究和展示方法,体现学生在学习中的主体地位,从而突破本节课的难点。
五、实际教学效果:
在实现教学活动中,学生有较好的参与意识 和求知欲望,同时能够跟随着老师的提问而不断的进行更深入的思考。在探究2的方法的多样性上,学生能积极探究,在电子白板上尽情展现自己的成果;在尺规作图上,学生能积极自主探究,并通过电子白板演示,提高学生动口、动手、动脑的综合能力。通过巩固达标训练,提高学生解决问题的能力,从而实现本节课的目标,教学效果良好。
《线段的垂直平分线》教学反思
古交十一中
秦 云 峰
2013年9月
第三篇:线段的垂直平分线教案
线段的垂直平分线教案
www.5y
kj.co
m线段的垂直平分线
教学内容:
线段的垂直平分线
教学目的:、使学生理解线段的垂直平分线的性质定理及逆定理,掌握这两个定理的关系并会用这两个定理解决有关几何问题。
2、了解线段垂直平分线的轨迹问题。
3、结合教学内容培养学生的动作思维、形象思维和抽象思维能力。
教学重点:
线段的垂直平分线性质定理及逆定理的引入证明及运用。
教学难点:
线段的垂直平分线性质定理及逆定理的关系。
教学关键:、垂直平分线上所有的点和线段两端点的距离相等。
2、到线段两端点的距离相等的所有点都在这条线段的垂直平分线上。
教具:投影仪及投影胶片。
教学过程:
一、提问、角平分线的性质定理及逆定理是什么?
2、怎样做一条线段的垂直平分线?
二、新课、请同学们在课堂练习本上做线段AB的垂直平分线EF。
2、在EF上任取一点P,连结PA、PB量出PA=?,PB=?引导学生观察这两个值有什么关系?
通过学生的观察、分析得出结果PA=PB,再取一点P'试一试仍然有P'A=P'B,引导学生猜想EF上的所有点和点A、点B的距离都相等,再请同学把这一结论叙述成命题。
定理:线段的垂直平分线上的点和这条线段的两个端点的距离相等。
这个命题,是我们通过作图、观察、猜想得到的,还得在理论上加以证明是真命题才能做为定理。
已知:如图,直线EF⊥AB,垂足为c,且Ac=cB,点P在EF上
求证:PA=PB
如何证明PA=PB学生分析得出只要证RTΔPcA≌RTΔPcB
证明:∵Pc⊥AB
∴∠PcA=∠PcB
在ΔPcA和ΔPcB中
∴ΔPcA≌ΔPcB
即:PA=PB。
反过来,如果PA=PB,P1A=P1B,点P,P1在什么线上?
过P,P1做直线EF交AB于c,可证明ΔPAP1≌PBP1
∴EF是等腰三角型ΔPAB的顶角平分线
∴EF是AB的垂直平分线
∴P,P1在AB的垂直平分线上,于是得出上述定理的逆定理。
逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
根据上述定理和逆定理可以知道:直线mN可以看作和两点A、B的距离相等的所有点的集合。
线段的垂直平分线可以看作是和线段两个端点距离相等的所有点的集合。
三、举例
例:已知,如图ΔABc中,边AB,Bc的垂直平分线相交于点P,求证:PA=PB=Pc。
证明:∵点P在线段AB的垂直平分线上
∴PA=PB
同理PB=Pc
∴PA=PB=Pc
由例题PA=Pc知点P在Ac的垂直平分线上,所以三角形三边的垂直平分线交于一点P,这点到三个顶点的距离相等。
四、小结
正确的运用这两个定理的关键是区别它们的条件与结论,加强证明前的分析,找出证明的途径。定理的作用是可证明两条线段相等或点在线段的垂直平分线上。
五、练习与作业
练习:第87页1、2
作业:第95页2、3、4
《教案设计说明》
线段的垂直平分线的性质定理及逆定理,都是几何中的重要定理,也是一条重要轨迹。在几何证明、计算、作图中都有重要应用。我讲授这节课是线段垂直平分线的第一节课,主要完成定理的引出、证明和初步的运用。
在设计教案时,我结合教材内容,对如何导入新课,引出定理以及证明进行了探索。在导入新课这一环节上我先让学生做一条线段AB的垂直平分线EF,在EF上取一点P,让学生量出PA、PB的长度,引导学生观察、讨论每个人量得的这两个长度之间有什么关系:得到什么结论?学生回答:PA=PB。然后再让学生取一点试一试,这两个长度也相等,由此引导学生猜想到线段垂直平分线的性质定理。在这一过程中让学生主动积极的参与到教学中来,使学生通过作图、观察、量一量再得出结论。从而把知识的形成过程转化为学生亲自参与、发现、探索的过程。在教学时,引导学生分析性质定理的题设与结论,画图写出已知、求证,通过分析由学生得出证明性质定理的方法,这个过程既是探索过程也是调动学生动脑思考的过程,只有学生动脑思考了,才能真正理解线段垂直平分线的性质定理,以及证明方法。在此基础上再提出如果有两点到线段的两端点的距离相等,这样的点应在什么样的直线上?由条件得出这样的点在线段的垂直平分线上,从而引出性质定理的逆定理,由上述两个定理使学生再进一步知道线段的垂直平分线可以看作是到线段两端点距离的所有点的集合。这样可以帮助学生认识理论于实践又服务于实践的道理,也能提高他们学习的积极性,加深对所学知识的理解。在讲解例题时引导学生用所学的线段垂直平分线的性质定理以及逆定理来证,避免用三角形全等来证。最后总结点P是三角形三边垂直平分线的交点,这个点到三个顶点的距离相等。为了使学生当堂掌握两个定理的灵活运用,让学生做87页的两个练习,以达到巩固知识的目的。
www.5y
kj.co
m
第四篇:证明二测试题二
证明(二)测试题二
一、填空题:
1.在△ABC中,∠A:∠B:∠C=1:2:3,AB=6cm,则BC=cm.
2、如图,一个顶角为40º的等腰三角形纸片,剪去顶角后,得到一个四边形,则
12
3、在△ABC中,已知AB=AC,AD是中线,∠B=70°,BC=15cm,则∠BAC=,∠DAC=,BD=cm;
4、命题:“全等三角形的对应角相等”的逆命题是。
这条逆命题是______命题(填“真”或“假”)
5、已知,如图,O是△ABC的∠ABC、∠ACB的角平分线的交点,OD∥AB交BC
于D,OE∥AC交BC于E,若BC = 10,则△ODE的周长为.6、如图,在Rt△ABC中,∠B=90°,∠A=40°,AC的垂直平分线MN与AB
相交于D点,则∠BCD的度数是.7、△ABC中,∠C=90°,AD平分∠BAC,交BC于点D。若DC=7,则D到
AB的距离是.8、等腰三角形一腰上的高与另一腰的夹角为30,腰长为a,则其底边上的高
是。
9、如图,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD的长
为.10、如图,∠AOB是一钢架,且∠AOB=10°,为了使钢架更加牢固,需在其内部添加一些钢管EF、FG、GH„„添加的钢管长度都与OE相等,则最多能添加这样的钢管根。
第2题
二、选择题
1、等腰三角形底边上的高与底边的比是1∶2,则它的顶角等于()
A、90°B、60°C、120°D、150°
2、以下命题中,正确的是()
A.一腰相等的两个等腰三角形全等.B.等腰三角形底边上的任意一点到两腰距离之和都大于一腰上的高.C.有一角相等和底边相等的两个等腰三角形全等.D.等腰三角形的角平分线、中线和高共7条或3条.3、如图,在等边△ABC中,P为BC上一点,D为AC上一点,且∠APD=60,BP=1,CD=
2,则△
3ABC的边长为()
A、3B、4C、5D、64、到△ABC的三个顶点距离相等的点是△ABC的()
A.三边中线的交点B.三条角平分线的交点
C.三边上高的交点D.三边垂直平分线的交点
5、△ABC中,∠A∶∠B∶∠C=1∶2∶3,CD⊥AB于点D若BC=a,则AD等于()A.13aB.aC.aD.3a 2226、如图,△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A的度数为()
A.30°B.36°C.45°D.70°
7、如图,若要建一个集贸市场,使它到两条公路和一条铁路的距离都相等,可选的地址有()
A.一处B.二处C.三处D.四处 铁
公
公
8、如图,在△ABC中,AB=AC,∠A=36,BD、CE分别为∠ABC与∠ACB的角平分线,且交于点
F,则图中的等腰三角形有()A、6个B、7个C、8个D、9个
9、如图,等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是()
A.45°B.55°C.60°D.75°
三、解答题
1、如图,AD⊥CD,AB=10,BC=20,∠A=∠C=30°。
求:(1)、∠A BC的度数
(2)、AD、CD的长.2、已知:如图,△ABC中,AB=AC,∠A=120°.(1)、用直尺和圆规作AB的垂直平分线,分别交BC、AB于点M、N(保留作图痕迹,不写作法).(2)、猜想CM与BM之间有何数量关系,并证明你的猜想。
3、阅读下面的题目及分析过程,并按要求进行证明.
已知:如图,E是BC的中点,点A在DE上,且∠BAE=∠CDE.
求证:AB=CD
分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等.因此,要证AB=CD,必须添加适当的辅助线,构造全等三角形或等腰三角形.
现给出如下三种添加辅助线的方法提示,请任意选择其中一种,对原题进行证明.
4、如图,已知:等边△ABC和点P,设点P到△ABC三边AB、AC、BC的距离分别为h1、h2、h3,则△ABC高为h。
(1)若点P在一边BC上如图(1),请问h1、h2、h3、h之间有何关系?
(2)若点P在△ABC内如图(2),上述结论是否还成立?若成立,请给予证明,若不成立,h1、h2、h3 与h之间又有怎样的关系?
5、已知:三角形ABC中,∠A=90°,AB=AC,D为BC的中点,(1)如图,E,F分别是AB,AC上的点,且BE=AF,求证:△DEF为等腰直角三角形.
(2)若E,F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么,△DEF
是否仍为等腰直角三角形?证明你的结论.
第五篇:二建证明
二建单位证明
兹有我单位***同志,至2009年已累计从事工民建建设工程项目施工管理工作共 3 年。
在我单位工作期间,该同志遵守国家和地方的法律、法规,无任何违反职业道德的行为。我单位对证明的真实性负责。
特此证明。
单位(公章):*********
经办人(签名):