第一篇:7下5.14《相交线平行线复习2》教学反思
相交线与平行线的教学反思2
本课的设计是《相交线和平行线》这一章,学生平生第一次遇到几何推理,而且要用数学符号语言表达出逻辑推理的过程,难度是可以想象的,但是经过这之前新课的讲解以及之前的复习,学生的畏难情绪正在渐渐消失,他们从迷茫中慢慢理顺着思路,我看到课堂上一双双眼睛渐渐明亮起来,学生从几何学习的“悟”中品味到了一点点数学的简洁美,我总结出了几点
1. 适时多给学生唱赞歌,激励学生的求知欲;学生学得轻松一些。
2. 在几何入门教学中,可递进式的逐步提高逻辑推理的严密性;为学生留下思维的缓冲地带,不可一步到位。
3. 精心备好几何入门课的同时,并根据学生的学情及时调整优化;使之最贴近学生;练习题作业题的设计上要多下功夫,体现从单一到运用再到综合的循环上升。
但遗憾的是,自己对教学经验还不足,对课堂的研究还不熟练,处于皮毛阶段,有很多地方没有处理好。特别是精讲的环节。作为教师的我还是没能从旧的模式中走出来,没能很好放手给学生,讲的太多;平日对学生训练不够,学生回答问题不够严紧;最后小结上处理过于繁琐等等。
总之,本节课有成功之处,也有不尽人意的地方,在课堂的研究与探索上,我还要下功夫,力求能做得更好。
第二篇:《相交线与平行线》复习教学反思
.《相交线与平行线》复习教学反思
这一段时间复习了《相交线与平行线》,发现学生存在以下问题:
1.对于“三线八角”中,有不少同学一直认为,只要是同位角和内错角,就应该相等,只要是同旁内角就是互补的,把前提条件两直线平行这个条件就给忘记了,《相交线与平行线》复习教学反思。这个知识点要再给学生讲清楚,不能让学生有误解的。
2.在平行线的性质和判定的应用中,学生不太明白是哪两条直线应该平行,或者说由哪两条直线应该得到哪些角平行,不少学生搞不太清楚。比如在平行四边形ABCD中,连接AC,不少学生搞不明白,假如是AB∥CD,应该得到∠DCA=∠CAB还是得到∠DAC=∠ACB,所以在学生练习时要结合图形,让学生明白在平行的三条线中,到底是哪两条直线被哪一条直线所截,应该得到哪些角相等,要让学生完全弄明白,教学反思《《相交线与平行线》复习教学反思》。
3.在平移中,学生对于画平移的图形掌握的不是太好,要么是画图时不体现画图痕迹,要么是不会画,完全凭自己的感觉在画图,说明学生对于平移的规律和特征没有掌握,要以后练习中要加强这方面的训练。
4.对于有关平行的计算和证明,做的也不是太好,有的同学根本不会做,也有一部分学生会做,但是不会写解题过程,没有严格的逻辑推理。
综上所述,在以后的复习中要注意,加强基础知识点的掌握,对于一些概念和定理,要让学生准确无误的掌握,不能让学生因为基础知识掌握的不好,出现这样那样的问题。对学生的解题过程要加强训练和指导,让学生尽快的掌握几何的书写过种和推理过程。
第三篇:相交线平行线
一、基本概念的深入理解:例:
对顶角:“对”是正对着,“顶”是角的顶点,放在一起就是角的顶点正对着的一组角是对顶角;
同位角:“同”的意思是分别在两条线的同一侧,同时在第三条线的同一侧,“位”指的是位置,放在一起就是位置相同(三条线的位置)的一组角;
内错角:“内”指的是两个角在两条线的内部,“错”指的是两个角被第三条线分错开,放在一起就是在两条线内部,同时在第三条线两侧的一组角;
同旁内角:“同旁”指的是在第三条线的同一侧,“内”指的是两个角在两条线的内部,放在一起就是在两条线内部,同时在第三条线同一侧的一组角;
二、学习习近平行线时要注意是在同一平面内;同一平面内的线的位置关
系有几种,都是什么?线和点的位置关系有几种,都是什么,在本章节中哪个定理性质涉及到了这一点?
如:
1、过任意一点可以做一条直线与已知直线平行是否正确?
2、过任意一点可以做一条直线与已知直线垂直是否正确?判断这两句话时就需要考虑“任意”的含义。
第四篇:《相交线与平行线》教学反思
《相交线与平行线》复习教学反思(1)
相交线与平行线在平面几何计算和证明中应用十分广泛,对学生分析问题的能力、综合解题的能力要求更高。在学生学完《相交线与平行线》一章后,我们及时组织了两节复习课,第一节课着重复习《相交线与平行线》的基本知识及基本技能,第二节课则采取“探究式教学”,培养学生的实践能力、探索能力,收到了较好的效果。
我们认为“探究式教学"注重学生自己提出问题或自己提出解决问题的方法、寻找问题解决的途径、体验解决问题的过程,从而提高解决问题的能力,逐步改变学生的学习方式。在初中数学教学中,开展探究式教学活动,既是对教师的教学观念和教学能力的挑战,也是培养学生创新意识和实践能力的重要途径。下面是这节课的过程描述及课后反思。
本课的设计意图:在数学课堂中开展探究式学习是接受性学习的补充,它有效地促进了学生学习方式的改变,学生从被动的接受性学习变为主动的探究性学习。
本案例力争在以下三个方面有所体现:
一、尊重学生主体地位
本课以学生的自主探究为主线:课前学生自己对比例线段的运用进行整理。这样不仅复习了所学知识,而且可以使学生逐渐学会反思、总结,提高自主学习的能力;课堂上学生亲身体验“实验操作-探索发现-科学论证”获得知识(结论)的过程,体验科学发现的一般规律;解决问题时学生自己提出探索方案,学生的主体地位得到了尊重;课后学有余力的学生继续挖掘题目资源,发展的眼光看问题,观察运动中的“形异实同”,提高学习效率,培养学生思维的深刻性。
二、教师发挥主导作用
在探究式教学中教师是学生学习的组织者、引导者、合作者、共同研究者,鼓励学生大胆探索,引导学生关注过程,及时肯定学生的表现,鼓励创新,哪怕是微小的进步或幼稚的想法都给予热情的赞扬。备课时思考得更多的是学生学法的突破,上课时教师只在关键处点拨,在不足时补充。三次恰到好处的电脑演示,向学生展示了电脑的省时、高效以及对数学实验的巨大帮助,推荐给他们运用电脑技术的学习研究方法。教师与学生平等地交流,创设民主、和谐的学习氛围,促进教学相长。
三、提升学生课堂关注点
学生在体验了“实验操作--探索发现--科学论证”的学习过程后,从单纯地重视知识点的记忆、复习变为有意识关注学习方法的掌握,数学思想的领悟。如在原问题的取点中教师小结了从特殊到一般的归纳,学生在探究矩形的比值时就能意识地把解决特殊问题的策略、方法迁移到解决一般问题中去。在课堂小结中,学生也谈到了这点体会,而且还感悟了一题多解、一题多变等数学学习方法。
第五篇:《相交线与平行线》复习指导
龙源期刊网 http://.cn
《相交线与平行线》复习指导
作者:邹兴平
来源:《语数外学习·上旬》2013年第03期
《相交线与平行线》是平面几何的重点内容,这一章中的对顶角、垂线、互余和互补的概念、命题的真假、平移以及平行线的判定与性质及有关推理计算,是深入学习三角形、四边形等几何知识的基础,在实际生活中有着很广泛的应用.同学们一定要牢固掌握这部分知识,熟练运用它们解决问题.下面举例对知识点进行剖析.知识点
一、与相交线相关的概念和计算
与相交线相关的概念和性质较多,如对顶角相等;两个互为邻补角的角的和为180°;过一点有且只有一条直线与已知直线垂直;连接直线外一点与直线上各点的所有线段中,垂线段最短,等等,同学们需要认真辨析,才能熟练运用.例1 如图1所示,由点O引出六条射线OA、OB、OC、OD、OE、OF,且AO⊥OB,OF平分∠BOC,OE平分∠AOD.若∠EOF=170°,求∠COD的度数.