第一篇:相交线、平行线知识点总结
相交线、平行线知识点总结
1、三个距离:
(1)两点之间的距离:__________________
(2)点到直线的距离:__________________
(3)平行线间的距离:__________________
2、几种角:
(1)余角:∠1+∠2=_______°补角:∠1+∠2=_______°
(2)邻补角:∠1+∠2=_____°(有一条公共边和公共顶点)
(3)对顶角
(4)锐角、直角、钝角、平角
(5)同位角、内错角、同旁内角
3、可以用来推理的依据:
(1)同角的余角_______,同角的补角_________。
(2)对顶角________;邻补角的意义.(3)角平分线的意义
(4)垂直的定义;垂直的意义
(5)互补的意义;互余的意义
(6)判定平行线的三个方法:_________________________________________________________________________________
(7)平行线的三个性质:___________________________________________________________________________
(8)垂直于同一条直线的两条直线___________
(9)平行于同一条直线的两条直线__________
(10)同底等高的三角形面积________
(11)平行线间的距离处处相等
(12)等量代换;等式的性质
(13)垂直平分线(中垂线)的意义
4、几个基本性质
(1)两点之间,__________最短
(2)垂线段最短
(3)两条直线相交,有________个交点
(4)经过一点有________条直线垂直于已知直线
(5)经过直线外的一点有_______条直线平行于已知直线.
第二篇:相交线与平行线知识点
第五章相交线与平行线知识点小结
● 相交线
1.相交线:在同一平面内,相交的两条直线。-----特点:有一个交点
2.对顶角----特点:(1)有一个公共定点(2)两边互为反向延长线
-----性质:对顶角相等
-----N条直线相交有N(N—1)对对顶角
3.邻补角----特点:(1)有一个公共定点(2)有一条公共边(3另一边互为反向延长线
-----性质:邻补角互补(和为180°)
-----N条直线相交有2N(N—1)对邻补角
4.垂线:同一平面内,两条直线相交,所成的夹角均为90°时,称这两条直线互相垂直。
---性质:(1)过直线外一点有且只有一条直线与已知直线垂直
(2)垂线段最短
----点到直线的距离:就是点到直线的垂线段的长度。
●平行线
1.平行线:在同一平面内,不相交的两条直线。-----特点:没有交点
2.平行公理:过直线外一点有且只有一条直线与已知直线平行。
推论----如果有一条直线与其它两条直线平行,那么另外两条直线也平行。
3.三线八角
形成方式-------两条直线被第三条直线所截(这两条直线不一定平行)名称-----同位角(4对)内错角(2对)同旁内角(2对)(成对出现)
4.平行线的判定方法----(1)同位角相等,两直线平行
(2)内错角相等,两直线平行
(3)同旁内角互补,两直线平行
(4)如果两条直线分别与第三条直线平行,那么这
两条直线也互相平行。
5.平行线的性质-------(1)两直线平行,同位角相等
(2)两直线平行,内错角相等
(3)两直线平行,同旁内角互补
6.两条平行线间的距离-----就是两条平行线间的垂线段的长度。
● 命题
1.定义:判断一件事情的语句
2.组成----(1)题设(如果……)(2)结论(那么……)
3.分类----(1)真命题(2)假命题
●平移
1.定义:一个图形沿着一定的方向平行移动。
2.特点----(1)平移后图形的形状、大小不变,位置改变
(2)对应点所连接的线段平行(或在同一直线上),对应角相等。
关键知识点:教你用倒推法做证明题
1.已知:如图,BAPAPD180,12。
求证:EF
ABE
F
CPD
CD,2,练习
已知:如图,12,3B,AC//DE,且B、C、D在一条直线上。求证:AE//BD
A
1E2
BCD
第三篇:相交线与平行线知识点归纳
相交线与平行线知识点小结
一、相交线
1.相交线:两条直线相交,有且只有一个交点。(反之,若两条直线只有一个交点,则这两条直线相交。)
2.对顶角----特点:(1)有一个公共定点(2)两边互为反向延长线-----性质:对顶角相等
3.邻补角:两条直线相交,产生邻补角和对顶角的概念。要注意区分互为邻补角与互为补角的异同。
----特点:(1)有一个公共定点(2)有一条公共边(3另一边互为反向延长线
-----性质:邻补角互补(和为180°)
4.垂线:同一平面内,两条直线相交,所成的夹角均为90°时,称这两条直线互相垂直。
垂直是两直线相交的特殊情况。注意:两直线垂直,是互相垂直,即:若线a垂直线b,则线b垂直线a。
垂足:两条互相垂直的直线的交点叫垂足。垂直时,一定要用直角符号表示出来。
---性质:(1)过直线外一点有且只有一条直线与已知直线垂直(2)垂线段最短
----点到直线的距离:就是点到直线的垂线段的长度。
注:①、同角或等角的余角相等;同角或等角的补角相等;等角的对顶角相等。反过来亦成立。
②、表述邻补角、对顶角时,要注意相对性,即“互为”,要讲清谁是谁的邻补角或对顶角。
二、平行线
1.平行线:在同一平面内,不相交的两条直线。-----特点:没有交点,平行线永不相交。
2.平行公理:过直线外一点有且只有一条直线与已知直线平行。
推论----如果有一条直线与其它两条直线平行,那么另外两条直线也平行。
3.三线六面八角:平面内,两条直线被第三条直线所截,将平面分成了六个部分,形成八个角
形成方式-------两条直线被第三条直线所截(这两条直线不一定平行,)
特别注意:① 三角形的三个内角均互为同旁内角;
② 同位角、内错角、同旁内角的称呼并不一定要建立在两条平行的直线被第三条直线所截的前提上才有的,这两条直线也可以不平行,也同样的有同位角、内错角、同旁内角。
名称-----同位角(4对)内错角(2对)同旁内角(2对)(成对出现)
4.平行线的判定方法----(1)同位角相等,两直线平行(2)内错角相等,两直线平行
(3)同旁内角互补,两直线平行(4)如果两条直线分别与第三条直线平行,那么这两条直线也互相平行。一个重要结论:同一平面内,垂直于同一直线的两条直线互相平行。
5.平行线的性质-------(1)两直线平行,同位角相等
(2)两直线平行,内错角相等(3)两直线平行,同旁内角互补
6.两条平行线间的距离-----就是两条平行线间的垂线段的长度。
一个结论:平行线间的距离处处相等。
三、命题
判断一件事情的语句叫命题。命题包括“题设”和“结论”两部分,可写成“如果„„那么„„”的形式。
1.2.3.四、平移
1.2.定义:一个图形沿着一定的方向平行移动。特点----(1)平移后图形的形状、大小不变,位置改变 定义:判断一件事情的语句 组成----(1)题设(如果„„)(2)结论(那么„„)分类----(1)真命题(2)假命题
(2)对应点所连接的线段平行(或在同一直线上),对应角相等。
特征:发生平移时,新图形与原图形的形状、大小完全相同(即:对应线段、对应角均相等); 对应点
之间的线段互相平行(或在同一直线上)且相等,均等于平移距离。
画法:掌握平移方向与平移距离,利用对应点(一般指图形的顶点)之间连线段平行、连线段相等性质
描出原图形顶点的对应点,再依次连接,就形成平移后的新图形。
第四篇:相交线平行线证明题
相交线平行线证明题
由于分成了2部分那么肯定E在正方形的边上,不然就没分成2部分拉,哈哈。
如果AE是直线,那么不用想拉,呵呵,直接E点就是C点了。
由于可以是曲线,所以才有了其他不同的选择,因为用线围图形的时候,相等面积时候,圆所需要的线最少,知道吧。
不过这里不需要求出来最小是多少,所以不管它是不是圆弧拉,但我们可以得到它与正方形边上的交点肯定没达到C,第一种情况:E在CB或者CD上,显然正方形对称只考虑一种就可以了,不妨设它在CB上,先不管AE是什么样的曲线,我们连接AE,肯定的知道AE是比线段AE长,(两点之间线段最断嘛)。
因为三角形ABE当中AE是斜边,所以很容易得到:
曲线AE>线段AE>AB=2
第二:E在AB或者AD上的情况,同样只考虑在AB上,也不管AE是什么东东,哈哈。
在AE曲线上任意取一点F,不与AE重复就是,连接AF,EF。肯定的,曲线AE=曲线AF+曲线EF>线段AF+线段EF
三角形AEF中,AF+EF>AB,不用说了吧。三角形两边和大于第三边。
所以
曲线AE>AB=2
其实,有需要的时候,我们可以把AE的最小值算出来的,在这里我就不罗嗦拉
证明:因为∠1与∠3互补
所以DE//BC
所以∠1=∠4(两直线平行,同位角相等)
所以∠2=∠4(对顶角相等)
所以∠1=∠2(等量代换)
(电脑打不出“因为”,“所以:,在写证明过程中,将因为和所以改成三个点的样子)
第二:E在AB或者AD上的情况,同样只考虑在AB上,也不管AE是什么东东,哈哈。
在AE曲线上任意取一点F,不与AE重复就是,连接AF,EF。肯定的,曲线AE=曲线AF+曲线EF>线段AF+线段EF
三角形AEF中,AF+EF>AB,不用说了吧。三角形两边和大于第三边。
所以
曲线AE>AB=2
其实,有需要的时候,我们可以把AE的最小值算出来的,在这里我就不罗嗦拉
证明:因为∠1与∠3互补
所以DE//BC
所以∠1=∠4(两直线平行,同位角相等)
所以∠2=∠4(对顶角相等)
所以∠1=∠2(等量代换)
(电脑打不出”因为“,”所以:,在写证明过程中,将因为和所以改成三个点的样子)
第五篇:平行线相交线证明
平行钱相交练习题
1.(2005•安徽)如图,直线AB∥CD,直线EF分别交AB、CD于点M、N,∠EMB=50°,MG平分∠BMF,MG交CD于G,求∠1的度数.
2.如图所示,直线AB、CD相交于O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.
3.已知:如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求证:CD⊥AB.
4.已知:如图,CD⊥AB于D,点E为BC边上的任意一点,EF⊥AB于F,且∠1=∠2,那么BC与DG平行吗?请说明理由.
5.如图,若∠ADE=∠ABC,BE⊥AC于E,MN⊥AC于N,试判断∠1与∠2的关系,并说明理由.
6.如图,已知DF∥AC,∠C=∠D,你能否判断CE∥BD?试说明你的理由.
7.如图,已知∠C=∠D,DB∥EC.AC与DF平行吗?试说明你的理由.
8.已知:如图,AB∥CD,∠ABE=∠DCF,请说明∠E=∠F的理由.
9.如图,AB∥CD,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.
求证:AD∥BC.
10.如图,已知CD⊥AD,DA⊥AB,∠1=∠2.则DF与AE平行吗?为什么?
11.如图,已知AD⊥BC,EF⊥BC,∠3=∠C,求证:∠1=∠2.
12.如图,已知∠1=∠2,∠3=∠4,∠5=∠6,试判断ED与FB的位置关系,并说明为什么.
13.如图,己知∠A=∠1,∠C=∠F,请问BC与EF平行吗?请说明理由.
14.如图,E、F分别是AB、CD上一点,∠2=∠D,∠1与∠C互余,EC⊥AF,试证明AB∥CD.
15.已知,∠ADE=∠A+∠B,求证:DE∥BC.
16.已知:如图,∠1=∠2,∠A=∠C.求证:AE∥BC.
17.已知:如图所示,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90°.
(1)求证:AB∥CD
(2)试探究∠2与∠3的数量关系.
18.如图,∠ABC=∠ACB,BE平分∠ABC,CF平分∠ACB,∠EBD=∠D,试猜想CF与DE的关系,并说明理由.
19.如图,CE平分∠ACD,∠1=∠B,请说明AB∥CE的理由.
20.如图所示,已知∠ADE=∠B,∠1=∠2,GF⊥AB,求证:CD⊥AB.
21.如图,∠D=∠A,∠B=∠FCB,求证:ED∥CF.
22.如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.
23.如图,已知AC∥ED,EB平分∠AED,∠1=∠2,求证:AE∥BD.