第一篇:人教版小学六年级数学上册第七单元数学广角——《鸡兔同笼》第一课时教学设计与反思
数学广角--《鸡兔同笼》第一课时教学设计与反思
教学目标:
1.了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2.尝试用不同的方法解决“鸡兔同笼”问题,使学生体会假设和列方程的一般性。
3.在解决问题的过程中,培养学生的思维能力,并向学生渗透转化、函数等数学思想和方法。
教学重点:
用假设法解决“鸡兔同笼”问题。
教学具准备:
课件。
教学过程:
一、揭示课题
1、师:同学们今天老师将和大家一起来学习一道我国古代非常有名的数学趣题,“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”(PPT投影展示原题)这四句话是什么意思呢?抽生回答。(笼子里有若干只鸡和兔,从上面数,有35个头;从下面数,有94只脚。鸡和兔各有几只?(PPT展示今意))
2、有谁知道这类题我们把它叫做什么问题吗?(鸡兔同笼)板书。鸡兔同笼问题是我国古代三大趣题之一,记载于《孙子算经》一书中,距今已有1500多年,3、会做“鸡兔同笼”这类题吗?会做的我们今天进一步来学习,不会的也没关系,通过这节课的学习你老师相信今后你一定会做了。那同学们有没有信心把这节课的内容学好呢?
二、展示情境,尝试探究
(一)出示情景,获取信息
1.“鸡兔同笼”这四个字什么意思呀?(鸡和兔关在同一个笼子里)
为了研究方便,我们把题目里的数字改小一点。“笼子里有若干只鸡和兔,从上面数,有8个头;从下面数,有26条腿。鸡和兔各有几只?”(说明:为了便于分析时叙述,把“26只脚”改成了“26条腿”课件出示)
2.我们一起来看看被关在同一个笼子里的鸡和兔给我们带来了什么信息?
学生理解:①鸡和兔共8只。②鸡和兔共有26条腿。③鸡有2条腿。④兔有4条腿。(课件出示)
(二)猜想验证,1、我们先来猜猜,笼子中可能会有几只鸡几只兔呢?学生猜测,在猜测时要抓住哪个条件呢?(鸡和兔一共是8只)那是不是抓住了这个条件就一定能猜对呢?
学生猜测,老师板书
2、怎样才能确定同学们猜的对不对?(把鸡的腿和兔的腿加起来看等不等于26。)
3、和学生一起验证,找出正确的答案。(只有这一个正确答案吗?)
4、我们把这种方法叫做列举法。(板书:列表法)
5、你们觉得用猜想列表法解决鸡兔同笼问题怎么样?(生:麻烦,而且当头和脚的只数越多时,越不容易找出答案。)
6、那我们还有研究新方法的必要。
(三)尝试假设法
1、、为了研究老师把所有的可能按顺序列出来了,我们先看表格中左起的第一列,8和0是什么意思?(就是有8只鸡和0只兔,也就是假设笼子里全是鸡,)那笼子里是不是全是鸡呢?(不是)那就是把里面的兔也看成鸡来计算了,那把一只4条腿的兔当成一只2条腿的鸡来算会有什么结果呢?(就会少算两条腿)(课件出示:把一只兔当成一只鸡算,就少了两条腿。)
2、假设全是鸡一共就有16条腿。实际有26条腿,这样笼子里就少了10条腿,为什么会少了10条腿呢?(把兔当了鸡在算。一只兔当成一只鸡算少两条腿,那把几只兔当成了鸡算就会少算10条腿呢?即10里面有几个2。就把几兔当成了鸡算,5个2,用五只兔当成了鸡算,这个五就表示应该有5只兔)
3、上面的过程能用算式表示出来吗?请同学们试试看。
(学生试着列算式,请一个学生到黑板上去板演。)
4、假设全是鸡:(板书)
8×2=16(条)(如果把兔全当成鸡一共就有8*2=16条腿)
26-16=10(条)(把兔看成鸡来算,4条腿兔有当成两条腿的鸡算,每只兔就少了两条腿,10条腿是少算了兔的腿)
4-2=2(假设全是鸡,是把4条腿的兔有当成两条腿的鸡。所以4-2表示是一只兔当成一只鸡就要少算2条腿。)
10÷2=5(只)兔(那把多少只兔当成鸡算就会少10条腿呢?就看10里面有几个2就是把几只兔当成了鸡来算,所以10÷2=5就是兔的只数。)
8-5=3(只)鸡(用鸡兔的总只数减去兔的只数就是鸡的只数,8-5=3只鸡)
5、算出来后,我们还要检验算的对不对,谁愿意口头检验。
生:3×2+5×4=26(只),5+3=8(只)。
师:看来做对了,最后写上答语。
6、假设全是兔
7、、我们再回到表格中,看看右起第一列中的8和0是什么意思?(笼子里全是兔)那是不是全都是兔呢?(不是)也就是假设笼子里全是兔。那把兔当了鸡在算。那就是把里面的鸡也当成兔来计算了,那把一只2条腿的鸡当成一只4条腿的兔来算会有什么结果呢?(就会多算两条腿)(课件出示:把一只鸡当成一只兔算,就多了两条腿)
8、先用假设全是鸡的办法解决了这个问题,现在假设全是兔又应该怎么分析和解决这个问题呢?同学们能自己解决吗?如果有困难可以同桌边或小组讨论。
(学生讨论写算式,然后指名板演。)
8×4=32(条)(如果把鸡全看成兔一共就有8*4=32条腿)
32-26=6(条)(把鸡当成兔来算,两条腿的鸡当成4条腿兔算,每只鸡就多了两条腿,6条腿是多算了鸡的腿)
4-2=2(假设全是兔,是把两条腿的鸡当成有4条腿的兔。所以4-2表示是一只鸡当成一只兔多算了2条腿。)
6÷2=3(只)鸡(那要把多少只鸡当成兔来算就会多算6条腿呢?就看6里面有几个2就是把几只鸡当成了兔算,所以6÷2=3就是现在鸡的只数。)
8-3=5(只)兔
小结:刚才我们假设都是鸡或都是兔,所以把这种方法叫做假设法。这是解答鸡兔同笼问题的一种基本方法。(板书:假设法)
(四)列方程解
在解决鸡兔同笼问题时,除了假设法外,还有别的方法吗?(方程的方法)
要用列方程的方法就必须找到等量关系式。
通过得到到信息能写出哪些等量关系式呢?
(兔的只数+鸡的只数=8;兔的腿+鸡的腿=26条腿)(课件出示)
这里我们需要求兔的只数和鸡的只数,共有两个未知数。那我们可以设一个未知数为X,再把另一个表示出来。这道题我们可以设兔的知数为X只,根据兔和鸡共有8只。那鸡的只数就可以表示成:(8-X)只),因为一只鸡有2条腿,所以X只鸡就共有2X条腿。一只兔有4只脚,(8-X)只兔就有4(8-X)只脚。又因为鸡和兔共有26只脚,所以2X+4(8-X)=26
① 解:设鸡有X只,兔有(8-X)只。
2X+4(8-X)=26
在解的时候可以根据等式的性质将减变成加,分别加上4X,再来解。
② 解:设有兔X只,鸡有(8-X)只。
4X+2(8-X)=26
同样抽生说出自己想法。那种方程好解一点,(设兔的只数为X好解点)所以我们可以设脚数多的兔为X,在解的时候容易一点。
列方程的重点是找出等量关系:设头数,以脚数相等来列出方程;
小结:请同学们回忆一下,在解决鸡兔同笼问题时,用到了哪些方法?(列表法,假设法和列方程)
三、练习
1、现在我们就用刚才学到的这些方法来解决《孙子算经》中原题,你会做吗?用你喜欢的一种方法做
课件出示《孙子算经》中原题学生解答并集体讲评
四、延伸、应用
1.课件出示“做一做1”
鸡兔同笼问题传到日本时就变成了“龟鹤问题”,你认为“龟鹤问题”与“鸡兔同笼”有什么相似之处?课件出示(龟相当于兔,鹤相当于鸡)展示学生作业,并抽生说说思路。
2.看来鸡兔问题这类问题我们不只局限算鸡和兔的只数问题上,只要能用“鸡兔同笼”问题来解答的问题都可以统一叫做“鸡兔同笼”问题。下面我们就用刚才学到的“鸡兔同笼”方法,来帮我们解决生活中遇到的一些实际问题。
3、课件出示“做一做”第二题。问这道题与“鸡兔同笼”问题有相似的地方吗?有哪些地方相似?(大船相当于“兔”,小船相当于“鸡”)学生独立完成,集体讲评。
五、课后总结:
本节课你有什么收获?那你知道早在一千五百年前的古人又是怎么解决鸡兔同笼问题的?请同学们自学P114页下面内容。这个内容我们留到下节课进行讲解
鸡兔同笼教学反思:
《鸡兔同笼》为流传的数学趣题,最早出现在《孙子算经》中。在北师大版教材数学五年级上册的尝试与猜测中安排了《鸡兔同笼》这一教学内容,从读懂教材这一角度来看,在本课教材中呈现的解决问题的方法,都是通过假设举例与列表的方法,寻找解决问题的结果。其中,第一张表格是常规的逐一举例法,第二张运用了跳跃列表法,第三张运用了中列举法。课堂上学生可能会想出画图的方法,方程法等各种方法。但需要注意的是,教材选“鸡
兔同笼”这个题材,主要并不是为了解决“鸡兔同笼”这个问题本身,而是要借助“鸡兔同笼”这个载体让学生经历列表,让学生在大胆的猜测、尝试和不断调整的过程中,体会出解决问题的一般策略——列表。而且在后面相应的练习、复习中,相关的题目也都附上了表格,能够让学生较好地运用这种基本的解题策略解题。教学参考中明确指出,教师不宜补充其他解法,以免分散学生的注意力,影响学生对列表方法这一常用数学方法的掌握,更不应要求学生直接套用公式解题。因此如何来定位教学目标,如何让学生学得了,学得好,这是我一直在思考和探索的问题。在教的过程中我发现学生对于这类问题是比较感兴趣。
本节课我从以下几个方面进行反思:
1、教学目标的定位
我把“鸡兔同笼”这个内容划分为两个课时,本节课为第一个课时,在本节课中重点研究解决问题的一般策略——列表。我想通过本节课列表发现的规律为探索新策略奠定一定的基础。在教学过程中,我给学生充分的时间他们经历列表、尝试和不断调整的过程,从中对于列表策略有所体会。学生在这个过程中也出现了多种列表方法,对于多种列表方法引导学生对方法进行优化,从而达到能灵活运用列表解决鸡兔同笼问题。
教学中我补充了其他的解法,但是却分散了学生的注意力,影响了学生对列表方法这一常用方法的掌握。这是本节课的遗憾之处。
2、凸现学习价值
我觉得学习要让学生感兴趣地去学,发自内心的想去学,觉得学习是有用的。而鸡兔同笼问题来于生活。但它高与生活,它需要用一些数学策略去解决,而学习策略以后用来解决生活中的问题。因此在课堂小结时我放手让学生对生活中类似于鸡兔同笼问题的举例,让学生体会到现实生活中此类问题是广泛存在的。进而凸显了本节课的价值。
3、关注结果,也关注过程
结果是比较直接的,容易被大家重视,而过程也是不可忽视的。我们不仅要关注结果同时也需要关注过程。在解题的过程中学生的思维是一大亮点,有些学生想法很有创意但算错了,这样的学生我们应该给予表扬和肯定。
本节课总的来说把我自己定的目标是完成了,但是还有许多值得思考的问题。比如说如何把北师大版的教材和人教版的教材进行结合,让学生更容易理解,展示自己的机会更多,使不同思维水平的学生对于这类问题真正巩固。
第二篇:人教版小学六年级数学上册第七单元数学广角——《鸡兔同笼》第一课时教学设计与反思
《鸡兔同笼》教学设计
丽晶小学 冯焱
学习内容:教科书第103、104页相关内容。学习目标:
1、理解掌握并会用列表法、画图法、假设法解决“鸡兔同笼”问题。
2、经历自主探究解决问题的过程,培养逻辑推理能力。
3、了解我国古代数学文化,增强民族自豪感。
学习重点:经历自主探究解决问题的过程,掌握运用列表法、画图法、假设法解决“鸡兔同笼”问题。
学习难点:用假设法解决“鸡兔同笼”问题。学习过程:
一、情境导入 1.呈现情境图
2.理解并翻译成数学题 3.尝试解决,交流想法。
二、新知探究
1.感受化繁为简的必要性 2.回顾预习单,交流汇报。3.说一说画图法的过程
4.解释说明画图法最好的方法实际就是假设成全都是鸡 5.尝试假设法
6.能否假设全都是兔子呢?小组交流、汇报
三、练习强化,拓展认识
1.针对性练习,完成“做一做”第1题。2.变式性练习,完成“做一做”第2题。
四、谈话式小结
我们今天研究了什么问题?你掌握了哪些解决“鸡兔同笼”问题的方法?
第三篇:人教版小学六年级数学上册第七单元数学广角——《鸡兔同笼》第一课时教学设计与反思
《鸡兔同笼》教学设计
教学目标:
1、知识与技能
1)了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2)尝试用不同的方法解决“鸡兔同笼”问题,使学生体会假设和列方程的一般性。
2、过程与方法
解决“鸡兔同笼”问题可用猜测、列表、假设或方程解等方法。
3、情感、态度与价值观
1)在解决问题的过程中,培养学生的思维能力,并向学生渗透转化、函数等数学思想和方法。
2)让学生体会到数学问题在日常生活当中的应用。教学重点:
用假设法解决“鸡兔同笼”问题。教学具准备: 课件。教学过程:
一、谜语激趣,导入新课。
1、出示谜语卡片。(目的是激发学生学习兴趣问题的欲望,同时引出课题)
顶上红冠戴
红红眼睛白白毛
身披五彩衣
长长耳朵短尾巴
能测天亮时
身披一件白皮袄
呼得众人醒
走起路来轻轻跳
(猜一动物)
(猜一动物)老师根据学生的回答,先后在课件上出示鸡和兔的图片。
2、用数学语言描述一下鸡和兔各有什么特征。(目的是为后面的教学做铺垫)(预设:鸡和兔各有一个头,鸡有两只脚,两只翅膀,兔子有四只脚。)
3、揭示课题
师:本节课我们就一起来研究《鸡兔同笼》问题。
二、合作讨论、探究新知
(一)出示情景,获取信息 师:“鸡兔同笼”这四个字什么意思呀?(鸡和兔关在同一个笼子里)
出示例题1:笼子里有若干只鸡和兔,从上面数,有8个头;从下面数,有26只脚。鸡和兔各有几只?
师:我们一起来看看被关在同一个笼子里的鸡和兔给我们带来了什么信息?
学生理解:①鸡和兔共8只。
②鸡和兔共有26条腿。
③鸡有2条腿。
④兔有4条腿。(课件出示)
(二)介绍列表法
师:我们先来猜猜,笼子中可能会有几只鸡几只兔呢? 学生猜测。
师:在猜测时都抓住了哪个条件呢?(鸡和兔一共是8只)那是不是抓住了这个条件就一定能猜对呢?(不是)
师:那怎样才能确定同学们猜的对不对?(把鸡的腿和兔的腿加起来看等不等于26。)师:请同学们把你们猜测的数据放在表格当中去,验证一下,看正确答案是多少? 学生动手操作,并找出正确答案。师:只有一个答案正确吗?(是)师:我们把这种方法叫做列举法。(板书:列表法)
师:你们觉得用猜想列表法解决鸡兔同笼问题怎么样?(生:麻烦,而且当头和脚的只数越多时,越不容易找出答案。)
师:那我们还有研究新方法的必要。
(三)尝试假设法
师:为了研究老师把所有的可能按顺序列出来了,我们先看表格中左起的第一列,8和0是什么意思?(就是有8只鸡和0只兔,也就是假设笼子里全是鸡,)那笼子里是不是全是鸡呢?(不是)那就是把里面的兔也看成鸡来计算了,那把一只4条腿的兔当成一只2条腿的鸡来算会有什么结果呢?(就会少算两条腿)(课件出示:把一只兔当成一只鸡算,就少了两条腿。)
师:假设全是鸡一共就有16条腿。实际有26条腿,这样笼子里就少了10条腿,为什么会少了10条腿呢?(把兔当了鸡在算。一只兔当成一只鸡算少两条腿,那把几只兔当成了鸡算就会少算10条腿呢?即10里面有几个2。就把几兔当成了鸡算,5个2,用五只兔当成了鸡算,这个五就表示应该有5只兔)
师:上面的过程能用算式表示出来吗?请同学们试试看。(学生试着列算式,请一个学生到黑板上去板演。)假设全是鸡:
8×2=16(条)(如果把兔全当成鸡一共就有8*2=16条腿)
26-16=10(条)(把兔看成鸡来算,4条腿的兔当成两条腿的鸡算,每只兔就少了两条腿,10条腿是少算了兔的腿)
4-2=2(假设全是鸡,是把4条腿的兔有当成两条腿的鸡。所以4-2表示是一只兔当成一只鸡就要少算2条腿。)
10÷2=5(只)兔(那把多少只兔当成鸡算就会少10条腿呢?就看10里面有几个2就是把几只兔当成了鸡来算,所以10÷2=5就是兔的只数。)
8-5=3(只)鸡(用鸡兔的总只数减去兔的只数就是鸡的只数,8-5=3只鸡)师:算出来后,我们还要检验算的对不对,谁愿意口头检验。生:3×2+5×4=26(只),5+3=8(只)。师:看来做对了,最后写上答语。
师:我们再回到表格中,看看右起第一列中的8和0是什么意思?(笼子里全是兔)那是不是全都是兔呢?(不是)也就是假设笼子里全是兔。那把兔当了鸡在算。那就是把里面的鸡也当成兔来计算了,那把一只2条腿的鸡当成一只4条腿的兔来算会有什么结果呢?(就会多算两条腿)(课件出示:把一只鸡当成一只兔算,就多了两条腿)
师:先用假设全是鸡的办法解决了这个问题,现在假设全是兔又应该怎么分析和解决这个问题呢?同学们能自己解决吗?如果有困难可以同桌边或小组讨论。
(学生讨论写算式,然后指名板演。)
8×4=32(条)(如果把鸡全看成兔一共就有8*4=32条腿)
32-26=6(条)(把鸡当成兔来算,两条腿的鸡当成4条腿兔算,每只鸡就多了两条腿,6条腿是多算了鸡的腿)
4-2=2(假设全是兔,是把两条腿的鸡当成有4条腿的兔。所以4-2表示是一只鸡当成一只兔多算了2条腿。)
6÷2=3(只)鸡(那要把多少只鸡当成兔来算就会多算6条腿呢?就看6里面有几个2就是把几只鸡当成了兔算,所以6÷2=3就是现在鸡的只数。)
8-3=5(只)兔
小结:刚才我们假设都是鸡或都是兔,所以把这种方法叫做假设法。这是解答鸡兔同笼问题的一种基本方法。(板书:假设法)
(四)列方程解
在解决鸡兔同笼问题时,除了假设法外,还有别的方法吗?(方程的方法)要用列方程的方法就必须找到等量关系式。通过得到的信息能写出哪些等量关系式呢?
(兔的只数+鸡的只数=8;兔的腿+鸡的腿=26条腿)(课件出示)
师:这里我们需要求兔的只数和鸡的只数,共有两个未知数。那我们可以设一个未知数为X,再把另一个表示出来。这道题我们可以设兔的知数为X只,根据兔和鸡共有8只。那鸡的只数就可以表示成:(8-X)只),因为一只鸡有2条腿,所以X只鸡就共有2X条腿。一只兔有4只脚,(8-X)只兔就有4(8-X)只脚。又因为鸡和兔共有26只脚,所以2X+4(8-X)=26 ① 解:设鸡有X只,兔有(8-X)只。2X+4(8-X)=26 在解的时候可以根据等式的性质将减变成加,分别加上4X,再来解。② 解:设有兔X只,鸡有(8-X)只。4X+2(8-X)=26 同样抽生说出自己想法。那种方程好解一点,(设兔的只数为X好解点)所以我们可以设脚数多的兔为X,在解的时候容易一点。
列方程的重点是找出等量关系:设头数,以脚数相等来列出方程;
小结:请同学们回忆一下,在解决鸡兔同笼问题时,用到了哪些方法?(列表法,假设法和列方程)
三、练习
师:一个小小的问题,我们探究出了这么多的方法,真是太有才了。现在我们就用刚才学到的这些方法来解决《孙子算经》中原题,你会做吗?用你喜欢的一种方法做
课件出示《孙子算经》中原题学生解答并集体讲评
四、延伸、应用 1.课件出示“做一做1”
师:鸡兔同笼问题传到日本时就变成了“龟鹤问题”,你认为“龟鹤问题”与“鸡兔同笼”有什么相似之处?课件出示(龟相当于兔,鹤相当于鸡)展示学生作业,并抽生说说思路。
师:看来鸡兔问题这类问题我们不只局限算鸡和兔的只数问题上,只要能用“鸡兔同笼”问题来解答的问题都可以统一叫做“鸡兔同笼”问题。下面我们就用刚才学到的“鸡兔同笼”方法,来帮我们解决生活中遇到的一些实际问题。
2、课件出示“做一做”第二题。问这道题与“鸡兔同笼”问题有相似的地方吗?有哪些地方相似?(大船相当于“兔”,小船相当于“鸡”)学生独立完成,集体讲评。
五、课后总结:
本节课你有什么收获?那你知道早在一千五百年前的古人又是怎么解决鸡兔同笼问题的?请同学们自学P114页下面内容。这个内容我们留到下节课进行讲解。
第四篇:六年级上册数学第七单元鸡兔同笼教学设计
六年级上册数学第七单元鸡兔同笼教学设计
一、教学目标:
1、培养学生的合作意识,在现实情景中,使学生感受到数学思想的运用与解决实际问题的联系,提高学生解决问题的能力和自信心,进而让学生体会数学的价值。
2、应用假设的数学思想,在解题中数形结合,提高学生分析问题和解决问题的能力;
3、在解决“鸡兔同笼”的活动中,通过列表举例、画图分析、尝试计算等方法解决鸡兔的数量问题。
二、教材分析
本课时向学生提供了现实、有趣、富有挑战的学习素材,借助我国古代趣题“鸡兔同笼”问题,使学生展开讨论,应用假设的数学思想,从多角度思考,运用多种方法解题,学生可以应用逐一列表法、跳跃式列表法、取中列表法等来解决问题。学生在具体的解决问题过程中,他们可以根据自己的经验,逐步探索不同的方法,找到解决问题的策略,在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的方法。
三、学校及学生状况分析
学生在三年级时已初步学习了简单的“鸡兔同笼”问题,他们已经初步尝试了应用逐一列表法解决问题,还有一些学生在校外的奥数班中已经学习了相关的内容。因此,教学在这一内容时,学生的程度参差不齐。本班的学生思维活跃,敢想,敢说,有一定的小组合组经验。
四、教学设计
(一)创设情境
师:今天这一节课,我们要共同研究鸡兔同笼问题。(板书:鸡兔同笼)你们知道鸡兔同笼是什么意思?
生:鸡兔同笼就是鸡兔在一个笼子里。
(媒体出示课本第80页的情景图)
师:请你猜一猜,图中大约有几只兔子,几只鸡?
生1:我猜大约是7只,兔子5只鸡。
生2:不一定。因为有一棵树把鸡和兔子挡住了,所以我不知道各有几只。
(二)探求新知
师:如果告诉你:鸡兔同笼,有20个头,54条脚,鸡、兔各多少?能求出几只兔子,几只鸡吗?(媒体出示题目的条件)
师:想一想,要解决这个问题可以用什么方法?想好了,可以写在作业纸上。
师:请同学们把自己的想法在小组内交流一下,看那个小组的方法多样。
师:哪个小组说说你们的想法?
小组1:我们采用列表法得出的答案。(实物投影展示小组的成果)先假设有1只鸡,19只兔子,脚就有78条。脚太多,然后又假设有2只鸡,18只兔子,脚还是太多了。这样试下去就得到了有13只鸡,7只兔子。
师:还有哪些小组采用不同的列表法?
小组2:我们也采用列表法得出的答案,我们发现鸡增加1只,兔子减少1只,腿就减少2条,所以我们没有一个一个的试,那样太麻烦,而是从2只鸡,18只兔直接跳到10只鸡,10只兔。最后也得到了13只鸡,7只兔。
小组3:我们小组也是列表法。我们是先假设鸡有10只,兔子也有10只。这样比较简便。
师:这三个小组的同学都采用了列表的方法来解决问题,但同学们想一想,为什么要列表呢?
生1:列表可以帮助我们一一举例,从中找出需要的答案。
生2:列表也就是运用假设法,通过逐步的假设,最终找到符合条件的答案。
师:那么,这三种列表的方法有什么不同呢?
生3:我认为第一小组的列表方法的特点是逐一列表,这样不容易遗漏答案。
生4:虽说第一小组的方法可以完全地列出全部的答案,但比较麻烦。我认为第三组的方法比较好,可以根据题目的根据情况,确定假设的范围,这样可以很快寻找到需要的答案。
师:这两位同学说得都很有道理,其实同样选择列表的方法,我们因根据题目的实际条件,选择适当的方法,这样可以既快又准确地寻找到我们需要的答案。
(三)解决问题
师:根据刚才的讨论,下面两道题目,同学们可以用列表的方法独立地尝试解决。
媒体出示两道题
1、鸡兔同笼,有23个头,66条腿,鸡、兔各几只?请你列表的方法解决。
2、老师带51名学生到公园划船。一条大船坐6人,一条小船坐4人,他们租了大船、小船各几条?
(学生练习后,教师组织全班进行交流。交流过程略)
(四)学习总结
师:通过今天的学习,你有哪些收获?
五、教学反思
1、充分调动学生的积极性
当新的问题提出后,我并没有急于讲解如何做的方法,而是先让学生独立思考,再在小组内交流,最后全班共同研究讨论。使同学们在民主、和谐的氛围中开拓了思维,实现了运用多种方法解决问题的目的。
2、关注每一个同学的发展。
由于学生原有认知背景的不同,他们对解答本课时的题目存在较大的差异,所以,在同样的列表中,学生的认知水平也有一定的层次。但在教学的过程中,我并没有提出统一的要求,允许不同的学生采用不同的解题方法。在交流时,有些学生用逐一列表的方法,也没去指责他们,而是肯定他们想出好的方法;对于
比较优秀的学生,则在课中请他们总结根据题目的条件选择适当方法的优点。这样做的目的,不同的学生在同一节课中就会都有不同程度地提高。
六、案例点评
本节课有以下几个特点:
1、本节课从学的角度安排教学过程、呈现学习内容、提供操作材料,把学习的主动权交给学生,让学生在合作学习的活动中主动完成认知结构的建构过程。因此,使学生的主体意识和探究精神得到培养,创新潜能得到开发。
2、让学生获得亲自参与探究学习的积极体验。探究性学习的过程是情感活动的过程,让学生自主参与类似于科学家研究的学习活动,获得亲身体验,逐步形成一种在日常学习与生活中喜爱质疑、乐于探究、努力求知的心理倾向,激发探究和创新的积极欲望。
第五篇:六年级上册数学第七单元鸡兔同笼教学设计
六年级上册数学第七单元鸡兔同笼教学设计
一、教学目标:
1、培养学生的合作意识,在现实情景中,使学生感受到数学思想的运用与解决实际问题的联系,提高学生解决问题的能力和自信心,进而让学生体会数学的价值。
2、应用假设的数学思想,在解题中数形结合,提高学生分析问题和解决问题的能力;
3、在解决“鸡兔同笼”的活动中,通过列表举例、画图分析、尝试计算等方法解决鸡兔的数量问题。
二、教材分析
本课时向学生提供了现实、有趣、富有挑战的学习素材,借助我国古代趣题“鸡兔同笼”问题,使学生展开讨论,应用假设的数学思想,从多角度思考,运用多种方法解题,学生可以应用逐一列表法、跳跃式列表法、取中列表法等来解决问题。学生在具体的解决问题过程中,他们可以根据自己的经验,逐步探索不同的方法,找到解决问题的策略,在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的方法。
三、学校及学生状况分析
学生在三年级时已初步学习了简单的“鸡兔同笼”问题,他们已经初步尝试了应用逐一列表法解决问题,还有一些学生在校外的奥数班中已经学习了相关的内容。因此,教学在这一内容时,学生的程度参差不齐。本班的学生思维活跃,敢想,敢说,有一定的小组合组经验。
四、教学设计
(一)创设情境
师:今天这一节课,我们要共同研究鸡兔同笼问题。(板书:鸡兔同笼)你们知道鸡兔同笼是什么意思?
生:鸡兔同笼就是鸡兔在一个笼子里。
(媒体出示课本第80页的情景图)
师:请你猜一猜,图中大约有几只兔子,几只鸡?
生1:我猜大约是7只,兔子5只鸡。
生2:不一定。因为有一棵树把鸡和兔子挡住了,所以我不知道各有几只。
(二)探求新知
师:如果告诉你:鸡兔同笼,有20个头,54条脚,鸡、兔
各多少?能求出几只兔子,几只鸡吗?(媒体出示题目的条件)
师:想一想,要解决这个问题可以用什么方法?想好了,可以写在作业纸上。
师:请同学们把自己的想法在小组内交流一下,看那个小组的方法多样。
师:哪个小组说说你们的想法?
小组1:我们采用列表法得出的答案。(实物投影展示小组的成果)先假设有1只鸡,19只兔子,脚就有78条。脚太多,然后又假设有2只鸡,18只兔子,脚还是太多了。这样试下去就得到了有13只鸡,7只兔子。
师:还有哪些小组采用不同的列表法?
小组2:我们也采用列表法得出的答案,我们发现鸡增加1只,兔子减少1只,腿就减少2条,所以我们没有一个一个的试,那样太麻烦,而是从2只鸡,18只兔直接跳到10只鸡,10只兔。最后也得到了13只鸡,7只兔。
小组3:我们小组也是列表法。我们是先假设鸡有10只,兔子也有10只。这样比较简便。
师:这三个小组的同学都采用了列表的方法来解决问题,但
同学们想一想,为什么要列表呢?
生1:列表可以帮助我们一一举例,从中找出需要的答案。生2:列表也就是运用假设法,通过逐步的假设,最终找到符合条件的答案。
师:那么,这三种列表的方法有什么不同呢?
生3:我认为第一小组的列表方法的特点是逐一列表,这样不容易遗漏答案。
生4:虽说第一小组的方法可以完全地列出全部的答案,但比较麻烦。我认为第三组的方法比较好,可以根据题目的根据情况,确定假设的范围,这样可以很快寻找到需要的答案。
师:这两位同学说得都很有道理,其实同样选择列表的方法,我们因根据题目的实际条件,选择适当的方法,这样可以既快又准确地寻找到我们需要的答案。
(三)解决问题
师:根据刚才的讨论,下面两道题目,同学们可以用列表的方法独立地尝试解决。
媒体出示两道题
1、鸡兔同笼,有23个头,66条腿,鸡、兔各几只?请你列表的方法解决。
2、老师带51名学生到公园划船。一条大船坐6人,一条小船坐4人,他们租了大船、小船各几条?
(学生练习后,教师组织全班进行交流。交流过程略)
(四)学习总结
师:通过今天的学习,你有哪些收获?
五、教学反思
1、充分调动学生的积极性
当新的问题提出后,我并没有急于讲解如何做的方法,而是先让学生独立思考,再在小组内交流,最后全班共同研究讨论。使同学们在民主、和谐的氛围中开拓了思维,实现了运用多种方法解决问题的目的。
2、关注每一个同学的发展。
由于学生原有认知背景的不同,他们对解答本课时的题目存在较大的差异,所以,在同样的列表中,学生的认知水平也有一定的层次。但在教学的过程中,我并没有提出统一的要求,允许不同的学生采用不同的解题方法。在交流时,有些学生用逐一列
表的方法,也没去指责他们,而是肯定他们想出好的方法;对于比较优秀的学生,则在课中请他们总结根据题目的条件选择适当方法的优点。这样做的目的,不同的学生在同一节课中就会都有不同程度地提高。
六、案例点评
本节课有以下几个特点:
1、本节课从学的角度安排教学过程、呈现学习内容、提供操作材料,把学习的主动权交给学生,让学生在合作学习的活动中主动完成认知结构的建构过程。因此,使学生的主体意识和探究精神得到培养,创新潜能得到开发。
2、让学生获得亲自参与探究学习的积极体验。探究性学习的过程是情感活动的过程,让学生自主参与类似于科学家研究的学习活动,获得亲身体验,逐步形成一种在日常学习与生活中喜爱质疑、乐于探究、努力求知的心理倾向,激发探究和创新的积极欲望。