第一篇:平面几何证明选讲结业考试
《平面几何证明选讲》结业考试
命题:朱明英 审核:杨秀宇
一 填空题(10×4=40)如图1,圆O上的一点C在直径AB上的射影为D,CD=4,BD=8,则圆O的直径为.如图2,PAB是⊙O的割线,AB=4,AP=5,⊙O的半径为6,则
B
A
BO
图(天津卷理14)如图3,四边形ABCD是⊙O的内接四边形,延长AB和DC相交于点P,若PB1PC1BC=,=PA2PD3,则AD的值为如图4,已知⊙O的切线PC与直径BA的延长线相交于点P,C是切点,过A的切线交PC于D,如果CD∶PD=1∶2,DA=2,那么⊙O的半径.
C B
图3 图4
1二 选择题(10×2=20)如图,⊙O的弦AB平分半径OC,交OC于P点,已知PA、PB的长分别为方程x212x240的两根,则此圆的直径为()
A.82B.6C.42D.
2⌒6 如图,⊙O的直径Ab垂直于弦CD,垂足为H,点P是AC上一点(点P不与A、C两点重合),连结PC、PD、PA、AD,点E在AP的延长线上,PD与AB交于点F,给出下列四⌒⌒
个结论:①CH2=AH·BH;②AD=AC:③AD2=DF·DP;④∠EPC=∠APD,其中正确的个数是()
A.1B.2C.3D.
4三 解答题(10×4=40)
7如图,BC是半圆的直径,O为圆心,P是BC延长线上一点,PA切半圆于点A,AD⊥BC于点D.
(1)若∠B=30°,问AB与AP是否相等?请说明理由;
(2)求证:PD·PO=PC·PB;
(3)若BD:DC=4:l,且BC=10,求PC的长.
8(全国Ⅰ新课标卷理)如图:已知圆上的弧AC等于弧BD,过C点的圆的切线与BA的延长线交于 E点,证明:
(Ⅰ)ACE=BCD。
(Ⅱ)BC2BECD
9(辽宁卷理22)如图,ABC的角平分线AD的延长线交它的外接圆于点E
(I)证明:ABE
ADC
S1ADAE
(II)若ABC的面积2,求BAC的大小。(2011全国新课标)(本小题满分10分)如图,D,E分别为ABC的边AB,AC上的点,且不与ABC的顶点重合。已知AE的长为n,AD,AB的长是关于x的方程x214xmn0的两个根。
(Ⅰ)证明:C,B,D,E四点共圆;
(Ⅱ)若A90,且m4,n6,求C,B,D,E所在圆的半径。
填空题、选择题答题卡
一 填空题(10×4=40)2 3 4
二 选择题(10×2=20)
第二篇:平面几何问题选讲
平面几何问题选讲
竞赛中的平面几何试题通常以直线、三角形、四边形、圆等基本图形为载体,题型多样,出现得较多的有证明题、计算题、轨迹题、作图题等.一般来说,计算题、轨迹题、作图题都离不开严格的几何推理和证明,所以证明题是平面几何问题的核心.几何证明题一般又可分为三大类:
第一类是位置型问题,如证明两线平行、两线垂直、点共线、线共点、点共圆、圆共点、线与圆相切(或相交)、圆与圆相切(或相交),或证明某点是特殊点、某图形是特殊图形,等等;
第二类是等式型问题,如证明角相等、线段相等、图形的面积相等,或证明某些关系式成立,等等;
第三类是不等式型问题,如证明某些几何量(线段长、角、面积)的大小关系式或某些复杂的几何不等式,等等.解决平面几何问题的方法多种多样,除了常用的分析法、综合法外,还有反证法、同一法、复数法、解析法、三角法、代数法、面积法、割补法、归纳法、几何变换法、构造法等.解决平面几何问题,还经常需要用到三角形的“五心”(三角形的外心、重心、垂心、内心及旁心)的性质以及平面几何中的一些重要定理(正弦定理、余弦定理、圆幂定理、梅内劳斯定理、塞瓦定理、托勒密定理、西姆松定理、蝴蝶定理、欧拉定理等).1.梅涅劳斯(Menelaus)定理△ABC的三边BC、CA、AB或其延长线上有点P、Q、R,且有奇数个点在边的延长线上,则P、Q、R共线的充要条件是
2.塞瓦(Ceva)定理△ABC的三边BC、CA、AB上有点P、Q、R,且有偶数个点在边的延长线上,则AP、BQ、CR共点的充要条件是
3.托勒密(Ptolemy)定理设四边形ABCD内接于圆,则它的两组对边乘积之和等于两对角线的乘积,即ABCDADBCACBD.托勒密(Ptolemy)定理的推广在四边形ABCD中,有ABCDADBCACBD.当且仅当四边形ABCD为圆的内接四边形时等号成立.4.西姆松(Simson)定理从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上.5.斯德瓦特定理设P是△ABC的边BC上任意一点,则
BPAC2BPPCCQQAARRB1.BPPCCQQAARRB1.CPAB2BCAP2BPCPBC.6.欧拉定理设△ABC的外心、重心、垂心分别为O,G,H,则O,G,H三点共线,且GH2OG.【典型例题】
例1证明:锐角三角形ABC的垂心H是垂足三角形DEF的内心.相关题:(第一届女子奥赛试题)设△ABC为锐角三角形,AD、BE、CF是它的三条高,证明:垂足三角
1形DEF的周长不超过△ABC的周长的一半.例2设O、H分别是△ABC的外心和垂心,M是BC边的中点,求证:AH=2OM.例3设G、H、O分别为△ABC的重心、垂心和外心,证明:G、H、O三点共线,且HG=2GO.例4设H为锐角三角形ABC的垂心,已知A30,BC3,则AH_____..例5(2003年IMO预选题)如图所示,已知△ABC内一点P,设D、E、F分别为点P在边BC、CA、AB上
2的投影.假设AP2PD2BP2PE2CPPF,且△ABC的三个旁心分别为IA,IB,IC.证明:P是△
IAIBIC的外心.例6(1997年全国联赛试题)如图,已知两个半径不相等的圆O1与圆O2相交于M、N两点,且圆O1、圆O2分别与圆O内切于S、T两点。求证:OM⊥MN的充分必要条件是S、N、T三点共线。
例7在四边形ABCD中,AB、CD的中垂线相交于P,AD、BC的中垂线相交于Q,M、N分别是AC、BD的中点。求证:PQ⊥MN。
例8(2004年新加坡)设AD是⊙O1和⊙O2的公共弦,过D的直线交⊙O1于B,交⊙O2于C.E是线段AD上异于A和D的点,连接CE交⊙O1于P和Q,连接BE交⊙O2于M和N.证明:
(1)P、Q、M、N四点共圆,设其圆心为O3;(2)DO3BC.例9在△ABC中,O为外心,I为内心,AB<AC,AB<BC,D和E分别是边AC,BC上的点,且满足AD=AB=BE,求证:IO⊥DE.例10(2003年国家集训题)凸四边形ABCD的对角线交于点M,点P、Q分别是△AMD和△CMB的重心,R、S分别是△DMC和△MAB的垂心.求证:PQ⊥RS.C
例11(2004年德国)已知圆内接四边形ABCD的两条对角线的交点为S,S在边AB、CD上的投影分别为点E、F.证明:EF的中垂线平分线段BC和DA.例12(2000年试题)如图,在锐角△ABC的BC边上有两点E、F,满足∠BAE=∠CAF,作FMAB, FNAC(M,N是垂足),延长AE交△ABC的外接圆于点D。证明:四边形AMDN与△ABC的面积相等。
M
B
C
例13(2003年全国联赛试题)过圆外一点P作圆的两条切线和一条割
线,切点为A,B,所作割线交圆于C,D两点,C在P,D之间,在弦CD上取一点Q,使∠DAQ=∠PBC.求证:∠DBQ=∠PAC.
例14(1998年全国联赛试题)设O、I为△ABC的外心和内心,AD是BC边上的高,I在线段OD上,AB≠AC.求证:△ABC的外接圆半径等于BC边上的旁切圆半径.例15(2006全国联赛试题)以B0和B1为焦点的椭圆与△AB0B1的边ABi交于Ci(i0,1).在AB0的延长线上任取点P0,以B0为圆心,Q交CB的延长线于Q;B0P0为半径作圆弧P以C1为圆心,C1Q0为01000P交BA的延长线于P;以B为圆心,BP为半径作圆半径作圆弧Q1111101Q交BC的延长线于Q;P,C0为圆心,C0Q1为半径作圆弧Q弧P101以1110
D
P
B
交AB0的延长线于P0.试证:
Q与PQ相内切于P;(1)点P0与点P0重合,且圆弧P0000
1(2)四点P0,Q0,Q1,P1共圆.例16(首届中国东南地区数学竞赛)设点D为等腰ABC的底边BC上一点,F为过A、D、C三点的圆在ABC内的弧上一点,过B、D、F三点的圆与边AB交于点E.求证:CDEFDFAEBDAF(1)
例17(2003年IMO预选题)如图所示,已知直线上的三个定点依次为A、B、C,为过A和C且圆心不在AC上的圆.分别过A、C两点且与圆相切的直线交于点P,PB与圆交于点Q.证明:∠AQC的平分线与AC的交点不依赖于圆的选取.例18(2007年全国联赛试题)如图8,在锐角△ABC中,AB 上的高,P是线段AD内一点.过P作PE⊥AC,垂足为E,作PF⊥AB,垂足为F.O1、O2分别是△BDF、△CDE的外心.求证:O1、O2、E、F四点共圆的充要条件为P是 △ABC的垂心.例19(2004年丝绸之路)已知△ABC的内切圆⊙I与边AB和AC内切于点A P和Q,BI和CI分别交PQ于K和L.证明:△ILK的外接圆与△ABC的内切圆相切的充要条件是AB+AC=3BC.例20(2003年亚太)假设ABCD是边长为a的正方形纸板,平面上有两条距离为a的平行线l1和l2,将正方形放在这个平面上,使得边AB和AD与l1的交点分别为E和F,边CB,CD与l2的交点分别为G和H,设△AEF和△CGH的周长分别为m1,m2.证明:无论怎样放置正方形纸板ABCD,m1m2都是定值.例21(2002年全国联赛试题)如图7,在△ABC中,∠A=60°,AB>AC,点O是外心,两条高BE、CF交于H点,点M、N分别在线段BH、HF上,且满足BM=CN,求 MHNH OH Q C的值. 几何证明选讲 几何证明选讲专题 一、基础知识填空: 1.平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段_________.推论1: 经过三角形一边的中点与另一边平行的直线必______________.推论2: 经过梯形一腰的中点,且与底边平行的直线________________.2.平行线分线段成比例定理:三条平行线截两条直线,所得的________________成比例.推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段___________.3.相似三角形的性质定理:相似三角形对应高的比、对应中线的比、对应角平分线的比都等于______;相似三角形周长的比、外接圆的直径比、外接圆的周长比都等于_______________; 相似三角形面积的比、外接圆的面积比都等于____________________; 4.直角三角形的射影定理:直角三角形斜边上的高是______________________的比例中项;两直角边分别是它们在斜边上_______与_________的比例中项.5.圆周角定理:圆上一条弧所对的圆周角等于它所对的____________的一半.圆心角定理:圆心角的度数等于_______________的度数.推论1:同弧或等弧所对的圆周角_________;同圆或等圆中,相等的圆周角所对的弧_______.o推论2:半圆(或直径)所对的圆周角是____;90的圆周角所对的弦是________.弦切角定理:弦切角等于它所夹的弧所对的______________.6.圆内接四边形的性质定理与判定定理: 圆的内接四边形的对角______;圆内接四边形的外角等于它的内角的_____.如果一个四边形的对角互补,那么这个四边形的四个顶点______;如果四边形的一个外角等于它的内角的对角,那么这个四边形的四个顶点_________.7.切线的性质定理:圆的切线垂直于经过切点的__________.推论:经过圆心且垂直于切线的直线必经过_______;经过切点且垂直于切线的直线必经过______.切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的________.8.相交弦定理:圆内两条相交弦,_____________________的积相等.割线定理:从圆外一点引圆的两条割线,_____________的两条线段长的积相等.切割线定理:从圆外一点引圆的切线和割线,切线长是__________的比例中项.切线长定理:从圆外一点引圆的两条切线,它们的切线长____; 圆心和这点的连线平分_____的夹角.二、经典试题: 1.(梅州一模文)如图所示,在四边形ABCD中,EFFG+=. EF//BC,FG//AD,则D BCAD C 2.(广州一模文、理)在平行四边形ABCD中,点E在边AB上,且AE:EB=1:2,DE与AC交于 点F,若△AEF的面积为6cm2,则△ABC的面积为 B cm2. 3.(广州一模文、理)如图所示,圆O上 一点C在直径AB上的射影为D,CD=4,BD=8,则圆O的半径等于. 4.(深圳二模文)如图所示,从圆O外一点P 作圆O的割线PAB、PCD,AB是圆O的直径,若PA=4,PC=5,CD=3,则∠CBD=__ 第1页 5.(广东文、理)已知PA是圆O的切线,切点为A,PA=2.AC是圆O的直径,PC与圆O交于点B,PB=1,则圆O的半径R=_______.6.(广东文、理)如图所示,圆O的直径 AB=6,C圆周上一点,BC=3,过C作圆的切线l,过A作l的垂线AD,AD分别与直线l、圆交于点 D、E,则∠DAC=,线段AE的长为 三、基础训练: 1.(韶关一模理) 如图所示,PC切⊙O于 点C,割线 PAB经过圆心O,弦CD⊥AB于 点E,PC=4,PB=8,则CD=________.2.(深圳调研文)如图所示,从圆O外一点A 引圆的切线AD和割线ABC,已知AD= AC=6,圆O的半径为3,则圆心O到AC的距 离为________.3.(东莞调研文、理)如图所示,圆O上一 点C 在直径AB上的射影为D,CD=4,则圆O的半径等于. 4.(韶关调研理)如图所示,圆O是 △ABC的外接圆,过点C的切线交AB的延长线于点D,CD=AB=BC=3.则BD的长______,AC的长_______.5.(韶关二模理)如图,⊙O′和 ⊙O相交于A和B,PQ切⊙O于P,交⊙O′于Q和M,交AB的延长线于N,MN=3,NQ=15,则 PN=______. 6.(广州二模文、理)如图所示, 圆的内接 △ABC的∠C的平分线CD延长后交圆于点E,连接BE,已知BD=3,CE=7,BC=5,则线段.N7.(湛江一模文)如图,四边形ABCD内接 于⊙O,BC是直径,MN切⊙O于A,∠MAB=25则∠D=___.8.(湛江一模理)如图,在△ABC中,D 是AC的中点,E是BD的中点,AE交BC BF=于F,则 FC 第2页 9.(惠州一模理)如图:EB、EC是⊙O的两 条切线,B、C是切点,A、D是⊙O上两点,如果∠E=460,∠DCF=320,则∠A的度数是.10.(汕头一模理)如图,AB是圆O的直径,直线CE和圆O相切于点C,AD⊥CE于D,若AD=1,∠ABC=300,则圆O的面积是______.11.(佛山一模理)如图,AB、CD是圆O的两条弦,C 且AB是线段CD的中垂线,已知AB=6,CD=25,则线段AC的长度为. 12.已知:如图,在梯形ABCD中,AD∥BC∥EF,E是AB的中点,EF交BD于G,交AC于H.若 AD=5,BC=7,则GH=________.13.如图,圆O上一点C在直径AB上的射影为D.C AD=2,AC= 25,则AB=____ 14.如图,PA是圆的切线,A为切点,PBC是圆的 割线,且PB= B 1PABC,则的值是________.2PB 15.如图,⊙O的割线PAB交⊙O于A、B两点,割线 PCD经过圆心O,PE是⊙O的切线。已知PA=6,AB=7,PO=12,则PE=____O的半径是_______.3答 案 二、经典试题: 1.1 ;2.72;3.5 ;4.30o;5.;6.30°,3.三、基础训练: 243 .5.3..3.5.4.4,522116..7.115o.8..9.99O.10.4.25 11..12.1.13.10,4.14..15.4, 8.1.第3页 几何证明选讲 2007年: 15.(几何证明选讲选做题)如图4所示,圆O的直径AB6,C为圆周上一点,BC3,过C作圆的切线l,过A作l的 垂线AD,垂足为D,则DAC A 2008年: 15.(几何证明选讲选做题)已知PA是圆O的切线,切点为A,PA=2.AC是圆O的直径,PC与圆O交于B点,PB=1,则圆O的半径R= 图 4l 2009年: 15.(几何证明选讲选做题)如下图,点A、B、C是圆O上的点,且AB=4,ACB30,则圆O的面积等于 o 2010年: 14.(几何证明选讲选做题)如上图3,在直角梯形ABCD中,DC∥AB,CB⊥AB,AB=AD=a,CD= a,点E,F分别为线段AB,AD的中点,则EF=2 2011年: 15.(几何证明选讲选做题)如图,在梯形ABCD中,AB//CAD,B4,CD2,分别为E,F,上的点,且ADBC, 3EF,EFAB 则梯形ABFE与梯形EFCD的面积比为 A 2012年: 15.(几何证明选讲选做题)如图3,直线PB与圆O相切与点B,D是弦AC上的点,PBADBA,若ADm,ACn,则AB 图3 2013年: 15.(几何证明选讲选做题)如图3,在矩形ABCD 中,ABBC3,BEAC,垂足为E,则ED 图3 几何证明选讲专题1.了解平行线截割定理,会证直角三角形射影定理.2.会证圆周角定理、圆的切线的判定定理及性质定理.3.会证相交弦定理、圆内接四边形的性质定理与判定定理、切割线定理.一、基础知识填空: 1.平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段 推论1: 经过三角形一边的中点与另一边平行的直线必______________.推论2: 经过梯形一腰的中点,且与底边平行的直线________________.2.平行线分线段成比例定理:三条平行线截两条直线,所得的________________成比例.推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段___________.3.相似三角形的性质定理:相似三角形对应高的比、对应中线的比、对应角平分线的比都等于______;相似三角形周长的比、外接圆的直径比、外接圆的周长比都等于_________________; 相似三角形面积的比、外接圆的面积比都等于____________________; 4.直角三角形的射影定理:直角三角形斜边上的高是______________________的比例中项;两直角边分别是它们在斜边上_______与_________的比例中项.5.圆周角定理:圆上一条弧所对的圆周角等于它所对的____________的一半.圆心角定理:圆心角的度数等于_______________的度数.推论1:同弧或等弧所对的圆周角_________;同圆或等圆中,相等的圆周角所对的弧_______.推论2:半圆(或直径)所对的圆周角是____;90o的圆周角所对的弦是________.弦切角定理:弦切角等于它所夹的弧所对的______________.6.圆内接四边形的性质定理与判定定理: 圆的内接四边形的对角______;圆内接四边形的外角等于它的内角的_____.如果一个四边形的对角互补,那么这个四边形的四个顶点______;如果四边形的一个外角等于它的内角的对角,那么这个四边形的四个顶点_________.7.切线的性质定理:圆的切线垂直于经过切点的__________.推论:经过圆心且垂直于切线的直线必经过_______;经过切点且垂直于切线的直线必经过______.切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的________.8.相交弦定理:圆内两条相交弦,_____________________的积相等.割线定理:从圆外一点引圆的两条割线,_____________的两条线段长的积相等.切割线定理:从圆外一点引圆的切线和割线,切线长是__________的比例中项.切线长定理:从圆外一点引圆的两条切线,它们的切线长____;圆心和这点的连线平分_____的夹角.二、经典试题: 1.(梅州一模文)如图所示,在四边形ABCD中,EF//BC,FG//AD,则 EFBC+FG AD = D 2.(广州一模文、理)在平行四边形ABCD中,点E在边AB上,且AE:EB=1:2,DE与AC交于 点F,若△AEF的面积为6cm2,则△ABC的面积为 2. B 第1页 3.(广州一模文、理)如图所示,圆O上 一点C在直径AB上的射影为D,CD=4,BD=8,则圆O的半径等于. 4.(深圳二模文)如图所示,从圆O外一点P 作圆O的割线PAB、PCD,AB是圆O的直径,若PA=4,PC=5,CD=3,则∠CBD=__ 5.(广东文、理)已知PA是圆O的切线,切点为A,PA=2.AC是圆O的直径,PC与圆O交于点B,PB=1,则圆O的半径R=_______.6.(广东文、理) 如图所示,圆O的直径 AB=6,C圆周上一点,BC=3,过C作圆的切线l,过A作l的垂线 AD,AD分别与直线l、圆交于点 D、E,则∠DAC=,线段AE的长为 三、基础训练: 1.(韶关一模理)如图所示,PC切⊙O于 点C,割线PAB经过圆心O,弦CD⊥AB于 点E,PC=4,PB=8,则CD=________.2.(深圳调研文)如图所示,从圆O外一点A 引圆的切线AD和割线ABC,已知AD=,AC=6,圆O的半径为3,则圆心O到AC的距 离为________.3.(东莞调研文、理)如图所示,圆O上一 点C在直径AB上的射影为D,CD=4,则圆O的半径等于. 4.(韶关调研理)如图所示,圆O是 △ABC的外接圆,过点C的切线交AB的延长线于点D,CD=AB=BC=3.则BD的长______,AC的长_______. 5.(韶关二模理)如图,⊙O′和 ⊙O相交于A和B,PQ切⊙O于P,交⊙O′于Q和M,交AB的延长线于N,MN=3,NQ=15,则 PN=______. 6.(广州二模文、理)如图所示, 圆的内接 △ABC的∠C的平分线CD延长后交圆于点E,连接BE,已知BD=3,CE=7,BC=5,则线段 N 7.(湛江一模文)如图,四边形ABCD内接 于⊙O,BC是直径,MN切⊙O于A,∠MAB=250,则∠D=___.8.(湛江一模理)如图,在△ABC中,D 是AC的中点,E是BD的中点,AE交BC D 于F,则 BFFC=.9.(惠州一模理)如图:EB、EC是⊙O的两 条切线,B、C是切点,A、D是⊙O上两点,如果∠E=460,∠DCF=320,则∠A的度数是.C 10.(汕头一模理)如图,AB是圆O的直径,直线CE和圆O相切于点C,AD⊥CE于D,若AD=1,∠ABC=300,则圆O的面积是______.11.(佛山一模理)如图,AB、CD是圆O的两条弦,且AB是线段CD的中垂线,已知AB=6,CD=2,则线段AC的长度为. C 12.已知:如图,在梯形ABCD中,AD∥BC∥EF,E是AB的中点,EF交BD于G,交AC于H.若 AD=5,BC=7,则GH=________.BC 13.如图,圆O上一点C在直径AB上的射影为D.AD=2,AC= 2,则AB=______,CD=_____.14.如图,PA是圆的切线,A为切点,PBC是圆的第2页 割线,且PB=12BC,则PA PB的值是________.15.如图,⊙O的割线PAB交⊙O于A、B两点,割线 PCD经过圆心O,PE是⊙O的切线。已知PA=6,AB=7,PO=12,则PE=____⊙O 3的半径是_______.答 案 二、经典试题: 1.1 ;2.72;3.5 ;4.30o;5.;6.30°,3.三、基础训练: 1.245.3.5.4.4,2.5.3.6.21 5.7.115o.8.12.9.99O.10.4.11.30.12.1.13.10,4.14.3.15.4, 8.1.如图4所示,圆O的直径AB=6,C为圆周上一点,BC=3过C作 圆的切线l,过A作l的垂线AD,垂足为D,则∠DAC =()A.15B.30C.45D.60 2.在RtABC中,CD、CE分别是斜边AB上的高和中线,是该图中共有x个三角形与ABC相似,则x()A.0B.1C.2 D.33.一个圆的两弦相交,一条弦被分为12cm和18cm两段,另一弦被分为3:8,则另一弦的长为()A.11cmB.33cmC.66cmD.99cm 4.如图,在ABC和DBE中,ABDBBCBEACDE53,若ABC与 DBE的周长之差为10cm,则ABC的周长为()A.20cmB.254cmC.50 cm D.25cm E 第4题图 5.O的割线PAB交O于A,B两点,割线PCD经过圆心,已知 PA6,PO12,AB2 2,则O的半径为() A.4B .6C.612.如图,用与底面成30角的平面截圆柱得一椭圆截线, D.8 6.如图,AB是半圆O的直径,点C在半圆上,CDAB于点D, 且AD3DB,设COD,则tan2 =() A.13 B.1C.4D.3 7.在ABC中,D,E分别为AB,AC上的点,且DE//BC,ADE的面积是2cm2,梯形 DBCE的面积为6 cm,则DE:BC的值为() A.B.1:2C.1:3D.1: 48.半径分别为1和2的两圆外切,作半径为3的圆与这两圆均相切,一共可作()个.A.2B.3C.4D.5 9.如图甲,四边形ABCD是等腰梯形,AB//CD.由4个这样的 等腰梯形可以拼出图乙所示的平行四边形, 则四边形ABCD中A度数为() 第9题图 A.30B.45C.60D.75 10.如图,为测量金属材料的硬度,用一定压力 把一个高强度钢珠压向该种材料的表面,在材料表面 留下一个凹坑,现测得凹坑直径为10mm,若所 用钢珠的直径为26 mm,则凹坑深度为() A.1mmB.2 mmC.3mmD.4 mm 第10题图 11.如图,设P,Q为ABC内的两点,且AP2AB1 5AC,AQ= 23AB+1 AC,则 ABP的面积与ABQ的面积之比为() 1A.5B.45C.11 4D.3 第11题图 第3页 则该椭圆的离心率为()A.1 B 2.3C.2 D.非上述结论 第12题图 13.一平面截球面产生的截面形状是_______;它截圆柱面所产生的截面形状是 ________ 14.如图,在△ABC中,AB=AC,∠C=720,⊙O过A、B两点且与BC相切于点B,与AC O D 交于点D,连结BD,若BC=51,则AC=B C 第 15.如图,14 题图 AB为O的直径,弦AC、BD交于点P,若AB3,CD1,则sinAPD=16.如图为一物体的轴截面图,则图中R的值是 第15题图 第16题图 17.如图:EB,EC是O的两条切线,B,C是切点,A,D是 O上两点,如果E46, DCF32,试求A的度数.18.如图,⊙O的直径AB的延长线与弦CD的延长线相交于点P,E为⊙O 上一点,AEAC,DE交AB于点F,且AB2BP4,求PF的长度.E A FB O C D P 第18题图 第17题图 19.已知:如右图,在等腰梯形ABCD中,AD∥BC,AB=DC,过点D作AC的平行线DE,交BA的延长线于点E. 求证:(1)△ABC≌△DCB(2)DE·DC=AE·BD. 20.如图,△ABC中,AB=AC,AD是中线,P为AD上一点,CF∥AB,BP延长线交AC、CF于E、F,求证: PB2=PE•PF. E C 第19题图 第20题图 21.如图,A是以BC为直径的O上一点,ADBC于点D,过点B作圆O的切线,与CA的延长线相交于点E,G 是AD的中点,连结CG并延长与BE相交于 点F,延长AF与CB的延长线相交于点P.C (1)求证:BFEF;(2)求证:PA是O(3)若FGBF,且O的半径长为求BD第21题图 第4页 22.如图1,点C将线段AB分成两. 部分,如果ACABBC AC,那么称点C为线段AB的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割 线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成两部分,这两部分的面积分别为SS11,S2,如果SS2 S,那么称直线l为该图形的黄1 金分割线.(1)研究小组猜想:在△ABC中,若点D为AB边上的黄金分割点(如图2),则直线CD是△ABC的黄金分割线.你认为对吗?为什么? (2)请你说明:三角形的中线是否也是该三角形的黄金分割线? (3)研究小组在进一步探究中发现:过点C任作一条直线交AB于点E,再过点D作直线DF∥CE,交AC于点F,连接EF(如图3),则直线EF也是△ABC的黄金分割线.请你说明理由.(4)如图4,点E是ABCD的边AB的黄金分割点,过点E作EF∥AD,交DC于点F,显然直线EF是ABCD的黄金分割线.请你画一条ABCD的黄金分割线,使它不经过ABCD各边黄金分割点.第22题图第三篇:几何证明选讲专题
第四篇:几何证明选讲
第五篇:几何证明选讲专题)