初三几何证明综合题1(xiexiebang推荐)

时间:2019-05-13 15:09:48下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《初三几何证明综合题1(xiexiebang推荐)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《初三几何证明综合题1(xiexiebang推荐)》。

第一篇:初三几何证明综合题1(xiexiebang推荐)

几何证明综合题(1)

1、将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A′C′D,如图1所示.将△A′C′D的顶点A′与点A重合,并绕点A按逆时针方向旋转,使点D、A(A′)、B在同一条直线上,如图2所示.

观察图2可知:与BC相等的线段是▲,∠CAC′=▲°.

C'

DCC'CDC

BA BA'ADA(A')B问题探究

图1图

2如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向

△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.试探究EP与FQ之间的数量关系,并证明你的结论.E

QP

F

BG

3C2、点O是等边△ABC所在平面上的任意一点,连结OA并延长到E,使得AE=OA。以OB、OC为邻边作平行四边形OBFC,连结EF。探究EF与BC的关系。

3、如图12,在△ABC中,D为BC的中点,点E、F分别在边AC、AB上,并且∠ABE=∠ACF,BE、CF交于点O.过点O作OP⊥AC,OQ⊥AB,P、Q为垂足.求证:DP=DQ.

4.两块等腰直角三角板△ABC和△DEC如图摆放,其中∠ACB =∠DCE = 90°,F是DE的中点,H是AE的中点,G是BD的中点.

(1)如图1,若点D、E分别在AC、BC的延长线上,通过观察和测量,猜想FH和FG的数量关系为_______和位置关系为______;(2)如图2,若将三角板△DEC绕着点C顺时针旋转至ACE在一条直线上时,其余条件均不变,则(1)中的猜想是否还成立,若成立,请证明,不成立请5.如图。,BD是△ABC的内角平分线,CE是△ABC的外角平分线,过点A作AF⊥BD,AG⊥CE,垂足分别为F、G。

探究:线段FG的长与△ABC三边的关系,并加以证明。

附加题:探究BD、CE满足什么条件时,线段FG的长与△ABC的周长存在一定的数量关系,并给出证明。说明理由;

(2)如图3,将图1中的△DEC绕点C顺时针旋转一个锐角,得到图3,(1)中的猜想还成立吗?直接写出结论,不用证明.图1 A B 图

2图

36.在四边形ABCD中,对角线AC平分∠DAB.

(1)如图①,当∠DAB=120°,∠B=∠D=90°时,求证:AB+AD=AC.(2)如图②,当∠DAB=120°,∠B与∠D互补时,线段AB、AD、AC有怎样的数量关系?写出你的猜想,并给予证明.

(3)如图③,当∠DAB=90°,∠B与∠D互补时,线段AB、AD、AC有怎样7.(1)如图1所示,在四边形ABCD中,AC=BD,AC与BD相交于点O,E、F分别是AD、BC的中点,联结EF,分别交AC、BD于点

M、N,试判断△OMN的形状,并加以证明;(2)如图2,在四边形ABCD中,若ABCD,E、F分别是AD、BC的数量关系?写出你的猜想,并给予证明.的中点,联结FE并延长,分别与BA、CD的延长线交于点M、N,请在图2中画图并观察,图中是否有相等的角,若有,请直接写出结论:;

(3)如图3,在△ABC中,ACAB,点D在AC上,ABCD,E、F分别是AD、BC的中点,联结FE并延长,与BA的延长线交于点M,若FEC45,判断点M与以AD为直径的圆的位置关系,并简要说明理由.A

E

DBF

C

F

图 1图2图

38.如图,△ABC是等边三角形,F是AC的中点,D在线段BC上,连接

DF,以DF为边在DF的右侧作等边△DFE,ED的延长线交AB于H,连

接EC,则以下结论:①∠AHE+∠AFD=180°;②AF=

BC;③D在线段

29、以△ABC中AB、AC为边分别向形外作等腰直角△ABE和等腰直角△ACF,AH是△ABC的高。

1、探究:线段GE、GF的数量关系。

2、若以梯形ABCD的腰AB、DC向形外作等腰直角△ABE、△DCF,G是EF的中点,探究:线段GA、GD的数量关系。(利用中点构造全等三角形)1

BCEC

BC上(不与B,C重合)运动,其他条件不变时DC

是定值;

(1)其中正确的是-------------------;(2)对于(1)中的结论加以说明;

F

H B

G

D

C

E

第二篇:初三数学几何综合题

Xupeisen110初三数学

初三数学几何综合题

Ⅰ、综合问题精讲:

几何综合题是中考试卷中常见的题型,大致可分为几何计算型综合题与几何论证型综合题,它主要考查学生综合运用几何知识的能力,这类题往往图形较复杂,涉及的知识点较多,题设和结论之间的关系较隐蔽,常常需要添加辅助线来解答.解几何综合题,一要注意图形的直观提示;二要注意分析挖掘题目的隐含条件、发展条件,为解题创造条件打好基础;同时,也要由未知想需要,选择已知条件,转化结论来探求思路,找到解决问题的关键.解几何综合题,还应注意以下几点:

⑴ 基本图形.

⑵ 掌握常规的证题方法和思路.

⑶ 数学思想方法伯数形结合、分类讨论等).

Ⅱ、典型例题剖析

【例1】(南充,10分)⊿ABC中,ABAC与AB相交于点E,点F是BE的中点.

(1)求证:DF是⊙O,BC=12,求BF的长.

解:(1)证明:连接OD,∴ AD⊥BC.AC,∴

又∠BED的外角,∴∠C=∠BED.

故∠B=∠BED,即DE=DB.

点F是BE的中点,DF⊥AB且OA和OD是半径,即∠DAC=∠BAD=∠ODA.

故OD⊥DF,DF是⊙O的切线.

(2)设BF=x,BE=2BF=2x.

又 BD=CD=2BC=6,根据BEABBDBC,2x(2x14)612.

2化简,得 x7x180,解得 x12,x29(不合题意,舍去).

1则 BF的长为2.

点拨:过半径的外端且垂直于半径的直线才是切线,所以要证明一条直线是否是此圆的切线,应满足这两个条件才行.

【例2】

点D在AEBD=CD。

证明所以在△ADB所以 点拨:要想证明BD=CD,应首先观察它们所在的图形之间有什么联系,经观察可得它们所在的三角形有可能全等.所以应从证明两个三角形全等的角度得出,当然此题还可以采用“AAS”来证明.

【例3】(内江,10分)如图⊙O半径为2,弦BD=23C,A为弧

BD的中点,E为弦AC的中点,且在BD上。求:四边形ABCD的面积。

解:连结OA、OB,OA交BD于F。

A为弧BD的中点OFBD,BFFD3 OB2

OF1AF1 SABD12BDAFAECESADESCDE,SABESCBE

S四边形2SABD23 ABCD

【例4】(博兴模拟,10分)国家电力总公司为了改善农村用电电费过高的现状,目前正在全国各地农村进行电网改造.莲花村六组有四个村庄A、B、CD正好位于一个正方形的四个顶点.现计划在四个村庄联合架一条线路,他们设计了四种架设方案,如图2-4-4中的实线部分.请你帮助计算一下,哪种架设方案最省电线.

解3. 图2-4-图2-4-显然图2-4点拨:路长,然后通过比较,得出结论.

【例5】(绍兴)如图矩形ABCD中,过A,B两点的⊙O切CD于E,交BC于F,AH⊥BE于H,连结EF。

⑴求证:∠CEF=∠BAH,⑵若BC=2CE=6,求BF的长。

⑴证明:∵CE切⊙O于E,∴∠CEF=∠EBC,∵四边形ABCD是矩形,∴∠ABC=90°

Xupeisen110初三数学

∴∠ABE+∠EBC=90°,∵AH丄BE,∴∠ABE+∠BAH=90°

∴∠BAH=∠EBC,∴∠CEF=∠BAH

⑵解: ∵CE切⊙O于E

∴CE2=CF·BC,BC=2CE=6

339∴CE2=CF·6,所以CF=∴BF=BC-CF=6- =22

2点拨:熟练掌握切线的性质及切线长定理是解决此题的关键.

Ⅲ、综合巩固练习:(100分;90分钟)

一、选择题(每题3分,共21分)

1.如图2-4-6的直径为1.2米,桌面距离地面13地面上阴影部分的面积为()

A.0.036π平方米;B.0.C.2π平方米;D、3.2.同学们设计出正三角形、正方形和圆图案是()

A.正三角形.圆;D.不能确定

3.下列说法:1:2,那么这两个三角形的面积之比是1:4;中错误是()

A.4个B.3个C.2个D.1个

4.等腰三角形的一个内角为70°,则这个三角形其余的内角可能为()

A.700,400B.700,550

C.700,400或550,550D.无法确定

5.如图2-4-7所示,周长为68的矩形被分成了7个全等的矩

形,则矩形ABCD的面积为()

A.98B.196;C.280D.28

4Xupeisen110初三数学

6.在△ABC

中,若|sinA1|2cosB)0,则∠C2的度数为()

A.60oB.30 oC.90 oD.45 o

7.下列命题中是真命题的个数有()

⑴直角三角形的面积为2,两直角边的比为1。2,则它的斜边长为10 ;⑵直角三角形的最大边长为,最短边长为l,则另一边长为2 ;(3)在直角三角形中,若两条直角边为n-1和2n,则斜边长为n+1;⑸等腰三角形面积为12,底边上的高为4,则腰长为5.

A.1个B.2个C.3个D.4个

二、填空题(每题3分,共27分)

8.如图2-4-8所示,在Rt△ABC中,∠C=90°,∠A=60°,AC=.将△ABC绕点B旋转至△A′BC使点A、B、C′三点在一条直线上,则点A线的长度是_____.

9.若正三角形、正方形、正六边形的积分别记为S3,S4,S6,则S3,S4,S6,2210若菱形的一个内角为60__________.已知数4,6是________12一油桶高 0.8m1m,从桶盖小口(小口靠近上壁)斜插入桶内,0.87m,则桶内油面的高度为13 等腰三角形底边中点与一腰的距离为5cm,则腰上的高为__________cm.在平坦的草地上有 A、B、C三个小球,若已知 A球和 B球相距3米,A球与C球相距1米,则B球与C球可能相距________米.(球的半径可忽略不计,只要求填出一个符合条件的数)如果圆的半径为3cm,那么60°的圆心角所对的弧长为____cm.如图2-4-9所示,在正方形 ABCD中,AO⊥BD、OE、FG、HI都

垂直于 AD,EF、GH、IJ都垂直于AO,若已知 SΔAIJ=1,则S

ABCD正方形=______.Xupeisen110初三数学

三、解答题(每题13分,52分)

17.已知:如图 2-4-10所示,在 Rt△ABC中,AB=AC,∠A=90°,点D为BA上任一点,DF⊥AB于F,DE⊥AC于E,M为BC的中点.试判断△MEF是什么形状的三角形,并证明你的结论.

18.今有一片正方形土地,要在其上修筑两条笔直的道路,使道路把这片土地分成形状相同且面积相等的4并简述步骤.

19.如图2-4-11所示,已知测速站P到公路lPO米,一辆汽车在公路l上行驶,测得此车从点A行驶到点BAPO=60○,∠BPO=30○,计算此车从A到B过了每秒22米的限制速度.

20.如图2-4-12为梯形ABCD的中位线.AH平分∠DA B交EF于M,延长DM交AB于N.求证:AADN是等腰三角形.

第三篇:初三数学几何证明

一、精心选一选

1、△ABC中,AB=AC,BD平分∠ABC交AC边于点D,∠BDC=75°,则∠A的度数为()

A35°B40°C70°D110°

2、三角形的三个内角中,锐角的个数不少于()

A1 个B2 个C3个D不确定

3、适合条件∠A =∠B =1∠C的三角形一定是()

3A锐角三角形B钝角三角形C直角三角形D任意三角形

4、用两个全等的直角三角形拼下列图形:①平行四边形(不包含菱形、矩形、正方形);②矩形;③正方形;④等腰三角形,一定可以拼成的图形是()

A①②④B②④C①④D②③

5、如图,D在AB上,E在AC上,且∠B=∠C,那么补充下列一个条件后,仍无法判定△ABE≌△ACD的是()

AAD=AEB∠AEB=∠ADC CBE=CDDAB=AC

E

A(第5题图)(第6题图)

6、如图,⊿ABC⊿FED,那么下列结论正确的是()

AEC = BDBEF∥AB

CDE = BDDAC∥ED7、等腰三角形的一边为4,另一边为9,则这个三角形的周长为()

A17B22C13D17或228、有两个角和其中一个角的对边对应相等的两个三角形()

A必定全等B必定不全等C不一定全等D以上答案都不对

9、以下命题中,真命题的是()

A两条直线相交只有一个交点B同位角相等

C两边和一角对应相等的两个三角形全等D等腰三角形底边中点到两腰相等

10、面积相等的两个三角形()

A必定全等B必定不全等C不一定全等D以上答案都不对

二、耐心填一填:

11、如果等腰三角形的一个底角是80°,那么顶角是.12、⊿ABC中,∠A是∠B的2倍,∠C比∠A + ∠

B还大12,那么∠B =度

13、在方格纸上有一三角形ABC,它的顶点位置如图所示,则这个三角形是三角形

.(第12题图)(第13题图)

第 19页

14、如图:△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:,使△AEH≌△CEB。

15、等腰直角三角形一条直角边的长为1cm,那么它斜边长上的高是cm.16、在△ABC和△ADC中,下列论断:①AB=AD;②∠BAC=∠DAC;③BC=DC,把其中两个论断作为条件,另一个论断作为结论,写出一个真命题:

17、在△ABC中,边AB、BC、AC的垂直平分线相交于P,则PA、PB、PC的大小关系是.18、已知⊿ABC中,∠A = 90,角平分线BE、CF交于点O,则∠BOC =

三、细心做一做:(本大题共5小题,每小题6分,共30分)

19、如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于F,若BF=AC,求∠ABC的度数是

20、如图,△ABC中,∠C=Rt∠,AD平分∠BAC交BC于点D,BD

DC=

2∶1,BC=7.8cm,求D到AB的距离

21、已知:如图,∠A=∠D=90°,AC=BD.求证:OB=OC

第 20页 022、已知:如图,P、Q是△ABC边BC上两点,且BP=PQ=QC=AP=AQ,求∠BAC的度数.23、已知:如图,等腰梯形ABCD中,AD∥BC,AB=CD,点E为梯形外一点,且AE=DE.求证:BE=CE.

四、勇敢闯一闯:(本大题共 2小题,每小题

8分,共

16分)

24、已知:如图,CE⊥AB,BF⊥AC,CE与BF相交于D,且BD=CD.求证:D在∠BAC的平分线上.第 21页

25、已知:如图,D是等腰ABC底边BC上一点,它到两腰AB、AC的距离分别为DE、DF。当D点在什么位置时,DE=DF?并加以证明.26、如图1,点C为线段AB上一点,△ACM,△CBN是等边三角形,直线AN,MC交于点F。

(1)求证:AN=BM;

(2)求证: △CEF

为等边三角形;

(3)将△ACM绕点C按逆时针方向旋转900,其他条件不变,在图2中补出符合要求的图形,并判断第(1)、(2)两小题的结论是否仍然成立(不要求证明)

第 22页

第四篇:初三数学专题复习(几何证明、计算)

几何证明、计算

解题方法指导

平面几何是研究平面图形性质的一门学科,研究平面图形的形状、大小及位置关系,除了常见的计算、证明外,从目前素质教育的要求来看,必须培养学生动手、动脑、分析、观察、和逻辑思维能力,所以新颖的几何题,往往具有操作性、运动性,需要观察、猜想与证明,需要有较强的综合解题能力。其次要求有观察复杂图形的能力。然后去推理、证明和计算。我们经常用的等量关系有已知的等量、勾股定理的等式、平行线推导的比例式,相似三角形对应边成比例的等式、相似三角形的性质等时,面积等式等。

第一课时

一、出示例题

1、例1:如图在△ABC中,∠C=90,点D在BC上,BD=4,AD=BC,cos∠ADC=

(1)求DC的长;(2)sinB的值

(老师引导学生分析后再做)

2、例2:已知如图在△ABC中,AD是高,CE是中线,DC=BE,DG⊥CE,G是垂足。

求证(1)G是CE的中点;(2)∠B=2∠BCE

(师生共同分析后,学生独立完成)

BEGDCA3。5ABC3、例3:如图已知在△ABC中,∠A=90.(1)在所给出的图形基础上,按题意操作:先画BC边上中线AM,设H是线段BM上任一点,再过H,C分别画AB,AM的平行线,相交于点D,连接AD,AH;

(2)求证△ABM∽△DHC;(3)求证AD=AH

A

B

C

分析:第(1)题是按题意画图,考查操作实践能力。第(2)题是考察对直角三角形性质、相似三角形判定掌握情况。第(3)题的证法较多,如果注意到问题之间的相关性、层次性或者抓住基本图形的特征,就容易解决了。

说明:近几年的中考试卷中看,有关几何的证明题基本上是题目新颖、难度不大,涉及重要的知识点较多,且要求证明过程逻辑严密,言必有据,重点考察分析能力及推理能力,本题设计新型,又有一定的操作能力,是一道很好的中考模拟试题。

二、小结

三、作业

1、将两块三角形如图(1)放置,其中∠C=∠EDB=90, ∠A=45, ∠E=30,AB=DE=6,求重叠部分四边形DBCF 的面积。

2、如图(2)Rt △ ABC中,∠B=90,∠A的平分线交BC于点D,E为AB上的一点,DE=DC,以D为圆心,DB长为半径作⊙D。

求证:(1)AC是⊙D的切线;(2)AB+EB=AC

EB

C

A

A

FEC

DB

D3、如图(3)矩形ABCD中,AB=8cm,BC=4cm,将矩形折叠,使A点与C点重合(1)画出图形;(2)求折叠后矩形分成的两直角梯形不重叠部分的面积和。

4、如图(4)△ ABC中,AB=AC,∠A=36,BD平分∠ABC交AC于D,CD=2cm,△ ABC的周长是19cm,求BC的长。

DA

A

B

D

C5、如图(5),BE平分∠ABC,D是AB的中点,DE∥BC。求证BE⊥AE。

A

BC

DE

B

C

第五篇:几何证明

龙文教育浦东分校学生个性化教案

学生:钱寒松教师:周亚新时间:2010-11-27

学生评价◇特别满意◇满意◇一般◇不满意

【教材研学】

一、命题

1.概念:对事情进行判断的句子叫做命题.

2.组成部分:命题由题设和结论两部分组成.每个命题都可以写成“如果„„,那么„„”的形式,“如果”的内容部分是题设,“那么”的内容部分是结论.

3.分类:命题分为真命题和假命题两种.判断正确的命题称为真命题,反之称为假命题.验证一个命题是真命题,要经过证明;验证一个命题是假命题,可以举出一个反例.

二、互逆命题

1.概念:在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个

命题的结论是第二个命题的题设,那么这两个命题叫做互逆命题,其中一个叫做原命题,则另一个就叫做它的逆命题.

2.说明:

(1)任何一个命题都有逆命题,它们互为逆命题,“互逆”是指两个命题之间的关系;

(2)把一个命题的题设和结论交换,就得到它的逆命题;

(3)原命题成立,它的逆命题不一定成立,反之亦然.

三、互逆定理

1.概念:如果一个定理的逆命题也是定理(即真命题),那么这两个定理叫做互逆定理,其中一个定理叫做另一个定理的逆定理.

2.说明:

(1)不是所有的定理都有逆定理,如“对顶角相等”的逆命题是“如果两个角相等,那么这两个角是对顶角”,这是一个假命题,所以“对顶角相等”没有逆定理.

(2)互逆定理和互逆命题的关系:互逆定理首先是互逆命题,是互逆命题中要求更为严谨的一类,即互逆命题包含互逆定理.

所以∠C=∠C’=90°,即△ABC是直角三角形.

【点石成金】

例1. 指出下列命题的题设和结论,并写出它们的逆命题.

(1)两直线平行,同旁内角互补;

(2)直角三角形的两个锐角互余;

(3)对顶角相等.

分析:解题的关键是找出原命题的题设和结论,然后再利用互逆命题的特征写出它们的逆命题.

(1)题设是“两条平行线被第三条直线所截”,结论是“同旁内角互补”;逆命题是“如果两条直线被第三条直线所截,同旁内角互补,那么这两条直线平行”.

(2)题设是“如果一个三角形是直角三角形”,结论是“那么这个三角形的两个锐角互余”;逆命题是“如果一个三角形中两个锐角互余,那么这个三角形是直角三角形”.

(3)题设是“如果两个角是对顶角”,结论是“那么这两个角相等”;逆命题是“如果有两个角相等,那么它们是课题:几何证明

对顶角”.

名师点金:当一个命题的逆命题不容易写时,可以先把这个命题写成“如果„„,那么„„”的形式,然后再把题设和结论倒过来即可.

例2.某同学写出命题“直角三角形斜边上的中线等于斜边的一半”的逆命题是“如果一个三角形斜边上的中线等于斜边的一半,那么这个三角形是直角三角形”,你认为他写得对吗?

分析:写出一个命题的逆命题,是把原命题的题设和结论互换,但有时需要适当的变通,例如“等腰三角形的两底角相等”的逆命题不能写成“两底角相等的三角形是等腰三角形”,因为我们还没有判断出是等腰三角形,所以不能有“底角”这个概念.

解:上面的写法不对.原命题条件是直角三角形,斜边是直角三角形的边的特有称呼,该同学写的逆命题的条件中提到了斜边,就已经承认了直角三角形,就不需要再得这个结论了.因此,逆命题应写成“如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形”.

名师点金:在写一个命题的逆命题时,千万要注意一些专用词的用法.

例3.如图,在△ABD和△ACE中,有下列四个等式:① AB=AC;②AD=AE;③ ∠1=∠2;④BD=CE.请你以其中三个等式作为题设,余下的作为结论,写出一个真命题(要求写出已知,求证及证明过程)

解:选①②③作为题设,④作为结论.

已知:如图19—4—103,AB=AC,AD=AE,∠1=∠2.

求证:BD=CE,证明:∵∠1=∠2,∴∠1+∠CAD=∠2+∠CAD.

即∠BAD=∠CAE.

在△BAD和△CAE中,AB=AC.∠BAD=∠CAE,AD=AE,∴△BAD≌△CAE(S.A.S.)∴BD=CE.

名师点金:本题考查的是证明三角形的全等,但条件较为开放.当然,此题的条件还可以任选其他三个.

【练习】

1.“两直线平行,内错角相等”的题设是____________________,结论是_________________________

2.判断:(1)任何一个命题都有逆命题.()

(2)任何一个定理都有逆定理.()

【升级演练】

一、基础巩固

1.下列语言是命题的是()

A.画两条相等的线段B.等于同一个角的两个角相等吗

C.延长线段AD到C,使OC=OAD.两直线平行,内错角相等

2.下列命题的逆命题是真命题的是()

A.直角都相等B.钝角都小于180。

龙文教育浦东分校个性化教案ABDEC.cn

C.如果x+y=0,那么x=y=0D.对顶角相等

3.下列说法中,正确的是()

A.一个定理的逆命题是正确的B.命题“如果x<0,y>0,那么xy<0”的逆命题是正确的C.任何命题都有逆命题

D.定理、公理都应经过证明后才能用

4.下列这些真命题中,其逆命题也真的是()

A.全等三角形的对应角相等

B.两个图形关于轴对称,则这两个图形是全等形

C.等边三角形是锐角三角形

D.直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半

5.证明一个命题是假命题的方法有__________.

6.将命题“所有直角都相等”改写成“如果„„那么„”的形式为___________。

7.举例说明“两个锐角的和是锐角”是假命题。

二、探究提高

8.下列说法中,正确的是()

A.每个命题不一定都有逆命题B.每个定理都有逆定理

c.真命题的逆命题仍是真命题D.假命题的逆命题未必是假命题

9.下列定理中,没有逆定理的是()

A.内错角相等,两直线平行B.直角三角形中两锐角互余

c.相反数的绝对值相等D.同位角相等,两直线平行

三、拓展延伸

10.下列命题中的真命题是()

A.锐角大于它的余角B.锐角大于它的补角

c.钝角大于它的补角D.锐角与钝角之和等于平角

11.已知下列命题:①相等的角是对顶角;②互补的角就是平角;③互补的两个角一定是一个锐角,另一个为钝角;④平行于同一条直线的两直线平行;⑤邻补角的平分线互相垂直.其中,正确命题的个数为()

A.0个B.1个C.2个D.3个

龙文教育浦东分校个性化教案

下载初三几何证明综合题1(xiexiebang推荐)word格式文档
下载初三几何证明综合题1(xiexiebang推荐).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    几何证明

    1.平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在 其他直线上截得的线段_________. 推论1: 经过三角形一边的中点与另一边平行的直线必_____________......

    浅谈几何证明

    西华师范大学文献信息检索课综合实习报告检索课题(中英文):浅谈几何证明 On the geometric proof 一、课题分析 几何是研究空间结构及性质的一门学学科。它是数学中最基本的研......

    几何证明

    几何证明1.如图,AD是∠EAC的平分线,AD∥BC,∠B=30 o,求∠EAD、∠DAC、∠C的度数2.已知∠BED=∠B+∠D,试说明AB与CD的位置关系3.如图,EB∥DC,∠C=∠E,请你说出∠A=∠ADE的理由。4.如......

    2013几何证明

    2013几何证明1.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))如图,在ABC中,C900,A600,AB20,过C作ABC的外接圆的切线CD,BDCD,BD与外接圆交于点E,则DE的长为__________......

    2012中考数学分项专题:几何综合题

    2012中考数学分项专题:几何综合题 发布时间:2012-02-11 15:45 来源:武汉巨人学校 作者:巨人网整理 在数学试卷中,综合题的题型最难,涉及到的知识点也最多,期中几何类型的综合题,既有......

    初三几何教案

    初三几何教案 第六章:解直角三角形 第7课时:解直角三角形应用举例(二) 教学目标: 1、使学生会把实际问题转化为解直角三角形问题,从而会把实际问题转化为数学问题来解决. 2、逐步......

    初三几何教案

    初三几何教案 第七章:圆 第10课时:圆周角(二) 教学目标: 1、本节课使学生在掌握圆周角的定义和圆周角定理的基础上,进一步学习圆周角定理的三个推论; 2、掌握三个推论的内容,并会熟......

    初三尖子生二次函数综合题

    1、24.已知:如图,在平面直角坐标系xOy中,抛物线yax2(1xc经过A(2,0),B(1,n) ,C(0,2)三点.(1)求抛物线的解析式;(2)求线段BC的长;(3)求OAB的度数.2、23.已知抛物线yx2bx1的顶点在x轴上,且与y轴交于A......