2013中考金属和金属材料除杂鉴定知识点复习2012.12

时间:2019-05-13 04:46:19下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《2013中考金属和金属材料除杂鉴定知识点复习2012.12》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《2013中考金属和金属材料除杂鉴定知识点复习2012.12》。

第一篇:2013中考金属和金属材料除杂鉴定知识点复习2012.12

金属材料及除杂鉴定测试

1、金属材料包括及它们的金属之最:地壳中含量最高的金属元素是人体中含量最高的金属元素是,世界上产量最高的金属 是导热、导电性最好的金属是,熔点最高的是

2、合金的概念和常见的合金

、定义:在金属中加热 某些金属或非金属而制得的具有特性的物质称为合金。

注意:A 合金是物.B 合金制作过程是C 合金中的各成分(金属或者非金属)都是以存在②、合金的特性:合金的硬度、强度于组成合金的任何一种金属;合金的抗腐蚀性于组成合金的任何一种金属; 合金的熔点于组成合金的任何一种金属(例如:保险丝)

3、常见合金以及合金用途

生铁---铁和碳混合物(含碳量:%)钢---铁和碳混合物(含碳量:%)生铁和钢性能不同的原因:含

钛和钛合金:21世纪的重要材料,钛合金与人体有很好的“”因此可用来制造人造骨等。应用在军事

和航天事业优点(1)点高、密度(2)可塑性、易于加工、机械性能好(3)抗腐蚀性能

4、用元素符号写出常见金属活动性顺序在置换反应中,金属为氢之前的金属,置换的是而不是气。初中常见离子特殊颜色Fe2+ Fe3+2+。在金属与酸反应中实验现象:有

古代湿法冶铜即铁置换铜反应结论:不能用铁容器盛装硫酸铜溶液(波尔多溶液)

4、金属在自然界中以单质形式存在的例如。地壳中含量最多的金属是,开采量最多的金属是。5铁的冶炼原理:在高温下,利用焦炭与氧气反应生成的一氧化碳把从铁矿石里还原出来。

方程式炼铁原料:、焦炭、石灰石、空气

焦炭的作用:一是,二是制造(还原剂还有做骨架作用,支撑铁矿在火中燃烧----了解)常见的铁矿石有磁铁矿(主要成分是黑色)、赤铁矿(主要成分是色)

6、铁生锈的条件是:防止铁制品生锈的措施:①保持铁制品表面的清洁、②制成耐腐蚀如不锈钢③表面涂:如涂油、刷漆、电镀、烤蓝等

7、保护金属资源的途径:①防止金属②回收利用金属③合理开采矿物④寻找金属的品

8、CO32-的检验:先加,然后将产生的气体通入。

9能源)氧化物中分子量最小的是机物化学式过氧化钠化学式乙醇化学式新能源有:、、核能、地热能、潮汐能、氢能源。是最理想的燃料:优点:资源丰富,放热量多,无污染。目前环境污染问题:①臭氧层破坏(由冰箱里的氟里昂引起);②温室效应(主要由等引起);③酸雨(由引起));④白色污染(由引起)三大还原剂:H2、C、CO—共同性质、。三大可燃性气体及燃烧时的火焰颜色:H2(淡蓝色)、CO(色)、CH4(色)

10、除去CuO中的C方法CO中的CO2方法

11、除去CO2中的CO方法;除去Cu中少量的Fe:物理方法——用反复吸 引。化学方法——滴加稀盐酸或稀硫酸,然后过滤。

12、除去FeSO4溶液中的CuSO4:① 加入铁粉(铁丝);② 过滤。燃烧CH4:生成物既能使无水硫酸铜变,又能使澄清石灰水变

13、鉴定H+方法 加入活泼 蓝色火焰。如果气体不纯,会发出尖锐的爆鸣声),说明含有。加入铁锈,如果铁锈溶解,溶液由无色 变成14、盐酸与水垢中的主要成分发生反应

15、泡沫灭火器的反应原理方程式

16、Ca(OH)2固体变质的原因)方程式

17、做硫燃烧实验时,集气瓶底部应加入少量NaOH 溶液以吸收有毒的SO2(18、实验中碳还原氧化铜配制混合物时木炭粉应稍过量的目的:防止

第二篇:2014中考化学金属和金属材料除杂鉴定知识点检测

姓名金属材料及除杂鉴定测试

1、金属材料包括及它们的体(是液体)

金属之最:地壳中含量最高的金属元素是人体中含量最高的金属元素是,世界上产量最高的金属是。导热、导电性最好的金属是,熔点最高的是。

2、合金的概念和常见的合金、定义:在金属中加热融合某些 属或称为合金。A 合金是合物.B 合金制作过程是变化C 合金中的各成分都是以或化合物)②、合金的特性:合金的硬度、强度于组成合金的任何一种金属;合金的抗腐蚀性于组成合金的任何一种金属; 合金的熔点于组成合金的任何一种金属(例如:保险丝)

3、常见合金以及合金用途 生铁—铁和碳混合物(含碳量: %)钢~Fe和C混合物(含碳量:%~)生铁和钢性能不同的原因:含量不同。CO2与H2O 性质不同原因

钛和钛合金:21世纪的重要材料,钛合金与人体有很好的“”因此可用来制造人造骨等。广泛应用于火箭 航天飞机、船舶和化工等优点①点高、密度②可塑性、易于加工、机械性能好(3)抗腐蚀性能

4、用元素符号写出常见金属活动性顺序 在置换反应中,金属为氢前的金属,置换的是而不是气。初中常见离子特殊颜色Fe2+Fe3+Cu2+。在金属与酸反应中实验现象:有减少。

湿法冶铜反应结论:不能用铁容器盛装硫酸铜溶液(波尔多溶液-硫酸铜与氢氧化钙)

4、金属在自然界中以单质(游离态)形式存在的例如。大多数金属以化合物(化合态)存在如

地壳中含量最多的金属是,开采量最多的金属是。

5铁的冶炼原理:在高温下,利用焦炭与氧气反应生成的把从铁矿石里还原出来。

方程式炼铁原料:、焦炭、石灰石、空气

焦炭的作用:一是,二是制造(还原剂还有做骨架作用,支撑铁矿在火中燃烧)

常见的铁矿石有磁铁矿(主要成分是色)、赤铁矿(主要成分是色)、铝土矿成分

6、铁生锈的条件是:防止铁制品生锈的措施:①保持铁制品表面的清洁、②制成耐腐蚀如不锈钢③表面涂:如油、漆、电镀、烤蓝等

7、保护金属资源的途径:①防止金属②回收利用金属③理开采矿物④寻找金属的品保护金属资源意义:①防止污染②节省

8、CO32-的检验:先加,然后将产生的气体通入。

9、三大化石燃料:、石油、天然气(均为物、均为 氧化物中分子量最小的是机物化学式,相对分子质量最小的有机物化学式乙醇化学式新能源有:、、核能、地热能、潮汐能、氢能源。是最理想的燃料,优点:资源,来源广泛,燃烧高,产物是水,无。目前环境污染问题:①臭氧层破坏(由冰箱里的氟里昂引起);②温室效应(主要由等引起);③酸雨(由引起));④白色污染(由引起)三大还原剂:H2、C、CO—共同性质、。

10、除去CuO中C方法CO中的CO2方法

11、除去CO2中的CO方法;除去Cu中少量的Fe:物理方法——用反复吸 引。化学方法是滴加或稀硫酸,然后过滤,洗,过滤用到的玻璃仪器

12、除去FeSO4溶液中的CuSO4:① 加入足量粉(铁丝);②。燃烧CH4:生成物既能使无水硫酸铜变,又能使澄清石灰水变。水的鉴定:如果液体能使无水硫酸铜变,说明液体中含有水。

13、鉴定H+方法 加入活泼,金属表面产生。加入,溶液由无色

变成色,说明含有。HCl+Fe2O3=+3H2O3H2SO4+Fe2O3=2O

③加入碳酸盐如有产生。④PH试纸,指示剂,有颜色的碱,氢氧化铜、氢氧化铁等。

盐酸与水垢发生反应生成物CaCl2水,即可除去水垢。

15、泡沫灭火器的反应原理方程式

16、Ca(OH)2固体变质的原因---方程式

检验澄清石灰水是否变质的化学方程式

具体方法:向澄清石灰水中加入过量,观察是否有

试剂加入过量的原因

17、做硫燃烧实验时,集气瓶底部应加入少量SO22O熄灭燃烧硫的方法

18、实验中碳还原氧化铜配制混合物时木炭粉应稍过量的目的:防止-1-

第三篇:《金属》复习教案

《金属的性质》复习教学设计

杞县一高附中 孙岩

一、教学目标:

1、了解金属一些物理性质。

2、认识常见金属与氧气、与酸、与盐溶液的反应;能利用金属活动性顺序表对有关反应能否发生进行简单的判断。

二、重点:金属的化学性质。

三、难点:金属活动性顺序及灵活运用。

四、教学方法:问答、归纳、练习设计相结合。

五、教具:多媒体及课件。

六、教学过程:

一、金属的物理性质:如导电性、导热性、延展性等等,让学生回忆、回答

二、金属的化学性质:

1、金属与氧气的反应

2、金属与酸的反应

3、金属与某些盐溶液的反应

让学生边思考、边总结、边回答,并且共同做一下练习题。

三、金属活动性顺序:这里是重难点,应详细讲解、技巧记忆,加深理解,并让学生学会灵活应用。与学生一起完成习题。

四、讲例题、做练习。使本节课的知识点得到延伸。

第四篇:金属工艺学知识点总结

第一篇 金属材料的基本知识

第一章 金属材料的主要性能

金属材料的力学性能又称机械性能,是金属材料在力的作用所表现出来的性能。零件的受力情况有静载荷,动载荷和交变载荷之分。用于衡量在静载荷作用下的力学性能指标有强度,塑性和硬度等;在动载荷和作用下的力学性能指标有冲击韧度等;在交变载荷作用下的力学性能指标有疲劳强度等。

金属材料的强度和塑性是通过拉伸试验测定的。P6低碳钢的拉伸曲线图 1,强度

强度是金属材料在力的作用下,抵抗塑性变形和断裂的能力。强度有多种指标,工程上以屈服点和强度最为常用。屈服点:δs是拉伸产生屈服时的应力。

产生屈服时的应力=屈服时所承受的最大载荷/原始截面积

对于没有明显屈服现象的金属材料,工程上规定以席位产生0.2%变形时的应力,作为该材料的屈服点。

抗拉强度:δb是指金属材料在拉断前所能承受的最大应力。

拉断前所能承受的最大应力=拉断前所承受的最大载荷/原始截面积 2,塑性

塑性是金属材料在力的作用下,产生不可逆永久变形的能力。常用的塑性指标是伸长率和断面收缩率。

伸长率:δ试样拉断后,其标距的伸长与原始标距的百分比称为伸长率。伸长率=(原始标距长度-拉断后的标距长度)÷拉断后的标距长度×100% 伸长率的数值与试样尺寸有关,因而试验时应对所选定的试样尺寸作出规定,以便进行比较。同一种材料的δ5 比δ10要大一些。断面收缩率:试样拉断后,缩颈处截面积的最大缩减量与原始横截面积的百分比称为断面收缩率,以ψ表示。

收缩率=(原始横截面积-断口处横截面积)÷原始横截面积×100% 伸长率和断面收缩率的数值愈大,表示材料的塑性愈好。3,硬度

金属材料表面抵抗局部变形(特别是塑性变形、压痕、划痕)的能力称为硬度。金属材料的硬度是在硬度计上测出的。常用的有布氏硬度法和洛氏硬度法。1,布氏硬度(HB)

是以直径为D的淬火钢球HBS或硬质合金球HBW为压头,在载荷的静压力下,将压头压入被测材料的表面,停留若干秒后卸去载荷,然后采用带刻度的专用放大镜测出压痕直径d,并依据d的数值从专门的表格中查出相应的HB值。布氏硬度法测试值较稳定,准确度较洛氏法高。是测量费时,且压痕较大,不适于成品检验。2,洛氏硬度(HR)是将压头(金刚石圆锥体、淬火钢球或合金球)施以100N的初始压力,使压头与试样始终保持紧密接触。然后,向压头施加主载荷,保持数秒后卸除主载荷,以残余压痕尝试计算其硬度值。实际测量时,由刻度盘上的指针直接指示出HR值。

洛氏硬度法测试简便、迅速,因压痕小、不损伤零件,可用于成品检验。其缺点是测得的硬度值重复性较差,需在不同部位测量数次。3,韧性 金属材料断裂前吸收的变形能量的能力称为韧性。韧性的常用指标为冲击韧度。金属材料的韧度通常采用摆锤冲击弯曲试验机来测定。冲击韧度=冲断试样所消耗的冲击功/试样缺口处的横截面积

冲击值的大小与很多因素有关。它不公受试样开关、表面粗糙度及内部组织的影响,还与试验时的环境温度有关。因此,冲击值的大小一般公作为选择材料时的参考,不直接用于强度计算。

4,疲劳强度

承受循环应力或交变应力的零件在工作一段时间后,有时突然发生断裂,而其所承受的应力往往低于该材料的屈服点,这种断裂称为疲劳断裂。一般认为产生疲劳断裂的原因,是由于材料有内部缺陷、表面划痕驻其他能引起应力食品的缺陷,导致产生微裂纹。

下列符号所表示的力学性能指标名称和含义是什么? δb

抗拉强度

δs

屈服强度或屈服点 δ0.2工程规定屈服点

δ-

1按正弦曲线变化的对称循环应力的疲劳强度 δ

伸长率 αk

冲击韧度

HRC

120°金刚石圆锥体

HBS

布氏硬度计以淬火钢球为压头 HBW 布氏硬度计以合金球为压头

第二章

铁碳合金

金属的结晶就是金属液态转变为晶体的过程,亦即金属原子由无序到有序的排列过程。液态金属的结晶过程是遵循“晶核不断形成和长大”这个结晶基本规律进行的。金属的冷却速度愈快,自发晶核愈多。金属晶粒的粗细对其力学性能影响很大。

一般来说,同一成分的金属,晶粒愈细,其强度、硬度愈高,而且塑性和韧性也愈好。影响晶粒粗细的因素很多,但主要取决于晶核的数目。

细化铸态金属晶粒的主要途径是:提高冷却速度,以增加晶核的数目。在金属浇铸之前,向金属液内加入变质剂(孕育剂)进行变质处理,以增加外来晶核。此外,还可采用招牌理或塑性加工方法,使固态金属晶粒细化。钝铁的晶格有体心立方和面心立方两种。

铁及锡、钛,锰等金属在结晶之后,在不同温度范围内将呈现出不同的晶格。这种随着温度的改变,固态金属的晶格也随之改变的现象称为同素异晶转变。两种或两种以上的金属元素,或金属与非金属元素熔合在一起,构成具有金属特性的物质称为合金。组成合金的元素称为组元,简称元。按照铁和碳相互作用形式的不同,铁碳合金的组织可分为固溶体、金属人物和机械混合物三种类型。

固溶体:溶质原子溶入溶剂晶格而仍保持溶剂晶格类型的金属晶体,称为固溶体。

铁素体F:碳溶解于α-Fe中形成的固溶体称为铁素体,呈体心立方晶格。力学性能与纯铁相近。铁素体在显微镜下为明亮的多边形晶粒,得晶界曲折。

奥氏体A:碳溶入γ-Fe中形成的固溶体称为奥氏体,呈面心立方晶格。力学性能与其溶碳量有关。一般来说,其强度、硬度不高,但塑性优良。在显微镜下,奥氏体也是呈多边形晶粒,但晶界较铁素体平直,并存有双晶带。

化合物:是各组元按照一定整数比结合而成、并具有金属性质的均匀物质,属于单相组织。金属化合物一般具有复杂的晶格,且与构成人物的各组元晶格皆不相同,其性能特征是硬而脆。渗碳体Fe3C是钢铁中的强化相,其组织可呈片状、球状、网状等不同形状。它的硬度,可以刻划玻璃,而塑性、韧性极低,伸长率和冲击韧度近于零。渗碳体在一定条件下可发生分解,形成石墨。

机械混合物:是由结晶过程所形成的两相混合组织。铁碳合金中的机械混合物有珠光体和莱氏体。

珠光体:铁素体和渗碳体组成的机械混合物称为珠光体。

莱氏体:奥氏体和渗碳体组成的机械混合物称高温莱氏体,当冷却到727℃以下时,将转变为珠光体和渗碳体的机械混合物,称为低温莱氏体。钢

它是指含碳量小于2.11%的铁碳合金。铸铁 即生铁,它是指含碳量为2.11%~6.69%的铁碳合金。P18 铁碳合金状态图 共析钢

亚共析钢

过共析钢

第三章

钢的热处理

在固态下,通过回执、保温和冷却,以获得预期组织和性能的工艺。它只改变金属材料的组织和性能而不以改变形状和尺寸为目的。

退火:退火是将钢加热、保温,然后随炉或埋入灰中使其缓慢冷却的热处理工艺。常用的有完全退火,球化退火,去应力退火。

正火:正火是将钢加热到亚共析钢或过共析钢,保温后在空气中冷却的热处理工艺。

正火主要用于:1,取代部分完全退火。但中碳合金钢、高碳钢及复杂件仍以退火为宜。2,用于普通件的最终热处理。3,用于过共析钢,以减少或消除二次渗碳体呈网状析出。淬火和回火是强化钢最常用的工艺。淬火是将钢加热到一定温度,保温后在淬火介质中快速冷却,以获得马氏体组织的热处理工艺。注意:1严格控制淬火加热温度。2,合理选择淬火介质使其冷却速度略大于临界冷却速度。3,正确选择淬火方法。

回火:将淬火的钢重新加热到Ac1以下某温度,保温后冷却到室温的热处理工艺,称为回火。回火的主要目的是消除淬火内应力,以降低钢的脆性,防止产生裂纹,同时也使钢获得所需的力学性能。

总的趋势是回火温度愈高、析出的碳化物愈多,钢的强度、硬度下降,而塑性、韧性升高。将钢的回火分为如下三种:

1,低温回火250度以下 目的是降低淬火钢的内应力和脆性,但基本保持淬火所获得的高硬度和高耐磨性。用途最广,如各种刀具、模具、流动轴承和耐磨件等。2,中温回火250~500度 目的是使钢获得高弹性,保持较高硬度和一定的韧性。中温回火主要用于弹簧、发条、锻模等。

3,高温回火500度以上 它广泛用于承受循环应力的中碳钢重要件,如连杆、曲轴、主轴、齿轮、重要螺钉等。经调质处理的钢可获得强度及韧性都好的综合力学性能。

表面淬火常用于机床主轴、发动机曲轴、齿轮等。快速加热法有多种,如电感应、火焰、电接触、激光等,目前应用广泛的是电感应加热法。

第四章

工业用钢 碳素钢即“非合金钢”,简称碳钢。

碳素钢的含碳量在1.5%以下,除碳之外,还含有硅、锰、磷、硫等杂质。

磷和硫是钢中的有害杂质。磷可使钢的塑性、韧性下降,特别是在低温时脆性急剧增加,这种现象称为冷脆性。

硫在钢的晶界处可形成低熔点的共晶体,致使含硫较高的钢在高温变回工时 容易产生裂纹,这种现象称为热脆性。

硅和锰是炼钢后期作为脱氧剂加入钢液中残存的。

硅和锰可提高钢的强度和硬度,锰还能与硫形成MnS,从而抵消硫的部分有害作用。显然,它们都是钢中的有益元素。

碳素钢通常分为如下三类:碳素结构钢、优质碳素结构钢、碳素工具钢。

1、碳素结构钢的牌号以代表屈服点的“屈”字汉语拼音首字母Q和后面三位数字来表示,每个牌号中的数字表示该钢种厚度小于16mm时的最低(Mpa)。在钢号尾部A、B为普通级别,C、D为磷、硫低的优等级别,可用于较重要的焊接结构。Q315 塑性好通常轧制成薄板、钢管、型材制造钢结构,也用于制作铆钉、螺钉、冲压件、开口销等。Q235 强度较高,塑性也较好,常轧制成各种型钢、钢管、钢筋等制成各种钢构件、冲压件、焊接件及不重要的轴类、螺钉、螺母等。Q255 强度更高,用做键、轴、俏、齿轮、撙、连杆、销钉等。

2、优质碳素结构钢的硫、磷含量较低,供货时既保证化学成分,又保证力学性能,主要用于制造机器零件。

优质碳素结构钢的牌号用两位数字表示,这两位数字即是钢中平均含碳量的万分数。例如,20钢表示平均含碳量为0.20%的优质结构钢。08、10、15、20等牌号属于低碳钢。20钢用途最广,常用于制造螺钉、螺母、垫圈、小轴,焊接件,有时也用于渗碳件。40、45等牌号属于中碳钢。45钢常用来制造主轴、丝杠、齿轮、连杆、、套筒、键和重要螺钉等。60、65等牌号属于高碳钢。它们经过淬火、回火后,不仅强度、硬度显著提高,且弹性优良,常用弹簧、发条、钢丝绳、轧辊、凸轮等。

3、碳素工具钢的含碳量高达0.7%~1.3%,淬火、回火后有高的硬度和耐磨性,常用于制造锻工、钳工工具和小型模具。

碳素工具钢一般均为优质钢。对于硫、磷含量更低的高级优质碳素工具钢,则在数字后面增加“A”表示,例如,T10A表示平均含碳量为1.05的高级优质碳素工具钢。T8

冲头、錾子、锻工工具、木工工具、台钳钳口等。T10,T10A

硬度较高、但仍要求一定韧性的工具,如手锯条、小冲模、丝锥、板牙等。T1

2适用于不受冲击的耐磨工具,如钢锉、刮刀、绞刀等。

合金钢是为了改善钢的某些性能,在钢的基础上加入某些合金元素所炼成的钢。如果钢中的含硅量大于0.5%,或者含锰量大于1.0%,也属于合金钢。低合金钢是指合金总含量较低(小于3%)、含碳量也较低的合金结构钢。

可焊接低合金高强钢(简称合金高强钢)应用最为广泛。低合金高强钢的牌号表示方法与碳素钢相同,即以字母“Q”开始,后面以三们数字表示其最像屈服点,最后以符号表示其质量等级。如Q345A表示不小于345Mpa的A级低合金高强钢。Q295 低压容器、输油管道、车辆等 Q345 桥梁、船舶、压力容器、车辆等 Q390 桥梁、船舶、起重机、压力容器等 Q420 高压容器、牺牲、桥梁、锅炉等

合金钢:当钢中合金元素超过低钢的限度时,即为合金钢。

合金钢不仅合金元素含量高,且严格控制硫、磷等有害杂质的含量,属于优质钢或高级优质钢。

合金钢可分为合金结构钢(常用于制造机器零件用的合金钢),合金工具钢(主要用于制造刀具、量具、模具等,含碳量甚高),特殊性能钢(包括不锈钢,耐磨钢,耐蚀钢及具有软磁,永磁,无磁等特殊性能的钢)

第二篇 铸造

第一章

铸造工艺基础

液态合金直译铸型的过程,简称充型。

液态合金充满铸型型腔,获得形状准确,轮廓清晰铸件的能力,称为液态合金的充型能力。在液态合金的过程中,有时伴随着结晶现象,若充型能力不中,在型腔被填满之前,形成的晶粒将充型的通道堵塞,金属液被迫停止流动,于是铸件将产生浇不到或冷隔等缺陷。影响充型能力的主要因素如下:

合金的流动性(其中以化学成分的影响最为显著)浇注条件(浇注温度和充型压力)

铸型填充条件(铸型材料,铸型温度,铸型中的气体,铸件结构)浇入铸型中的金属液在冷凝过程中,其液态收缩和凝固收缩若得不到补充,铸件将产生缩孔或缩松缺陷。

在铸件的凝固过程中,其断面上一般存在三个区域,即固相区,凝固区和液相区,其中,对铸件质量影响较大的主要是液相和固相并存的凝固区的宽窄。铸件的“凝固方式”就是依据凝固区的宽窄来划分为逐层凝固,糊状凝固,中间凝固。

铸件质量与其凝固方式密切相关。一般说来,逐层凝固时,合金的能力强,便于防止缩孔和缩松;糊状凝固时,难以获得结晶紧实的铸件。

合金从浇注,凝固直到冷却到室温,其体积或尺寸缩减的现象,称为收缩。

收缩是合金的物理本性。为使铸件的形状、尺寸符合技术要求,组织致密,必须研究收缩的规律性。

合金的收缩经历如下三个阶段:液态收缩,凝固收缩,固态收缩。液态合金在冷凝过程中,若其液态收缩和凝固收缩所缩减的容积得不到补足,则在铸件最后凝固的部位形成一些孔洞。按照孔洞的大小和分布,可将其分为缩孔和缩松两类。

缩孔是集中在铸件上部或最后凝固部位容积较大的孔洞。合金的液态收缩和凝固收缩愈大,浇注温度愈高,铸件愈厚,缩孔的窖愈大。

缩松分散在铸件某区域内的细小缩孔,称为缩松。当缩松与缩孔的容积相同时,缩松的在面积要比缩孔大得多。

缩孔和缩松都使铸件的力学性能下降,缩松还可使铸件因渗漏而报废。只要能使铸件实现“顺序凝固”,尽管合金的收缩较大,也可获得没有缩孔的致密铸件。所谓顺序凝固就是在铸件上可能出现缩孔的厚大部位通过安放等工艺措施,使铸件远离冒口的部位先凝固;然后是靠近冒口部位凝固;最后才是冒口本身的凝固。冒口是多余部分,在铸件清理时予以切除。

安放冒口主要用于必须补缩的场合,如铝表铜,铝硅合金和铸钢件等。

铸件在凝固之后的继续冷却过程中,其固态收缩若受到阻碍,铸件内部将产生内应力,这些内应力有时是在冷却过程中暂存的,有时则一直保留到室温,后者称为残余内应力。铸造内应力是铸件产生变形和裂纹的基本原因。

按照内应力的产生原因,可分为热应力和机械应力两种。

热应力:是由于铸件的壁厚不均匀,各部分的冷却速度不同,以致在同一时期内铸件各部分收缩一致收起的。

预防热应力的基本途径是昼减少铸件各个部位间的温度差,使其均匀地冷却。采用同时凝固原则可减少铸造内应力,防止铸件的变形和裂纹缺陷,又可免设冒口而省工省料。其缺点是铸件心部容易出现缩孔或缩松。

机械应力:是合金的固态收缩受到铸型或型芯的机械阻碍而形成的内应力。具有残余内应力的铸件是不稳定的,它将自发地通过变形来减缓其内应力,以便趋于稳定状态。

防止铸件变形:设计时尽可能使铸件壁厚均匀,形状对称。工艺上采用同时凝固原则,以便冷却均匀。对长而易变形的铸件,还可采用“反变形”工艺。自然时效是将铸件置于露天场地半年以上,使其缓慢地发生变形,从而使内应力消除。人工时效是将铸件加热到550~650度进行去应力退火。时效处理宜在粗加工之后进行,以便将粗加工所产生的内应力一并消除。当铸造内应力超过金属的强度极限时,铸件便将产生裂纹。裂纹是严重缺陷,多使铸件报废。裂纹可分成热裂和冷裂两种。

热裂:是在高温下形成的裂纹。形状特征是缝隙宽,形状曲折,缝内呈氧化色。

冷裂:是在较低温下形成的裂纹。形状特征是裂纹细小,呈连续直线状,有时缝内呈轻微氧化色。

气孔是最常见的铸造缺陷,它是由于金属液中的气体未能排出,在铸件中形成气泡所致。按照气体的来源,铸件中的气孔主要分为:因金属原因形成的“析出性气孔”,因铸型原因形成的“浸入性气孔”,因金属与铸型相互化学作用形成的“反应性气孔”三种。

第二章 常用合金铸件的生产

机械制造中广泛应用的铸铁中的碳主要是以石墨状态存在的。

铸铁中的石墨一般呈片状,经过不同的处理,石墨还可以呈团絮状,球状,蠕虫状等,使铸铁获得不同的性能。因此,常用的铸铁为灰铸铁,可锻铸铁,球墨铸件,蠕墨铸铁等。1,灰铸铁HT 灰铸铁是指具有片状石墨的铸铁,是应用的铸铁,其产量占铸铁总并不是的80%以上。由于灰铸铁属于脆性材料,故不能锻造和冲压。灰铸铁的焊接性能很差,如焊接区容易出现白口组织,裂纹的倾向较大。2,可锻铸铁KTH 可锻铸铁又称玛铁或玛钢。它是将白口铸铁坯件经石墨化退火而成的一种铸铁。由于其石墨呈团絮状,大大减轻了对金属基体的割裂作用,故抗拉强度得到显著提高,尤为可贵的是这种铸铁有着相当高的塑性与韧性,可锻铸铁就是因此而得名,其实它并不能真的用于锻造。按退火方式不同,可锻铸铁可分为黑心可锻铸铁,珠光体可锻铸铁和白心可锻铸铁三种其中之一以黑心可锻铸铁在我国最为常用。可锻铸铁通常用于制造形状复杂,承受冲击载荷的薄壁小件,这些小件若用一般铸钢制造困难较大若改用球墨铸铁,质量又难保证。3,球墨铸铁QT 由于石墨呈球状,使石墨对金属基体的割裂作用进下一步减轻,故球墨铸铁强度和韧性远远超过灰铸铁,并可与钢媲美。此外,球墨铸铁还兼有接近灰铸铁的优良铸造性能。4,蠕墨铸铁RuT 由于其石墨呈短片状,片端钝而圆,类似蠕虫,故名。

蠕墨铸铁的发展历史较短,对其生产的规律性掌握仍不够充分,以致有时质量尚不够稳定。

碳既是形成石墨的元素,又是促进石墨化的元素。含碳愈高,析出的石墨数量愈多,愈粗大,而基体中铁素体增加,珠光体减少;反之,含碳降低,石墨减少,且细化。硅是强烈促进石墨化的元素,随着含硅量的增加,石墨显著增多。硫会引起铸铁的热脆性,阻碍石墨化,增加白口倾向。磷会增加铸铁的冷脆性,但对石墨化基本没有影响。锰可部分抵消硫的有害作用,并可增加铸铁的强度,属有益元素。但含锰过多将阻碍石墨的,增加铸铁的白口倾向。相同化学成分的铸铁,若冷却速度不同,其组织和性能也不同。铸件的冷却速度主要取决于铸型和铸件的壁厚。各种铸型材料的导热能力不同。影响铸铁石墨化的主要因素是化学成分和冷却速度。

铸钢ZG 铸钢也是一种重要的铸造合金,它的年产量仅次于灰铸铁,约为球墨铸铁和可锻铸铁的总和。按照成分,铸钢可分为铸造碳钢和铸造合金钢两大类,其中铸造碳钢应用较广,约占铸钢件总产量的确80%以上。

如:ZG310—570 ZG表示铸钢,后面两组数字分别表示钢的屈服点和抗拉强度最低值(Mpa)

为改善性能而在碳钢中增加合金元素的铸钢,称为铸造合金钢。

生产特点:1,铸钢的熔炼必须采用炼钢炉。2,铸造工艺,钢的浇注温度高,流动性差,钢液易氧化和吸气,同时,其体积收缩率约为铸铁的2~3倍。3,铸钢件的热处理,铸钢件铸态晶粒大,且组织不均,常有残余内应力,致使塑性和韧性不够高。为此,铸后必须进行正火或退火。

纯铜俗称紫铜,其导电性,导热性,耐蚀性及塑性均优,但强度,硬度低,且价格较高,因此极少用它来制造零件。机械上广泛物是铜合金。

黄铜是以锌为主加元素的铜合金。黄铜的含锌量小于47%。铜与锌以外的元素所组成的铜合金统称为青铜。

铜和锡的合金是最普通的青铜,称为锡青铜,是我国历史最为悠久的铸造合金。

铝合金的密度小,熔点低,导电性,导热耐蚀性优良,切削加工性很好,因此也常用来制造铸件。

铸铝合金分为铝硅合金,铝铜合金,铝镁合金及铝锌合金四类。

铜、铝合金的熔化特点是金属料与燃料不直接接触,以减少金属的损耗和保证金属的纯洁。

第三章 砂型铸造

铸造工艺图是在零件图上用各种工艺符号及参数表示出铸造工艺方案的图形。其中包括:浇注位置,铸型分型面,型芯的数量,形状,尺寸及其固定方法,加工余量,收缩率,浇注系统,起模斜度,冒口和冷铁的尺寸和等。零件图——铸造工艺图——模样图——合型图

手工造型生产率低,对工人技术要求较高,而且铸件的尺寸精度及表面质量较差,但在实际生产中仍然是难以完全取代的重要造型方法。

机器造型可大大提高过去生产率,改善过去条件,铸件尺寸精确,表面光洁,加工余量小。机器造型是将紧砂和起模等主要工序实现了机械化。其中,最普通的是以压缩空气驱动的振压式造型机。机器造型的工艺特点通常是采用模板进行两箱造型。机器造型不能紧实中箱,故不能进行三箱造型。

机器造芯:射芯技术随芯砂粘结剂和造芯方法的变化而发展的。射芯机造芯有如下三种:普通造芯,热芯盒造芯,冷芯盒造芯。浇注位置的选择,浇注位置是指浇注时铸件在型内所处的空间位置。浇注位置选择原则详见P67 分型面选择原则:1,应尽量使分型面平直,数量少。应尽量使铸型只有一个分型面,以便采用工艺简便的两箱造型。2,应避免不必要的型芯和活块,以简化造型工艺。3,应尽量使铸件全部或大部分置于下箱。这不仅便于造型,下芯,合型,也便于保证铸件精度。上述诸原则,对于具体铸件来说多难以全面满足,有时甚至互相矛盾。因此,必须抓住主要矛盾,全面考虑,至于次要矛盾,则应从工艺措施上设法解决。

工艺参数的选择:要求的机械加工余量和最小铸孔,起模斜度,收缩率,型芯头。第五章 特种铸造

特种铸是指与普通砂型铸造不同的其他铸造方法。

本章仅介绍应用较多的铸造,金属型铸造,压力铸造,离心铸造和消失模铸造等。

熔模铸造(又称失蜡铸造)是指用易熔材料制成模样,在模样表面包覆若干层耐火涂料制成型壳,再将模样熔化排出型壳,从而获得无分型面的铸型,经高温焙烧后即可填砂浇注的铸造方法。工艺过程可分为蜡模制造,型壳制造,焙烧浇注三个主要阶段。

熔模铸造的特点如下:1,铸件的精度高,表面光洁。2,可制造难以砂型铸造或机械加工的形状很复杂的薄壁铸件。3,适用于各种合金铸件。4,生产批量不受限制。5,生产工艺复杂且周期长,机械加工压型成本高,所用的耐火材料,模料和粘结剂价格较高铸件成本高。综上亿述,为熔模铸造最适于高熔点合金精密铸件的成批,大量生产,主要用于形状复杂,难以切削加工的小零件。

金属型铸造(有永久型铸造之称)是将液态金属浇入金属的铸型中,并在重力作用下凝固成形以获得铸件的方法。

金属型的结构主要取决于铸件的形状,尺寸,合金的种类及生产批量等。

按照分型面的不同,金属型可分为整体式,垂直分型式,水平分型式和复合分型式。金属型的铸造工艺方法:喷刷涂料,金属型应保持一定的工作温度,适合的出型时间。金属型铸造可“一型多铸”,便于实现机械化和自动化生产,从而可大大提高生产率。同时铸件精度和表面质量显著提高,由于结晶组织致密,铸件的力学性能得到显著提高。此外,金属型铸造还使铸造车间面貌大为改观,劳动条件得到显著改善。它的主要缺点是金属型的制造成本高,生产周期长。同时,铸造工艺要求严格,否则容易出现浇不到,冷隔,裂纹等铸造缺陷,而灰铸铁件又难以避免白口缺陷。

金属型铸造主要用于铜,铝合金不复杂中小铸件的大批量生产,如铝活塞,气缸盖,油泵壳体,铜瓦,衬套,轻工业品等。

压力铸造:简称压铸。它是在高压下(比压约为5~150Mpa)将液态或半液态合金快速(充填速度可达5 ~50m/s)地压入金属铸型中,并在压力下凝固以获得铸件的方法。

压锛是在压铸机上进行的,它所用的铸型称为压型。注入金属——压铸——取出铸件。压力铸造的主要优点有:1,铸件的精度及表面质量较其他方法均高。通常,不经机械加工即可使用。2,可压铸形状复杂的薄壁件,或直接铸出小孔,螺纹,齿轮等。3,铸件的强度和硬度都较高。4,压铸的生产率较其他铸造方法均高。5,便于采用镶铸。

压铸虽是实现少屑、无屑加工非常有效的途径,但也存在许多不足。主要是:1,压铸设备投资大,制造压型费用高,周期长,只有在大量生产条件下经济上才合算。2,压铸高熔点合金时,压型寿命很低难以适应。3,由于压铸的速度极高,型腔内气体很难排除,厚壁处的收缩也很难补缩,致使铸件内部常有气孔和缩松。4,由于上述气孔是在高压下形成的,热处理加热时孔内气体膨胀将导致铸件表面起泡,所以压铸件不能用热处理方法来提高性能。必须指出,随着加氧压铸、真空压铸和黑色金属压铸等新工艺的出现,使压铸的某些缺点有了克服的可能性。

离心铸造:将液态合金浇入调整旋转的铸型,使其在离心力作用下充填铸型并结晶。

离心铸造机上的铸型可以用金属型,也可以用砂型、熔模壳型等。根据铸型旋转轴空间位置的不同,离心铸造机可分为立式(垂直轴旋转)和卧式(水平轴旋转)两大类。

离心铸造具有如下优点:1,利用自由表面生产圆筒形或环形铸件时,可省去型芯和浇注系统,省工,省料,降低了铸件成本。2,在离心力的作用下,铸件呈由外向内的定向凝固,而气体和熔渣因密度较金属小,则向铸件内腔移动而排除,故铸件内部极少有缩孔,缩松,气孔,夹渣等缺陷。3,便于制造双金属铸件。

离心铸造的不足之处是:1,依靠自由表面所形成的内孔尺寸偏差大,而且内表面粗糙,若需机械加工,必须加大余量。2,铸件易产生成分偏析,所以不适于密度偏析大的合金及轻合金铸件。此外,因需要专用设备的投资,故不适于单件,小批生产。

离心铸造是大口径铸铁管,气缸套,铜套,双金属轴承的主要生产方法,铸件的最大重量可达十多吨。

消失模铸造:又称气化模铸造或实型铸造。它是用泡沫塑料制成的模样制造铸型,之后,模样并不取出,浇注时模样气化消失而获得铸件的方法。

消失模铸造工艺包括模样制造,挂涂料,造型浇注和落砂清理等工序。

消失模铸造优点:1,它是一种近乎无余量的精密成形技术,铸件尺寸精度高,表面粗糙度低,接近熔模铸造水平。2,无需传统的混砂,制芯,造型等到工艺及设备,故工艺过程简化,易实现机械化,自动化生产,设备投资较少,占地面积小。3,为铸件结构设计提供了充分的自由度,如原来需要加工成形的孔,槽等可直接铸出。4,铸件清理简单,机械加工量减少。5,适应性强。对合金种类,铸件尺寸及生产数量几乎没有限制。

据统计,建立一个模铸造厂与建立一个相同产量的传统湿砂型铸造厂相比,总投资可减少30%以上,而铸造成本可下降20%~30%。

消失模铸造的主要缺点是浇注时塑料模气化有异味,对环境有污染,铸件容易出现与泡沫塑料高温热解有关的缺陷,如铸铁件容易产生皱皮,夹渣等到缺陷,铸钢件可能稍有增碳,但对铜,铝合金铸件的化学和力学性能的影响很小。

各种铸造方法均有其优缺点及适用范围,不能认为某种方法最为完善。砂型铸造尽管有着许多缺点,但它对铸件的形状和大小,生产批量,合金品种的适应性最强,是当前最为常用的铸造方法,故应优先选用,而特种铸造仅是在相应的条件下,才能显示其优越性。P92 几种常用铸造方法的综合比较。

第三篇 金属塑性加工

第一章 金属的塑性变形 金属在外力作用下,其内部必将产生应力。当外力增大到使金属的内应力超过该金属的屈服点后,即使作用在物体上的外力取消金属的变形也不完全恢复,而产生一部分永久变形,称为塑性变形。其实质是晶体内部产生滑移的结果。

低温时,多晶体的晶间变形不可过大,否则将引起金属的破坏。

变形程度增加时,金属的强度及硬度升高,而塑性和韧性下降。其原因是由于滑移面上的碎晶块和附近晶格的强烈扭曲增大了滑移阻力,使继续滑移难于进行所致。

在冷变形时,随着变形程度的增加,金属材料的所有强度指标和硬度都有所提高,但塑性和韧性有所下降,这种现象称为冷变形强化或加工硬化。冷变形强化是一种不稳定现象,将冷变形后的金属加热至一定温度后,因原子的活动能力增强,使原子回复到平衡位置,晶内残余应力大大减小,这种现象称为回复(或称恢复)。T回=(0.25—0.3)T熔

T回是回复温度 T熔是熔点温度 单位是K 纯金属的再结晶温度为T再=0.4T熔 单位是K 在实际生产中常采用加热的方法使金属发生再结晶,从而再次获得良好塑性,这种工艺操作称为再结晶退火。

金属塑性加工生产多采用热变形来进行。

金属的可锻性是材料在锻造过程中经受塑性变形而不开裂的能力。金属的可锻性好,表明该金属适合采用塑性加工盛开;可锻性差,该金属不宜选用塑性加工方法成形。

可锻性的优劣常用金属的塑性和变形抗力来综合衡量。金属的塑性用金属的断面收缩率,伸长率等来表示。变形抗力指在塑性加工过程中变形金属反作用于施压工具上的作用力。变形抗力越小,则变形中所消耗的能量也越小。金属的可锻性取决于金属的本质(化学成分、金属组织)和加工条件(变形温度、应变速率、应力状态)。

锻造:在加压设备及工具下,使坯料,铸锭产生局部或全部的塑性变形,以获得一定几何尺寸,形状和质量的锻件的加工方法,称为锻造。

锻造方法分为自由锻和模锻(锤上模锻、曲柄压力机上模锻、摩擦螺旋压力机上模锻、胎膜锻)。

自由锻生产所用工具简单,具有较大的通用性,因而它的应用范围较为广泛。在重型机械制造中,它是生产大型和特大型锻件的唯一成形方法。

自由锻所用设备根据它对坯料施加外力的性质不同,分为锻锤和液压机两大类。自由锻的工序可分为基本工序、辅助工序和精整工序三大类。

1,基本工序:达到主要变形要求。镦粗,拔长,冲孔,扭转,错移,切割。2,辅助工序:进行基本工序之前的预变形工序。

3,精整工序:在完成基本工序之后用以提高锻件尺寸及位置精度的工序。

模锻是利用锻模使坯料变形而获得锻件的锻造方法。

由于金属是在模膛内变形,其流动受到模壁的限制,因而模锻生产的锻件尺寸精确,加工余量较小,结构可以杂,而且生产率高。

锤上模锻,根据其功用的不同,模膛分为模锻模膛和制坯模膛两种。曲柄压力机是采用曲柄连杆系统工作机构的压力机。„„ P118 常用锻造方法的比较 锻件图是根据零件图绘制的。为了简化零件的形状和结构,便于锻造而增加的一部分金属,称为余块。

成形时为了保证机械加工最终获得所需的尺寸而允许保留的多余金属,称为机械加工余量。锻造公关是锻件名义尺寸的允许变动量。

分模面是上下模或凹凸模的分界面。分模面可以是平面也可以是曲面。

选定分模面的原则上是:1,应保证模锻件能从模膛中取出。2,应使上下两模沿分模面的模膛轮廓一致,以便在安装锻模和生产中容易发现错模现象,及时而方便地调整锻模位置。3,分模面应选在能使模膛尝试最浅的位置上,这样有得金属充满模膛,便于取件,并有利于锻模的制造。4,选定的分模面应使零件上所增加的余块最少。5,分模面最好是一个平面,以便于锻模的制造,并防止锻造过程中上下锻模错动。

模锻圆角是指模锻件中断面形状和平面形状变化部位棱角的圆角和拐角处的圆角。模锻件具有这种圆角结构可使金属容易充满模膛,提高锻模使用寿命,同时,增大锻件的强度。许多模锻件都具有孔形,当模锻件的孔径大于25mm时,应将该孔锻出。

坯料的重量可按下式计算: G坯料=G锻件+G烧损+G料头

模锻工序的确定:根据工序特点和锻件类型来确定的。采用自由锻生产锻件时,其工序参阅表3—1选定。采用模锻方法生产模锻件时,其工序根据模锻件的形状和尺寸确定。

对于模锻件:长轴类模锻件常选用拔长,滚压,弯曲,预锻和终锻等工步。短类模锻件常选用镦粗,预锻,终锻等工步。锻件结构的工艺性 P123

第三章

冲压

冲压是使板料经分离或成形而获得制件的工艺统称。冲压中所选用的板料通常是在冷态下进行的,所以又称为冷冲压。只有当板料厚度超过8~10mm时,才采用热冲压。

冲压特点:1,可以冲压意大利杂质零件,且废料较少。2,冲压件具有足够高的精度和较低的表面粗糙度值,互换性较好,冲压后一般不需机械加工。3,能获得重量轻,材料消耗少,强度和风度都较高的零件。4,冲压操作简单,工艺过程便于机械化和自动化,生产率很高。故零件成本低。

冲模制造复杂,成本高,只有在大批量生产条件下,其优越性才显得突出。冲压生产中常用的设备是剪床和冲床。

冲压生产的基本工序有分离工序和变形工序两大类。

分离工序是使坯料的一部分与另一部分相互分离的工序,如落料,冲孔,切断和修整等。凸凹模刃口尺寸的确定

P130

变形是使坯料的一部分相对于另一部分产生位移而不破裂的工序,如拉深,弯曲,翻边,成形等。

拉深:坯料——第一次拉深成品——第二次拉深的坯料——凸模——凹模——成品

拉深件出现拉穿现象与下列因素有关:1,凸凹模的圆角半径2,凸凹模间隙3,拉深系数4,润滑

弯曲时,板料产生的变形由塑性变形和弹性变形两部分组成。

外载荷去除后,塑性变形保留下来,弹性变形消失,使板料形状和尺寸发生与加载时变形方向相反的变化,从而消去一部分弯曲变形效果的现象,称为回弹。回弹使被弯曲的角度增大,一般回弹角为0度~10度。成形是利用局部塑性变形使坯料或半成品获得所要求形状和尺寸的加工过程。主要用于制作刚性筋条凸边,凹槽,或增大半成品的部分直径等。

影响冲压件工艺性的主要因素有:冲压件的外形,尺寸,精度及材料等。

对冲载件的要求:1,落料件的外形和冲孔件的孔形应力求简单,对称。尽量采用圆形或矩形等规则形状,否则使模具制造困难,降低模具寿命。2,冲裁件的结构尺寸必须考虑材料的厚度。3,冲裁件上直线与直线,曲线与直线的交接处,均应用圆弧连接,以避免尖角处因应力集中而产生裂纹。

对弯曲件的要求:1,弯曲件形状应尽量对称,弯曲半径不能小于材料允许的最小弯曲半径。2,弯曲边过短不易成开,故应使弯曲边的平直部分H大于2δ。3,弯曲带孔件时,为避免孔的变形,孔的位置应注意。

对拉深件的要求:1,拉深件外形应简单,对称,深度不宜过大,以便使拉深次数最少,容易成形。2,拉深件的圆角半径在不增加工艺程序的情况下,最小允许半径注意。

第四篇 焊接

焊接是通过加热或加压,使工件产生原子间结合的一种连接方法。焊接方法的种类很多,其中电弧焊是应用最普遍的焊接方法。

第一章 电弧焊

焊接电弧是在具有一定电压的两电极间或电极与工件之间的气体介质中,产生强烈而持久的放电现象,即在局部气体介质中有大量电子流通过的导电现象。

产生电弧的电极可以是金属丝,钨丝,碳棒或焊条。引燃电弧后,弧柱中就充满了高温电离气体,并放出大量的热能和强烈的光。电弧的热量与焊接电流和电弧电压的乘积成正比。电流越大,电弧产生的总热量就越大。

电弧中阳极区和阴极区的温度因电极材料不同而有所不同。

正接是将工件接到电源的正极,焊条接到负极;反接是将工件接到电源的负极,焊条接到正极。正接时工件的温度相对高一些。如果使用的是交流电焊机(弧焊变压器),不存在正接和反接问题。

由焊机的空载电压就是焊接时的引弧电压,一般为50~90V。电弧稳定燃烧时的电压称为电弧电压,它与电弧长度有关。电弧长度越大,电弧电压也越高。一般情况下,电弧电压在16~35V范围之内。

由于焊缝附近各点受热情况不同,热影响区可分为熔合区,过热区,正火区和部分相变区等。焊缝是靠一个移动的点热源来加热的,随后逐次冷却下来所形成的。对于承载大,压力容器等重要结构件,焊接应力必须加以防止和消除。对于薄板的,最容易产生不规律的波浪变形。

焊件出现变形将影响使用,过大的变形量将使焊件报废。施焊中,采用反变形措施或刚性夹持方法,变形后可采用机械矫正法或火焰加热矫正法加以消除。

焊接应力过大的严重后果是使焊件产生裂纹。焊接裂纹存在于焊缝或热影响区的熔合区中,而且往往是内裂纹,危害极大。

焊条电弧焊(手工电弧焊)是用手工操纵焊条进行焊接的电弧焊方法。

药皮的作用:电弧在焊条与被焊工件之间燃烧,电弧热使工件和焊芯共同熔化形成,同时也使焊条的药皮熔化和分解。药皮熔化后与液态金属发生物理化学反应,所形成的熔渣不断从熔池中浮起;药皮受热分解产生大量的CO2,CO和H2等保护气体,围绕在电弧周围。熔渣和气体能防止空气中氧和氮的侵入,起保护熔化金属的作用。覆盖在焊缝表面的熔渣也逐渐凝固成为固态渣壳。这层熔渣和渣壳对焊缝成形的好坏和减缓金属的冷却速度有着重要的作用。

涂有药皮供手弧焊用的熔化电极称为焊条。焊芯起导电和填充金属的作用,药皮则用于保证焊接顺利进行并使焊缝具有一定的化学和力学性能。

焊芯低合金钢,不锈钢用的焊条,应采用相应的低合金钢,不锈钢的焊接钢丝作焊芯。焊条药皮在焊接过程中的作用主要是:提高电弧燃烧的稳定性,防止空气对熔化金属的有害作用,对没完没了的脱氧和加入合金元素,可以保证焊缝金属的化学成分和力学性能。焊条药皮原料的种类名称及作用 P158 我国将焊条按化学成分划分为七大类,即碳钢焊条,低合金钢焊条,不锈钢焊条,堆焊焊条,铸铁焊条及焊丝,铜及铜焊条等。其中应用合金焊条,铝及铝合金最多的是碳钢焊条和低合金钢焊条。

焊条还可按熔渣性质分为酸性焊条(适合各种电源,操作性较好,电弧稳定,成本低,焊缝强度稍低,渗合金作用弱,不宜焊接随重载和搞强度的重要结构件)和碱性焊条(一般用直流电源,焊缝强度高,抗冲击能力强,操作性差,电弧不够稳定,成本高,只适合焊接重要结构件)两大类。焊条的选用原则

P159

埋弧焊:是电弧在焊剂层下燃烧进行焊接的方法。埋弧焊的熔池深度比焊条电弧焊大很多。

埋弧焊特点:生产率高,焊接质量高且稳定,节省金属材料,改善了劳动条件。设备费用较高,工艺装备复杂,对接头加工与装配要求严格,只适用于批量生产长的直线焊缝与圆筒形工件的纵、环焊缝。对狭窄位置的焊缝以及薄板的焊接,埋弧焊则受到一定限制。

焊接前应将焊缝两侧50~60mm内的一切污垢与铁锈除掉,以免产生气孔。为了保持焊缝成形和防止烧穿,生产中常采用各种类型的焊剂垫和垫板,或者先用焊条电弧焊封底。气体保护焊:氩弧焊,二氧化碳气体保护焊

氩弧焊按所用电极的不同,可分为钨极氩弧焊和熔化极氩弧焊两种。氩弧焊主要特点

P163 由于氩气价格较高,氩弧焊目前主要用于焊接铝,镁,钛及其合金,也用于焊接不锈钢,耐热钢和一部分重要的低合金钢工件。

钨极脉冲氩弧焊是近几年发展起来的新工艺

P163 二氧化碳是氧化性气体,在电弧热作用下能分解为一氧化碳和氧原子,使钢中的碳,锰,硅及其他合金元素烧损。

二氧化碳气体保护焊的特点:1,成本低2,生产率高3,操作性能好4,质量较好。

缺点是二氧化碳的氧化作用使熔滴飞溅较为严重,因此焊接成形不够光滑。另外,如果控制或操作不当,容易产生气孔。

气体保护焊常用药芯焊丝作焊接材料。等离子弧焊接:借助水冷喷嘴等对电弧的抵赖与压缩作用,获得较高能量密度的等离子弧进行焊接的方法称为等离子弧焊接。

等离子电弧在机械压缩效应,热压缩效应,电磁收缩效应的作用下,被压缩得很细,使能量高度集中,弧柱内的气体完全电离为电子和离子,称为等离子弧。其温度可达到16000K以上。等离子弧用于切割时,称为“等离子弧切割”。等离子切割不仅切割效率比氧气高1~3倍,而且还可以切割不锈钢,铜,铝及其合金,难熔金属和非金属材料。等离子弧用于焊接时,称为“等离子弧焊接”。

等离子弧焊接实质上是一种具有压缩效应的钨极气体保护焊。

等离子弧焊除具有氩弧焊的优点外,还有以下特点:等离子弧能量密度大,弧柱温度高,穿透能力强;当电流小到0.1A时,电弧仍能稳定燃烧,并保持良好的挺直度和方向性,故等离子弧焊可焊接很薄的箔材。

第二章 其他常用焊接方法

电阻焊是工件组合后通过电极施加压力,利用电流通过接头的接触面及邻近区域产生的电阻热,把工件加热到塑性或局部熔化状态,在压力作用下形成接着的焊接方法。

电阻焊具有生产率高,焊接变形小,劳动条件好,不需另加焊接材料操作简便,易实现机械化等优点。但其设备较一般熔焊复杂,耗电量大,适用的接头形式与可焊工件厚度受到限制。电阻焊分为点焊,缝焊和对焊三种形式。

影响点焊质量的主要因素有焊接电流,通电时间,电极压力及工件表面清理情况等。缝焊过程与点焊相似,只是用旋转的圆盘状流动电极代替了柱状电极。对焊即对接电阻焊,是利用电阻热使两个工件在整个接触面上焊接起来的一种方法。根据焊接操作方法的不同,对焊又可分为电阻对焊和闪光对焊。

对焊一定注意清理端面,否则出现加热不均匀,连接不牢现象,端面容还易再生氧化。

摩擦焊:是利用工件接触端面相对旋转运动中摩擦产生的热量,同时加压顶锻而进行焊接的方法。

摩擦焊特点:1,在此过程中,工件接触表面的氧化膜与杂质被清除。2,可焊接的金属范围较广,不仅可焊同种金属,也可以焊接异种金属。3,焊接操作简单,不需焊接材料,容易实现自动控制,生产率高。4,设备简单,电能消耗少。但要求刹车及加压装置的控制灵敏。

钎焊:是利用熔点比焊件低的锋料作填充金属,加热时钎料熔化而将工件连接起来的焊接方法。

根据钎料熔点不同,钎焊可分为硬钎焊(钎料熔点在450度以上,接头强度在200Mpa以上。主要用于腕力较大的钢铁和铜合金构件的焊接以及工具,刀具的焊接)与软钎焊(钎料熔点在450度以下,接头强度较低,一般不超过70Mpa。主要用于焊接腕力不大的常温下工作的登记表,导电元件以及,铜及铜合金等制造的构件)两类。

钎焊特点是:1,工件加热温度较低,组织和力学性能变化很小,变形也小。接头光滑夹带,工件尺寸精确。2,可焊接性能差异很大的异种,对工件厚度的差别也没有严格限制。3,对工件整体钎焊时,可同时钎焊多条接缝组成的复杂形状构件,生产率很高。4,设备简单,投资费用少。

钎焊主要用于制造精密登记表,电气部件,异种金属构件以及某些复杂薄板结构,还用于各类导线与硬质合金刀具。

真空电子束焊接——激光焊接——高频焊

第三章 常用金属材料的焊接

金属材料的焊接性是指在限定的施工条件下,焊接成按规定设计要求的构件,并满足预定服役要求的能力。即金属材料在一定焊接工艺条件下,表现出来的焊接程度。焊接性包括两个方面:一是工艺焊接性,二是使用焊接性。

利用碳当量法估算钢材焊接性是粗略的,因为钢材的焊接性还受结构刚度,焊后应力条件,环境温度等因素的影响。

铸铁的焊接特点:1,熔合区易产生白口组织2,易产生裂纹3,易产生气孔 按焊前是否预热,铸铁的补焊可分为热焊法和冷焊法两大类。

铜及铜合金的焊接比低碳钢困难得多:1,铜的导热性很高,焊接时热量极易散失。2,液态铜易氧化,生成的Cu2O与铜可组成低熔点共晶体,分布在晶界上形成薄弱环节。3,铜在液态时吸气性强,特别容易吸收氢气。凝固时,气体将从熔池中析出,来不及逸出应付在工件中形成气孔。4,铜的电阻极小,不适于电阻焊。5,某些铜合金比纯铜更容易氧化,使焊接的困难增大。

铜及铜合金可用氩孤焊,气焊,碳弧焊,钎焊等进行焊接。其中氩孤焊主要用于焊接紫铜和表铜件。气焊主要用于焊接黄铜件。

铝及铝合金的焊接特点:1,铝与氧的亲和力很大,极易氧化生成氧化铝。氧化铝组织致密,熔点高达2050度,覆盖在金属表面,能阻碍金属熔合。此外,氧化铝的密度较大,易使焊缝形成夹渣缺陷。2,铝的导热系数较大,焊接中要使用大功率或能量集中的热源。3,液态铝能吸收大量氢气,而固态铝却几乎不能溶解氢。因此在熔池凝固中易产生气孔。4,铝在高温时强度和塑性很低,焊接中常由于不能支持熔池金属而形成焊缝塌陷。因此常需采用垫板进行焊接。

目前焊接铝及铝合金的常用方法有氩弧焊,气焊,点焊,缝焊和纤焊。其中氩弧焊是焊接铝及铝合金较好的方法,焊接时可不用焊剂。但要求氩气纯度大于99.9%。气焊常用于要求不高的铝及铝合金工件的焊接。常用金属材料的焊接性表格

P185 第五篇

1.切削加工是使用切削工具(包括刀具、模具和磨料),在工具和工件的相对运动中,把 工件上多余的材料层切除,使工件获得规定的几何参数(形状、尺寸、位置)和表面质量的加工方法。

2.机器零件的形状主要由下列几种表面组成,即外圆面、内圆面(孔)、平面和成形面。3.切削用量用来衡量切削运动量的大小。切削用量包括切削速度、进给量和被吃刀量三要 素。

4.刀具材料应具备以下基本性能:1)较高的硬度2)足够的强度和韧度,以承受切削力、冲击和振动。3)较好的耐磨性,以抵抗切削过程中的磨损,维持一定的切削时间。4)较高的耐热性,以便在高温下仍能保持较高硬度,又称为红硬性或热硬性。5)较好的工艺性,以便于制造各种道具。

5.在切削加工中常用的刀具材料有:碳素工具钢、合金工具钢、高速钢、硬质合金及陶瓷 材料等。

6.国产的硬质合金一般分为两大类:一类是由WC和Co组成的钨钴类(K类),一类是由 WC、TiC和Co组成的钨钛钴类(P类)。

7.陶瓷刀具材料大致可分为氧化铝(Al2O3)系和氮化硅(Si3N4)系两大类。8.车刀切削部分由三个面组成,即前面、主后面和副后面。

9.零件经切削加工后的质量包括精度和表面质量。精度包括:尺寸精度、形状精度、位置 精度。表面质量即已加工表面质量(也称表面完整性)包括表面粗糙度、表层加工硬化的程度和深度、表层剩余应力的性质和大小。

10.车床的类型主要有:卧式车床、立式车床、转搭车床、自动车床和数控车床等。

11.车削的工艺特点:1)易于保证工件各加工面的位置精度。2)切削过程比较平稳。3)适用于有色金属零件的精加工。4)刀具简单。12.常用的钻床有台式钻床、立式钻床和摇臂钻床。

13.铣削的工艺特点:1)生产率较高2)容易产生振动3)刀齿散热条件较好 14.磨床的种类有外圆磨床、内圆磨床和平面磨床等。

15.砂轮的组成要素包括磨料、粒度、结合剂、硬度、组织以及形状和尺寸等。

16.激光加工具有如下特点:1)几乎对所有的金属材料和非金属材料都可以加工2)加工速 度极高,易于实现自动化生产和流水作业,同时热变形很小3)加工时不需要用刀具,属于非接触加工,无机械加工变形4)可通过空气、惰性气体或光学透明介质进行加工 17.选择某一表面的加工方法时,应遵循如下基本原则:1)所加工方法的经济精度及表面

粗糙度要与加工表面的要求相适应。2)所选加工方法要与零件材料的切削加工性及产品的生产类型相适应。3)几种加工方法配合选用。4)表面加工要分阶段进行。18.由原材料制成各种零件并装配呈机器的全过程,称为生产过程,其中包括原材料的运输、保管、生产准备、制造毛坯、切削加工、装配、检验及试车、油漆和包装等。

19.生产过程中,直接改变原材料(或毛坯)的形状、尺寸或性能,使之变为成品的过程,称为工艺过程。例如毛坯的铸造、锻造和焊接,改变材料性能的热处理,零件的切削加工等。20.工艺基准又分为定位基准、度量基准和装配基准。

21.所谓零件结构的工艺性良好,是指所设计的零件,在保证使用要求的前提下能较经济、高效、合格地加工出来。

22.设计零件结构时,通常应注意如下几项原则:1)便于安装2)便于加工和测量3)利于 保证加工质量和提高生产效率4)提高标准化程度5)合理地规定表面的精度等级和粗糙度的数值6)既要结合本单位的具体加工条件(如设备和工人的技术水平等),又要考虑与先进的工艺方法相适应7)合理采用零件的组合 切削加工:使用切削工具(刀具、磨具和磨料),在工具和工件的相对运动中,把工件上多余的材料切除,使工件获得规定的几何参数(尺寸、形状、位置)和表面质量的加工方法。主运动: 使刀具和工件之间产生相对运动,促使刀具接近工件实现切削的运动。进给运动:使刀具与工件之间产生附加的相对运动,加上主运动,即可连续地切除余量。切削用量:切削速度 vc进给量 f背吃刀量 ap 刀具切削部分的组成:三个刀面:(1)前刀面(2)主后刀面(3)副后刀面 两个刀刃:(1)主切削刃(2)副切削刃 一个尖:刀尖

车刀切削部分的主要角度:刀具静止参考系:刀具设计、制造、刃磨和测量几何参数时用 的参考系。主要包括基面、切削平面、正交平面、假定工作平面等 刀具工作参考系:用于规定刀具切削加工时几何参数的参考系。①主偏角 κr ②副偏角 κ’r ③前角γ0④后角α0 ⑤刃倾角 λs 积屑瘤:在一定范围的切削速度下切削塑性金属形成带状切屑时,常发现在刀具前刀面靠近切削刃的部位粘附着一小块很硬的金属楔块,这就是积屑瘤,或称刀瘤。切屑:当刀具刚与工件接触时,接触处的压力使工件产生弹性变形和塑性变形,最后被切离工件本体并沿前刀面流出,形成切屑。种类:带状切屑 挤裂切屑 崩碎切屑 积屑瘤对切削加工的影响

1)积屑瘤的硬度比工件材料的硬度高,能代替切削刃进行切削,保护切削刃。2)增大了刀具的实际工作前角,使切削轻快。

3)积屑瘤的顶端伸出切削刃外,且不断地产生和脱落,使实际吃刀量和切削厚度不断变化,影响尺寸精度,还会导致切削力的变化,引起振动。

4)积屑瘤碎片粘附在工件已加工表面上,增大表面粗糙度和导致刀具磨损。精加工时避免积屑瘤产生。粗加工时可利用积屑瘤。积屑瘤的控制

①加工时控制切削速度,避开产生积屑瘤的切削速度区; ②增加刀具前角以减小切削变形,降低切屑接触区压力; ③使用润滑性能良好的切削液,减小摩擦;

④用适当的热处理方法提高工件材料的硬度,降低塑性,减小加工硬化倾向。切削力的影响因素①工件材料 ②切削用量③刀具角度

切削热来源:切屑变形所产生的热量;切屑与刀具前刀面之间的摩擦;工件与刀具后刀面之间的摩擦。影响:传入切屑及介质中的热量越多,对加工越有利。传入工件的切削热,使工件产生热变形,影响加工精度,特别是加工薄壁零件、细长零件和精密零件时,热变形的影响更大。影响切削温度的主要因素有:工件材料、切削用量、刀具角度、切削液

§1 回转面的加工

外圆面的加工:车削、磨削、光整加工 孔:钻、扩、铰、镗、拉、磨、研磨、珩磨 §2平面的加工:车、刨、铣、拉、磨、研磨 §3 特形表面的加工:

成形面:成形刀具、刀具和工件作特定的相对运动 螺纹加工:攻螺纹和套螺纹、车、铣、磨、搓、滚压 齿轮加工:铣、滚、插、剃、磨 零件表面的常规加工方法

特点:提高了螺纹的强度。滚压螺纹切削的纤维组织连 续,提高了其抗剪强度;螺纹滚压后,由于表面变形强化及表面粗糙度值降低,还可提高螺纹的疲劳强度。滚压螺纹比切削螺纹的生产率高。

加工方案的分析与选择

根据零件具体表面的加工要求、零件的结构特点及材料性质等因素选用加工方法; 选择基本原则:保证加工质量的前提下使生产成本较低。选择各表面的加工方法时,应遵循下述基本原则:

首先选定最终加工方法,然后逐一选定各前道工序的加工方法。按加工方法的应用特点选择,即所选的加工方法的经济精度及表面粗糙度与加工表面的精度要求和表面粗糙度要求适应。保证加工表面的形状精度要求和位置精度要求。与零件的切削加工性相适应。与生产类型相适应。结合本企业的实际生产条件。

第五篇:金属工艺学知识点总结

第一篇 金属材料的基本知识

第一章 金属材料的主要性能

金属材料的力学性能又称机械性能,是金属材料在力的作用所表现出来的性能。零件的受力情况有静载荷,动载荷和交变载荷之分。用于衡量在静载荷作用下的力学性能指标有强度,塑性和硬度等;在动载荷和作用下的力学性能指标有冲击韧度等;在交变载荷作用下的力学性能指标有疲劳强度等。

金属材料的强度和塑性是通过拉伸试验测定的。P6低碳钢的拉伸曲线图 1,强度

强度是金属材料在力的作用下,抵抗塑性变形和断裂的能力。强度有多种指标,工程上以屈服点和强度最为常用。屈服点:δs是拉伸产生屈服时的应力。

产生屈服时的应力=屈服时所承受的最大载荷/原始截面积

对于没有明显屈服现象的金属材料,工程上规定以席位产生0.2%变形时的应力,作为该材料的屈服点。

抗拉强度:δb是指金属材料在拉断前所能承受的最大应力。

拉断前所能承受的最大应力=拉断前所承受的最大载荷/原始截面积 2,塑性

塑性是金属材料在力的作用下,产生不可逆永久变形的能力。常用的塑性指标是伸长率和断面收缩率。

伸长率:δ试样拉断后,其标距的伸长与原始标距的百分比称为伸长率。伸长率=(原始标距长度-拉断后的标距长度)÷拉断后的标距长度×100% 伸长率的数值与试样尺寸有关,因而试验时应对所选定的试样尺寸作出规定,以便进行比较。同一种材料的δ5 比δ10要大一些。断面收缩率:试样拉断后,缩颈处截面积的最大缩减量与原始横截面积的百分比称为断面收缩率,以ψ表示。

收缩率=(原始横截面积-断口处横截面积)÷原始横截面积×100% 伸长率和断面收缩率的数值愈大,表示材料的塑性愈好。3,硬度

金属材料表面抵抗局部变形(特别是塑性变形、压痕、划痕)的能力称为硬度。金属材料的硬度是在硬度计上测出的。常用的有布氏硬度法和洛氏硬度法。1,布氏硬度(HB)

是以直径为D的淬火钢球HBS或硬质合金球HBW为压头,在载荷的静压力下,将压头压入被测材料的表面,停留若干秒后卸去载荷,然后采用带刻度的专用放大镜测出压痕直径d,并依据d的数值从专门的表格中查出相应的HB值。布氏硬度法测试值较稳定,准确度较洛氏法高。是测量费时,且压痕较大,不适于成品检验。2,洛氏硬度(HR)是将压头(金刚石圆锥体、淬火钢球或合金球)施以100N的初始压力,使压头与试样始终保持紧密接触。然后,向压头施加主载荷,保持数秒后卸除主载荷,以残余压痕尝试计算其硬度值。实际测量时,由刻度盘上的指针直接指示出HR值。

洛氏硬度法测试简便、迅速,因压痕小、不损伤零件,可用于成品检验。其缺点是测得的硬度值重复性较差,需在不同部位测量数次。3,韧性 金属材料断裂前吸收的变形能量的能力称为韧性。韧性的常用指标为冲击韧度。金属材料的韧度通常采用摆锤冲击弯曲试验机来测定。冲击韧度=冲断试样所消耗的冲击功/试样缺口处的横截面积

冲击值的大小与很多因素有关。它不公受试样开关、表面粗糙度及内部组织的影响,还与试验时的环境温度有关。因此,冲击值的大小一般公作为选择材料时的参考,不直接用于强度计算。

4,疲劳强度

承受循环应力或交变应力的零件在工作一段时间后,有时突然发生断裂,而其所承受的应力往往低于该材料的屈服点,这种断裂称为疲劳断裂。一般认为产生疲劳断裂的原因,是由于材料有内部缺陷、表面划痕驻其他能引起应力食品的缺陷,导致产生微裂纹。

下列符号所表示的力学性能指标名称和含义是什么? δb

抗拉强度

δs

屈服强度或屈服点 δ0.2工程规定屈服点

δ-

1按正弦曲线变化的对称循环应力的疲劳强度 δ

伸长率 αk

冲击韧度

HRC

120°金刚石圆锥体

HBS

布氏硬度计以淬火钢球为压头 HBW 布氏硬度计以合金球为压头

第二章

铁碳合金

金属的结晶就是金属液态转变为晶体的过程,亦即金属原子由无序到有序的排列过程。液态金属的结晶过程是遵循“晶核不断形成和长大”这个结晶基本规律进行的。金属的冷却速度愈快,自发晶核愈多。金属晶粒的粗细对其力学性能影响很大。

一般来说,同一成分的金属,晶粒愈细,其强度、硬度愈高,而且塑性和韧性也愈好。影响晶粒粗细的因素很多,但主要取决于晶核的数目。

细化铸态金属晶粒的主要途径是:提高冷却速度,以增加晶核的数目。在金属浇铸之前,向金属液内加入变质剂(孕育剂)进行变质处理,以增加外来晶核。此外,还可采用招牌理或塑性加工方法,使固态金属晶粒细化。钝铁的晶格有体心立方和面心立方两种。

铁及锡、钛,锰等金属在结晶之后,在不同温度范围内将呈现出不同的晶格。这种随着温度的改变,固态金属的晶格也随之改变的现象称为同素异晶转变。两种或两种以上的金属元素,或金属与非金属元素熔合在一起,构成具有金属特性的物质称为合金。组成合金的元素称为组元,简称元。按照铁和碳相互作用形式的不同,铁碳合金的组织可分为固溶体、金属人物和机械混合物三种类型。

固溶体:溶质原子溶入溶剂晶格而仍保持溶剂晶格类型的金属晶体,称为固溶体。

铁素体F:碳溶解于α-Fe中形成的固溶体称为铁素体,呈体心立方晶格。力学性能与纯铁相近。铁素体在显微镜下为明亮的多边形晶粒,得晶界曲折。

奥氏体A:碳溶入γ-Fe中形成的固溶体称为奥氏体,呈面心立方晶格。力学性能与其溶碳量有关。一般来说,其强度、硬度不高,但塑性优良。在显微镜下,奥氏体也是呈多边形晶粒,但晶界较铁素体平直,并存有双晶带。

化合物:是各组元按照一定整数比结合而成、并具有金属性质的均匀物质,属于单相组织。金属化合物一般具有复杂的晶格,且与构成人物的各组元晶格皆不相同,其性能特征是硬而脆。渗碳体Fe3C是钢铁中的强化相,其组织可呈片状、球状、网状等不同形状。它的硬度,可以刻划玻璃,而塑性、韧性极低,伸长率和冲击韧度近于零。渗碳体在一定条件下可发生分解,形成石墨。

机械混合物:是由结晶过程所形成的两相混合组织。铁碳合金中的机械混合物有珠光体和莱氏体。

珠光体:铁素体和渗碳体组成的机械混合物称为珠光体。

莱氏体:奥氏体和渗碳体组成的机械混合物称高温莱氏体,当冷却到727℃以下时,将转变为珠光体和渗碳体的机械混合物,称为低温莱氏体。钢

它是指含碳量小于2.11%的铁碳合金。铸铁 即生铁,它是指含碳量为2.11%~6.69%的铁碳合金。P18 铁碳合金状态图 共析钢

亚共析钢

过共析钢

第三章

钢的热处理

在固态下,通过回执、保温和冷却,以获得预期组织和性能的工艺。它只改变金属材料的组织和性能而不以改变形状和尺寸为目的。

退火:退火是将钢加热、保温,然后随炉或埋入灰中使其缓慢冷却的热处理工艺。常用的有完全退火,球化退火,去应力退火。

正火:正火是将钢加热到亚共析钢或过共析钢,保温后在空气中冷却的热处理工艺。

正火主要用于:1,取代部分完全退火。但中碳合金钢、高碳钢及复杂件仍以退火为宜。2,用于普通件的最终热处理。3,用于过共析钢,以减少或消除二次渗碳体呈网状析出。淬火和回火是强化钢最常用的工艺。淬火是将钢加热到一定温度,保温后在淬火介质中快速冷却,以获得马氏体组织的热处理工艺。注意:1严格控制淬火加热温度。2,合理选择淬火介质使其冷却速度略大于临界冷却速度。3,正确选择淬火方法。

回火:将淬火的钢重新加热到Ac1以下某温度,保温后冷却到室温的热处理工艺,称为回火。回火的主要目的是消除淬火内应力,以降低钢的脆性,防止产生裂纹,同时也使钢获得所需的力学性能。

总的趋势是回火温度愈高、析出的碳化物愈多,钢的强度、硬度下降,而塑性、韧性升高。将钢的回火分为如下三种:

1,低温回火250度以下 目的是降低淬火钢的内应力和脆性,但基本保持淬火所获得的高硬度和高耐磨性。用途最广,如各种刀具、模具、流动轴承和耐磨件等。2,中温回火250~500度 目的是使钢获得高弹性,保持较高硬度和一定的韧性。中温回火主要用于弹簧、发条、锻模等。

3,高温回火500度以上 它广泛用于承受循环应力的中碳钢重要件,如连杆、曲轴、主轴、齿轮、重要螺钉等。经调质处理的钢可获得强度及韧性都好的综合力学性能。

表面淬火常用于机床主轴、发动机曲轴、齿轮等。快速加热法有多种,如电感应、火焰、电接触、激光等,目前应用广泛的是电感应加热法。

第四章

工业用钢 碳素钢即“非合金钢”,简称碳钢。

碳素钢的含碳量在1.5%以下,除碳之外,还含有硅、锰、磷、硫等杂质。

磷和硫是钢中的有害杂质。磷可使钢的塑性、韧性下降,特别是在低温时脆性急剧增加,这种现象称为冷脆性。

硫在钢的晶界处可形成低熔点的共晶体,致使含硫较高的钢在高温变回工时 容易产生裂纹,这种现象称为热脆性。

硅和锰是炼钢后期作为脱氧剂加入钢液中残存的。

硅和锰可提高钢的强度和硬度,锰还能与硫形成MnS,从而抵消硫的部分有害作用。显然,它们都是钢中的有益元素。

碳素钢通常分为如下三类:碳素结构钢、优质碳素结构钢、碳素工具钢。

1、碳素结构钢的牌号以代表屈服点的“屈”字汉语拼音首字母Q和后面三位数字来表示,每个牌号中的数字表示该钢种厚度小于16mm时的最低(Mpa)。在钢号尾部A、B为普通级别,C、D为磷、硫低的优等级别,可用于较重要的焊接结构。Q315 塑性好通常轧制成薄板、钢管、型材制造钢结构,也用于制作铆钉、螺钉、冲压件、开口销等。Q235 强度较高,塑性也较好,常轧制成各种型钢、钢管、钢筋等制成各种钢构件、冲压件、焊接件及不重要的轴类、螺钉、螺母等。Q255 强度更高,用做键、轴、俏、齿轮、撙、连杆、销钉等。

2、优质碳素结构钢的硫、磷含量较低,供货时既保证化学成分,又保证力学性能,主要用于制造机器零件。

优质碳素结构钢的牌号用两位数字表示,这两位数字即是钢中平均含碳量的万分数。例如,20钢表示平均含碳量为0.20%的优质结构钢。08、10、15、20等牌号属于低碳钢。20钢用途最广,常用于制造螺钉、螺母、垫圈、小轴,焊接件,有时也用于渗碳件。40、45等牌号属于中碳钢。45钢常用来制造主轴、丝杠、齿轮、连杆、、套筒、键和重要螺钉等。60、65等牌号属于高碳钢。它们经过淬火、回火后,不仅强度、硬度显著提高,且弹性优良,常用弹簧、发条、钢丝绳、轧辊、凸轮等。

3、碳素工具钢的含碳量高达0.7%~1.3%,淬火、回火后有高的硬度和耐磨性,常用于制造锻工、钳工工具和小型模具。

碳素工具钢一般均为优质钢。对于硫、磷含量更低的高级优质碳素工具钢,则在数字后面增加“A”表示,例如,T10A表示平均含碳量为1.05的高级优质碳素工具钢。T8

冲头、錾子、锻工工具、木工工具、台钳钳口等。T10,T10A

硬度较高、但仍要求一定韧性的工具,如手锯条、小冲模、丝锥、板牙等。T1

2适用于不受冲击的耐磨工具,如钢锉、刮刀、绞刀等。

合金钢是为了改善钢的某些性能,在钢的基础上加入某些合金元素所炼成的钢。如果钢中的含硅量大于0.5%,或者含锰量大于1.0%,也属于合金钢。低合金钢是指合金总含量较低(小于3%)、含碳量也较低的合金结构钢。

可焊接低合金高强钢(简称合金高强钢)应用最为广泛。低合金高强钢的牌号表示方法与碳素钢相同,即以字母“Q”开始,后面以三们数字表示其最像屈服点,最后以符号表示其质量等级。如Q345A表示不小于345Mpa的A级低合金高强钢。Q295 低压容器、输油管道、车辆等 Q345 桥梁、船舶、压力容器、车辆等 Q390 桥梁、船舶、起重机、压力容器等 Q420 高压容器、牺牲、桥梁、锅炉等

合金钢:当钢中合金元素超过低钢的限度时,即为合金钢。

合金钢不仅合金元素含量高,且严格控制硫、磷等有害杂质的含量,属于优质钢或高级优质钢。

合金钢可分为合金结构钢(常用于制造机器零件用的合金钢),合金工具钢(主要用于制造刀具、量具、模具等,含碳量甚高),特殊性能钢(包括不锈钢,耐磨钢,耐蚀钢及具有软磁,永磁,无磁等特殊性能的钢)

第二篇 铸造

第一章

铸造工艺基础

液态合金直译铸型的过程,简称充型。

液态合金充满铸型型腔,获得形状准确,轮廓清晰铸件的能力,称为液态合金的充型能力。在液态合金的过程中,有时伴随着结晶现象,若充型能力不中,在型腔被填满之前,形成的晶粒将充型的通道堵塞,金属液被迫停止流动,于是铸件将产生浇不到或冷隔等缺陷。影响充型能力的主要因素如下:

合金的流动性(其中以化学成分的影响最为显著)浇注条件(浇注温度和充型压力)

铸型填充条件(铸型材料,铸型温度,铸型中的气体,铸件结构)浇入铸型中的金属液在冷凝过程中,其液态收缩和凝固收缩若得不到补充,铸件将产生缩孔或缩松缺陷。

在铸件的凝固过程中,其断面上一般存在三个区域,即固相区,凝固区和液相区,其中,对铸件质量影响较大的主要是液相和固相并存的凝固区的宽窄。铸件的“凝固方式”就是依据凝固区的宽窄来划分为逐层凝固,糊状凝固,中间凝固。

铸件质量与其凝固方式密切相关。一般说来,逐层凝固时,合金的能力强,便于防止缩孔和缩松;糊状凝固时,难以获得结晶紧实的铸件。

合金从浇注,凝固直到冷却到室温,其体积或尺寸缩减的现象,称为收缩。

收缩是合金的物理本性。为使铸件的形状、尺寸符合技术要求,组织致密,必须研究收缩的规律性。

合金的收缩经历如下三个阶段:液态收缩,凝固收缩,固态收缩。液态合金在冷凝过程中,若其液态收缩和凝固收缩所缩减的容积得不到补足,则在铸件最后凝固的部位形成一些孔洞。按照孔洞的大小和分布,可将其分为缩孔和缩松两类。

缩孔是集中在铸件上部或最后凝固部位容积较大的孔洞。合金的液态收缩和凝固收缩愈大,浇注温度愈高,铸件愈厚,缩孔的窖愈大。

缩松分散在铸件某区域内的细小缩孔,称为缩松。当缩松与缩孔的容积相同时,缩松的在面积要比缩孔大得多。

缩孔和缩松都使铸件的力学性能下降,缩松还可使铸件因渗漏而报废。只要能使铸件实现“顺序凝固”,尽管合金的收缩较大,也可获得没有缩孔的致密铸件。所谓顺序凝固就是在铸件上可能出现缩孔的厚大部位通过安放等工艺措施,使铸件远离冒口的部位先凝固;然后是靠近冒口部位凝固;最后才是冒口本身的凝固。冒口是多余部分,在铸件清理时予以切除。

安放冒口主要用于必须补缩的场合,如铝表铜,铝硅合金和铸钢件等。

铸件在凝固之后的继续冷却过程中,其固态收缩若受到阻碍,铸件内部将产生内应力,这些内应力有时是在冷却过程中暂存的,有时则一直保留到室温,后者称为残余内应力。铸造内应力是铸件产生变形和裂纹的基本原因。

按照内应力的产生原因,可分为热应力和机械应力两种。

热应力:是由于铸件的壁厚不均匀,各部分的冷却速度不同,以致在同一时期内铸件各部分收缩一致收起的。

预防热应力的基本途径是昼减少铸件各个部位间的温度差,使其均匀地冷却。采用同时凝固原则可减少铸造内应力,防止铸件的变形和裂纹缺陷,又可免设冒口而省工省料。其缺点是铸件心部容易出现缩孔或缩松。

机械应力:是合金的固态收缩受到铸型或型芯的机械阻碍而形成的内应力。具有残余内应力的铸件是不稳定的,它将自发地通过变形来减缓其内应力,以便趋于稳定状态。

防止铸件变形:设计时尽可能使铸件壁厚均匀,形状对称。工艺上采用同时凝固原则,以便冷却均匀。对长而易变形的铸件,还可采用“反变形”工艺。自然时效是将铸件置于露天场地半年以上,使其缓慢地发生变形,从而使内应力消除。人工时效是将铸件加热到550~650度进行去应力退火。时效处理宜在粗加工之后进行,以便将粗加工所产生的内应力一并消除。当铸造内应力超过金属的强度极限时,铸件便将产生裂纹。裂纹是严重缺陷,多使铸件报废。裂纹可分成热裂和冷裂两种。

热裂:是在高温下形成的裂纹。形状特征是缝隙宽,形状曲折,缝内呈氧化色。

冷裂:是在较低温下形成的裂纹。形状特征是裂纹细小,呈连续直线状,有时缝内呈轻微氧化色。

气孔是最常见的铸造缺陷,它是由于金属液中的气体未能排出,在铸件中形成气泡所致。按照气体的来源,铸件中的气孔主要分为:因金属原因形成的“析出性气孔”,因铸型原因形成的“浸入性气孔”,因金属与铸型相互化学作用形成的“反应性气孔”三种。

第二章 常用合金铸件的生产

机械制造中广泛应用的铸铁中的碳主要是以石墨状态存在的。

铸铁中的石墨一般呈片状,经过不同的处理,石墨还可以呈团絮状,球状,蠕虫状等,使铸铁获得不同的性能。因此,常用的铸铁为灰铸铁,可锻铸铁,球墨铸件,蠕墨铸铁等。1,灰铸铁HT 灰铸铁是指具有片状石墨的铸铁,是应用的铸铁,其产量占铸铁总并不是的80%以上。由于灰铸铁属于脆性材料,故不能锻造和冲压。灰铸铁的焊接性能很差,如焊接区容易出现白口组织,裂纹的倾向较大。2,可锻铸铁KTH 可锻铸铁又称玛铁或玛钢。它是将白口铸铁坯件经石墨化退火而成的一种铸铁。由于其石墨呈团絮状,大大减轻了对金属基体的割裂作用,故抗拉强度得到显著提高,尤为可贵的是这种铸铁有着相当高的塑性与韧性,可锻铸铁就是因此而得名,其实它并不能真的用于锻造。按退火方式不同,可锻铸铁可分为黑心可锻铸铁,珠光体可锻铸铁和白心可锻铸铁三种其中之一以黑心可锻铸铁在我国最为常用。可锻铸铁通常用于制造形状复杂,承受冲击载荷的薄壁小件,这些小件若用一般铸钢制造困难较大若改用球墨铸铁,质量又难保证。3,球墨铸铁QT 由于石墨呈球状,使石墨对金属基体的割裂作用进下一步减轻,故球墨铸铁强度和韧性远远超过灰铸铁,并可与钢媲美。此外,球墨铸铁还兼有接近灰铸铁的优良铸造性能。4,蠕墨铸铁RuT 由于其石墨呈短片状,片端钝而圆,类似蠕虫,故名。

蠕墨铸铁的发展历史较短,对其生产的规律性掌握仍不够充分,以致有时质量尚不够稳定。

碳既是形成石墨的元素,又是促进石墨化的元素。含碳愈高,析出的石墨数量愈多,愈粗大,而基体中铁素体增加,珠光体减少;反之,含碳降低,石墨减少,且细化。硅是强烈促进石墨化的元素,随着含硅量的增加,石墨显著增多。硫会引起铸铁的热脆性,阻碍石墨化,增加白口倾向。磷会增加铸铁的冷脆性,但对石墨化基本没有影响。锰可部分抵消硫的有害作用,并可增加铸铁的强度,属有益元素。但含锰过多将阻碍石墨的,增加铸铁的白口倾向。相同化学成分的铸铁,若冷却速度不同,其组织和性能也不同。铸件的冷却速度主要取决于铸型和铸件的壁厚。各种铸型材料的导热能力不同。影响铸铁石墨化的主要因素是化学成分和冷却速度。

铸钢ZG 铸钢也是一种重要的铸造合金,它的年产量仅次于灰铸铁,约为球墨铸铁和可锻铸铁的总和。按照成分,铸钢可分为铸造碳钢和铸造合金钢两大类,其中铸造碳钢应用较广,约占铸钢件总产量的确80%以上。

如:ZG310—570 ZG表示铸钢,后面两组数字分别表示钢的屈服点和抗拉强度最低值(Mpa)

为改善性能而在碳钢中增加合金元素的铸钢,称为铸造合金钢。

生产特点:1,铸钢的熔炼必须采用炼钢炉。2,铸造工艺,钢的浇注温度高,流动性差,钢液易氧化和吸气,同时,其体积收缩率约为铸铁的2~3倍。3,铸钢件的热处理,铸钢件铸态晶粒大,且组织不均,常有残余内应力,致使塑性和韧性不够高。为此,铸后必须进行正火或退火。

纯铜俗称紫铜,其导电性,导热性,耐蚀性及塑性均优,但强度,硬度低,且价格较高,因此极少用它来制造零件。机械上广泛物是铜合金。

黄铜是以锌为主加元素的铜合金。黄铜的含锌量小于47%。铜与锌以外的元素所组成的铜合金统称为青铜。

铜和锡的合金是最普通的青铜,称为锡青铜,是我国历史最为悠久的铸造合金。

铝合金的密度小,熔点低,导电性,导热耐蚀性优良,切削加工性很好,因此也常用来制造铸件。

铸铝合金分为铝硅合金,铝铜合金,铝镁合金及铝锌合金四类。

铜、铝合金的熔化特点是金属料与燃料不直接接触,以减少金属的损耗和保证金属的纯洁。

第三章 砂型铸造

铸造工艺图是在零件图上用各种工艺符号及参数表示出铸造工艺方案的图形。其中包括:浇注位置,铸型分型面,型芯的数量,形状,尺寸及其固定方法,加工余量,收缩率,浇注系统,起模斜度,冒口和冷铁的尺寸和等。零件图——铸造工艺图——模样图——合型图

手工造型生产率低,对工人技术要求较高,而且铸件的尺寸精度及表面质量较差,但在实际生产中仍然是难以完全取代的重要造型方法。

机器造型可大大提高过去生产率,改善过去条件,铸件尺寸精确,表面光洁,加工余量小。机器造型是将紧砂和起模等主要工序实现了机械化。其中,最普通的是以压缩空气驱动的振压式造型机。机器造型的工艺特点通常是采用模板进行两箱造型。机器造型不能紧实中箱,故不能进行三箱造型。

机器造芯:射芯技术随芯砂粘结剂和造芯方法的变化而发展的。射芯机造芯有如下三种:普通造芯,热芯盒造芯,冷芯盒造芯。浇注位置的选择,浇注位置是指浇注时铸件在型内所处的空间位置。浇注位置选择原则详见P67 分型面选择原则:1,应尽量使分型面平直,数量少。应尽量使铸型只有一个分型面,以便采用工艺简便的两箱造型。2,应避免不必要的型芯和活块,以简化造型工艺。3,应尽量使铸件全部或大部分置于下箱。这不仅便于造型,下芯,合型,也便于保证铸件精度。上述诸原则,对于具体铸件来说多难以全面满足,有时甚至互相矛盾。因此,必须抓住主要矛盾,全面考虑,至于次要矛盾,则应从工艺措施上设法解决。

工艺参数的选择:要求的机械加工余量和最小铸孔,起模斜度,收缩率,型芯头。第五章 特种铸造

特种铸是指与普通砂型铸造不同的其他铸造方法。

本章仅介绍应用较多的铸造,金属型铸造,压力铸造,离心铸造和消失模铸造等。

熔模铸造(又称失蜡铸造)是指用易熔材料制成模样,在模样表面包覆若干层耐火涂料制成型壳,再将模样熔化排出型壳,从而获得无分型面的铸型,经高温焙烧后即可填砂浇注的铸造方法。工艺过程可分为蜡模制造,型壳制造,焙烧浇注三个主要阶段。

熔模铸造的特点如下:1,铸件的精度高,表面光洁。2,可制造难以砂型铸造或机械加工的形状很复杂的薄壁铸件。3,适用于各种合金铸件。4,生产批量不受限制。5,生产工艺复杂且周期长,机械加工压型成本高,所用的耐火材料,模料和粘结剂价格较高铸件成本高。综上亿述,为熔模铸造最适于高熔点合金精密铸件的成批,大量生产,主要用于形状复杂,难以切削加工的小零件。

金属型铸造(有永久型铸造之称)是将液态金属浇入金属的铸型中,并在重力作用下凝固成形以获得铸件的方法。

金属型的结构主要取决于铸件的形状,尺寸,合金的种类及生产批量等。

按照分型面的不同,金属型可分为整体式,垂直分型式,水平分型式和复合分型式。金属型的铸造工艺方法:喷刷涂料,金属型应保持一定的工作温度,适合的出型时间。金属型铸造可“一型多铸”,便于实现机械化和自动化生产,从而可大大提高生产率。同时铸件精度和表面质量显著提高,由于结晶组织致密,铸件的力学性能得到显著提高。此外,金属型铸造还使铸造车间面貌大为改观,劳动条件得到显著改善。它的主要缺点是金属型的制造成本高,生产周期长。同时,铸造工艺要求严格,否则容易出现浇不到,冷隔,裂纹等铸造缺陷,而灰铸铁件又难以避免白口缺陷。

金属型铸造主要用于铜,铝合金不复杂中小铸件的大批量生产,如铝活塞,气缸盖,油泵壳体,铜瓦,衬套,轻工业品等。

压力铸造:简称压铸。它是在高压下(比压约为5~150Mpa)将液态或半液态合金快速(充填速度可达5 ~50m/s)地压入金属铸型中,并在压力下凝固以获得铸件的方法。

压锛是在压铸机上进行的,它所用的铸型称为压型。注入金属——压铸——取出铸件。压力铸造的主要优点有:1,铸件的精度及表面质量较其他方法均高。通常,不经机械加工即可使用。2,可压铸形状复杂的薄壁件,或直接铸出小孔,螺纹,齿轮等。3,铸件的强度和硬度都较高。4,压铸的生产率较其他铸造方法均高。5,便于采用镶铸。

压铸虽是实现少屑、无屑加工非常有效的途径,但也存在许多不足。主要是:1,压铸设备投资大,制造压型费用高,周期长,只有在大量生产条件下经济上才合算。2,压铸高熔点合金时,压型寿命很低难以适应。3,由于压铸的速度极高,型腔内气体很难排除,厚壁处的收缩也很难补缩,致使铸件内部常有气孔和缩松。4,由于上述气孔是在高压下形成的,热处理加热时孔内气体膨胀将导致铸件表面起泡,所以压铸件不能用热处理方法来提高性能。必须指出,随着加氧压铸、真空压铸和黑色金属压铸等新工艺的出现,使压铸的某些缺点有了克服的可能性。

离心铸造:将液态合金浇入调整旋转的铸型,使其在离心力作用下充填铸型并结晶。

离心铸造机上的铸型可以用金属型,也可以用砂型、熔模壳型等。根据铸型旋转轴空间位置的不同,离心铸造机可分为立式(垂直轴旋转)和卧式(水平轴旋转)两大类。

离心铸造具有如下优点:1,利用自由表面生产圆筒形或环形铸件时,可省去型芯和浇注系统,省工,省料,降低了铸件成本。2,在离心力的作用下,铸件呈由外向内的定向凝固,而气体和熔渣因密度较金属小,则向铸件内腔移动而排除,故铸件内部极少有缩孔,缩松,气孔,夹渣等缺陷。3,便于制造双金属铸件。

离心铸造的不足之处是:1,依靠自由表面所形成的内孔尺寸偏差大,而且内表面粗糙,若需机械加工,必须加大余量。2,铸件易产生成分偏析,所以不适于密度偏析大的合金及轻合金铸件。此外,因需要专用设备的投资,故不适于单件,小批生产。

离心铸造是大口径铸铁管,气缸套,铜套,双金属轴承的主要生产方法,铸件的最大重量可达十多吨。

消失模铸造:又称气化模铸造或实型铸造。它是用泡沫塑料制成的模样制造铸型,之后,模样并不取出,浇注时模样气化消失而获得铸件的方法。

消失模铸造工艺包括模样制造,挂涂料,造型浇注和落砂清理等工序。

消失模铸造优点:1,它是一种近乎无余量的精密成形技术,铸件尺寸精度高,表面粗糙度低,接近熔模铸造水平。2,无需传统的混砂,制芯,造型等到工艺及设备,故工艺过程简化,易实现机械化,自动化生产,设备投资较少,占地面积小。3,为铸件结构设计提供了充分的自由度,如原来需要加工成形的孔,槽等可直接铸出。4,铸件清理简单,机械加工量减少。5,适应性强。对合金种类,铸件尺寸及生产数量几乎没有限制。

据统计,建立一个模铸造厂与建立一个相同产量的传统湿砂型铸造厂相比,总投资可减少30%以上,而铸造成本可下降20%~30%。

消失模铸造的主要缺点是浇注时塑料模气化有异味,对环境有污染,铸件容易出现与泡沫塑料高温热解有关的缺陷,如铸铁件容易产生皱皮,夹渣等到缺陷,铸钢件可能稍有增碳,但对铜,铝合金铸件的化学和力学性能的影响很小。

各种铸造方法均有其优缺点及适用范围,不能认为某种方法最为完善。砂型铸造尽管有着许多缺点,但它对铸件的形状和大小,生产批量,合金品种的适应性最强,是当前最为常用的铸造方法,故应优先选用,而特种铸造仅是在相应的条件下,才能显示其优越性。P92 几种常用铸造方法的综合比较。

第三篇 金属塑性加工

第一章 金属的塑性变形 金属在外力作用下,其内部必将产生应力。当外力增大到使金属的内应力超过该金属的屈服点后,即使作用在物体上的外力取消金属的变形也不完全恢复,而产生一部分永久变形,称为塑性变形。其实质是晶体内部产生滑移的结果。

低温时,多晶体的晶间变形不可过大,否则将引起金属的破坏。

变形程度增加时,金属的强度及硬度升高,而塑性和韧性下降。其原因是由于滑移面上的碎晶块和附近晶格的强烈扭曲增大了滑移阻力,使继续滑移难于进行所致。

在冷变形时,随着变形程度的增加,金属材料的所有强度指标和硬度都有所提高,但塑性和韧性有所下降,这种现象称为冷变形强化或加工硬化。冷变形强化是一种不稳定现象,将冷变形后的金属加热至一定温度后,因原子的活动能力增强,使原子回复到平衡位置,晶内残余应力大大减小,这种现象称为回复(或称恢复)。T回=(0.25—0.3)T熔

T回是回复温度 T熔是熔点温度 单位是K 纯金属的再结晶温度为T再=0.4T熔 单位是K 在实际生产中常采用加热的方法使金属发生再结晶,从而再次获得良好塑性,这种工艺操作称为再结晶退火。

金属塑性加工生产多采用热变形来进行。

金属的可锻性是材料在锻造过程中经受塑性变形而不开裂的能力。金属的可锻性好,表明该金属适合采用塑性加工盛开;可锻性差,该金属不宜选用塑性加工方法成形。

可锻性的优劣常用金属的塑性和变形抗力来综合衡量。金属的塑性用金属的断面收缩率,伸长率等来表示。变形抗力指在塑性加工过程中变形金属反作用于施压工具上的作用力。变形抗力越小,则变形中所消耗的能量也越小。金属的可锻性取决于金属的本质(化学成分、金属组织)和加工条件(变形温度、应变速率、应力状态)。

锻造:在加压设备及工具下,使坯料,铸锭产生局部或全部的塑性变形,以获得一定几何尺寸,形状和质量的锻件的加工方法,称为锻造。

锻造方法分为自由锻和模锻(锤上模锻、曲柄压力机上模锻、摩擦螺旋压力机上模锻、胎膜锻)。

自由锻生产所用工具简单,具有较大的通用性,因而它的应用范围较为广泛。在重型机械制造中,它是生产大型和特大型锻件的唯一成形方法。

自由锻所用设备根据它对坯料施加外力的性质不同,分为锻锤和液压机两大类。自由锻的工序可分为基本工序、辅助工序和精整工序三大类。

1,基本工序:达到主要变形要求。镦粗,拔长,冲孔,扭转,错移,切割。2,辅助工序:进行基本工序之前的预变形工序。

3,精整工序:在完成基本工序之后用以提高锻件尺寸及位置精度的工序。

模锻是利用锻模使坯料变形而获得锻件的锻造方法。

由于金属是在模膛内变形,其流动受到模壁的限制,因而模锻生产的锻件尺寸精确,加工余量较小,结构可以杂,而且生产率高。

锤上模锻,根据其功用的不同,模膛分为模锻模膛和制坯模膛两种。曲柄压力机是采用曲柄连杆系统工作机构的压力机。„„ P118 常用锻造方法的比较 锻件图是根据零件图绘制的。为了简化零件的形状和结构,便于锻造而增加的一部分金属,称为余块。

成形时为了保证机械加工最终获得所需的尺寸而允许保留的多余金属,称为机械加工余量。锻造公关是锻件名义尺寸的允许变动量。

分模面是上下模或凹凸模的分界面。分模面可以是平面也可以是曲面。

选定分模面的原则上是:1,应保证模锻件能从模膛中取出。2,应使上下两模沿分模面的模膛轮廓一致,以便在安装锻模和生产中容易发现错模现象,及时而方便地调整锻模位置。3,分模面应选在能使模膛尝试最浅的位置上,这样有得金属充满模膛,便于取件,并有利于锻模的制造。4,选定的分模面应使零件上所增加的余块最少。5,分模面最好是一个平面,以便于锻模的制造,并防止锻造过程中上下锻模错动。

模锻圆角是指模锻件中断面形状和平面形状变化部位棱角的圆角和拐角处的圆角。模锻件具有这种圆角结构可使金属容易充满模膛,提高锻模使用寿命,同时,增大锻件的强度。许多模锻件都具有孔形,当模锻件的孔径大于25mm时,应将该孔锻出。

坯料的重量可按下式计算: G坯料=G锻件+G烧损+G料头

模锻工序的确定:根据工序特点和锻件类型来确定的。采用自由锻生产锻件时,其工序参阅表3—1选定。采用模锻方法生产模锻件时,其工序根据模锻件的形状和尺寸确定。

对于模锻件:长轴类模锻件常选用拔长,滚压,弯曲,预锻和终锻等工步。短类模锻件常选用镦粗,预锻,终锻等工步。锻件结构的工艺性 P123

第三章

冲压

冲压是使板料经分离或成形而获得制件的工艺统称。冲压中所选用的板料通常是在冷态下进行的,所以又称为冷冲压。只有当板料厚度超过8~10mm时,才采用热冲压。

冲压特点:1,可以冲压意大利杂质零件,且废料较少。2,冲压件具有足够高的精度和较低的表面粗糙度值,互换性较好,冲压后一般不需机械加工。3,能获得重量轻,材料消耗少,强度和风度都较高的零件。4,冲压操作简单,工艺过程便于机械化和自动化,生产率很高。故零件成本低。

冲模制造复杂,成本高,只有在大批量生产条件下,其优越性才显得突出。冲压生产中常用的设备是剪床和冲床。

冲压生产的基本工序有分离工序和变形工序两大类。

分离工序是使坯料的一部分与另一部分相互分离的工序,如落料,冲孔,切断和修整等。凸凹模刃口尺寸的确定

P130

变形是使坯料的一部分相对于另一部分产生位移而不破裂的工序,如拉深,弯曲,翻边,成形等。

拉深:坯料——第一次拉深成品——第二次拉深的坯料——凸模——凹模——成品

拉深件出现拉穿现象与下列因素有关:1,凸凹模的圆角半径2,凸凹模间隙3,拉深系数4,润滑

弯曲时,板料产生的变形由塑性变形和弹性变形两部分组成。

外载荷去除后,塑性变形保留下来,弹性变形消失,使板料形状和尺寸发生与加载时变形方向相反的变化,从而消去一部分弯曲变形效果的现象,称为回弹。回弹使被弯曲的角度增大,一般回弹角为0度~10度。成形是利用局部塑性变形使坯料或半成品获得所要求形状和尺寸的加工过程。主要用于制作刚性筋条凸边,凹槽,或增大半成品的部分直径等。

影响冲压件工艺性的主要因素有:冲压件的外形,尺寸,精度及材料等。

对冲载件的要求:1,落料件的外形和冲孔件的孔形应力求简单,对称。尽量采用圆形或矩形等规则形状,否则使模具制造困难,降低模具寿命。2,冲裁件的结构尺寸必须考虑材料的厚度。3,冲裁件上直线与直线,曲线与直线的交接处,均应用圆弧连接,以避免尖角处因应力集中而产生裂纹。

对弯曲件的要求:1,弯曲件形状应尽量对称,弯曲半径不能小于材料允许的最小弯曲半径。2,弯曲边过短不易成开,故应使弯曲边的平直部分H大于2δ。3,弯曲带孔件时,为避免孔的变形,孔的位置应注意。

对拉深件的要求:1,拉深件外形应简单,对称,深度不宜过大,以便使拉深次数最少,容易成形。2,拉深件的圆角半径在不增加工艺程序的情况下,最小允许半径注意。

第四篇 焊接

焊接是通过加热或加压,使工件产生原子间结合的一种连接方法。焊接方法的种类很多,其中电弧焊是应用最普遍的焊接方法。

第一章 电弧焊

焊接电弧是在具有一定电压的两电极间或电极与工件之间的气体介质中,产生强烈而持久的放电现象,即在局部气体介质中有大量电子流通过的导电现象。

产生电弧的电极可以是金属丝,钨丝,碳棒或焊条。引燃电弧后,弧柱中就充满了高温电离气体,并放出大量的热能和强烈的光。电弧的热量与焊接电流和电弧电压的乘积成正比。电流越大,电弧产生的总热量就越大。

电弧中阳极区和阴极区的温度因电极材料不同而有所不同。

正接是将工件接到电源的正极,焊条接到负极;反接是将工件接到电源的负极,焊条接到正极。正接时工件的温度相对高一些。如果使用的是交流电焊机(弧焊变压器),不存在正接和反接问题。

由焊机的空载电压就是焊接时的引弧电压,一般为50~90V。电弧稳定燃烧时的电压称为电弧电压,它与电弧长度有关。电弧长度越大,电弧电压也越高。一般情况下,电弧电压在16~35V范围之内。

由于焊缝附近各点受热情况不同,热影响区可分为熔合区,过热区,正火区和部分相变区等。焊缝是靠一个移动的点热源来加热的,随后逐次冷却下来所形成的。对于承载大,压力容器等重要结构件,焊接应力必须加以防止和消除。对于薄板的,最容易产生不规律的波浪变形。

焊件出现变形将影响使用,过大的变形量将使焊件报废。施焊中,采用反变形措施或刚性夹持方法,变形后可采用机械矫正法或火焰加热矫正法加以消除。

焊接应力过大的严重后果是使焊件产生裂纹。焊接裂纹存在于焊缝或热影响区的熔合区中,而且往往是内裂纹,危害极大。

焊条电弧焊(手工电弧焊)是用手工操纵焊条进行焊接的电弧焊方法。

药皮的作用:电弧在焊条与被焊工件之间燃烧,电弧热使工件和焊芯共同熔化形成,同时也使焊条的药皮熔化和分解。药皮熔化后与液态金属发生物理化学反应,所形成的熔渣不断从熔池中浮起;药皮受热分解产生大量的CO2,CO和H2等保护气体,围绕在电弧周围。熔渣和气体能防止空气中氧和氮的侵入,起保护熔化金属的作用。覆盖在焊缝表面的熔渣也逐渐凝固成为固态渣壳。这层熔渣和渣壳对焊缝成形的好坏和减缓金属的冷却速度有着重要的作用。

涂有药皮供手弧焊用的熔化电极称为焊条。焊芯起导电和填充金属的作用,药皮则用于保证焊接顺利进行并使焊缝具有一定的化学和力学性能。

焊芯低合金钢,不锈钢用的焊条,应采用相应的低合金钢,不锈钢的焊接钢丝作焊芯。焊条药皮在焊接过程中的作用主要是:提高电弧燃烧的稳定性,防止空气对熔化金属的有害作用,对没完没了的脱氧和加入合金元素,可以保证焊缝金属的化学成分和力学性能。焊条药皮原料的种类名称及作用 P158 我国将焊条按化学成分划分为七大类,即碳钢焊条,低合金钢焊条,不锈钢焊条,堆焊焊条,铸铁焊条及焊丝,铜及铜焊条等。其中应用合金焊条,铝及铝合金最多的是碳钢焊条和低合金钢焊条。

焊条还可按熔渣性质分为酸性焊条(适合各种电源,操作性较好,电弧稳定,成本低,焊缝强度稍低,渗合金作用弱,不宜焊接随重载和搞强度的重要结构件)和碱性焊条(一般用直流电源,焊缝强度高,抗冲击能力强,操作性差,电弧不够稳定,成本高,只适合焊接重要结构件)两大类。焊条的选用原则

P159

埋弧焊:是电弧在焊剂层下燃烧进行焊接的方法。埋弧焊的熔池深度比焊条电弧焊大很多。

埋弧焊特点:生产率高,焊接质量高且稳定,节省金属材料,改善了劳动条件。设备费用较高,工艺装备复杂,对接头加工与装配要求严格,只适用于批量生产长的直线焊缝与圆筒形工件的纵、环焊缝。对狭窄位置的焊缝以及薄板的焊接,埋弧焊则受到一定限制。

焊接前应将焊缝两侧50~60mm内的一切污垢与铁锈除掉,以免产生气孔。为了保持焊缝成形和防止烧穿,生产中常采用各种类型的焊剂垫和垫板,或者先用焊条电弧焊封底。气体保护焊:氩弧焊,二氧化碳气体保护焊

氩弧焊按所用电极的不同,可分为钨极氩弧焊和熔化极氩弧焊两种。氩弧焊主要特点

P163 由于氩气价格较高,氩弧焊目前主要用于焊接铝,镁,钛及其合金,也用于焊接不锈钢,耐热钢和一部分重要的低合金钢工件。

钨极脉冲氩弧焊是近几年发展起来的新工艺

P163 二氧化碳是氧化性气体,在电弧热作用下能分解为一氧化碳和氧原子,使钢中的碳,锰,硅及其他合金元素烧损。

二氧化碳气体保护焊的特点:1,成本低2,生产率高3,操作性能好4,质量较好。

缺点是二氧化碳的氧化作用使熔滴飞溅较为严重,因此焊接成形不够光滑。另外,如果控制或操作不当,容易产生气孔。

气体保护焊常用药芯焊丝作焊接材料。等离子弧焊接:借助水冷喷嘴等对电弧的抵赖与压缩作用,获得较高能量密度的等离子弧进行焊接的方法称为等离子弧焊接。

等离子电弧在机械压缩效应,热压缩效应,电磁收缩效应的作用下,被压缩得很细,使能量高度集中,弧柱内的气体完全电离为电子和离子,称为等离子弧。其温度可达到16000K以上。等离子弧用于切割时,称为“等离子弧切割”。等离子切割不仅切割效率比氧气高1~3倍,而且还可以切割不锈钢,铜,铝及其合金,难熔金属和非金属材料。等离子弧用于焊接时,称为“等离子弧焊接”。

等离子弧焊接实质上是一种具有压缩效应的钨极气体保护焊。

等离子弧焊除具有氩弧焊的优点外,还有以下特点:等离子弧能量密度大,弧柱温度高,穿透能力强;当电流小到0.1A时,电弧仍能稳定燃烧,并保持良好的挺直度和方向性,故等离子弧焊可焊接很薄的箔材。

第二章 其他常用焊接方法

电阻焊是工件组合后通过电极施加压力,利用电流通过接头的接触面及邻近区域产生的电阻热,把工件加热到塑性或局部熔化状态,在压力作用下形成接着的焊接方法。

电阻焊具有生产率高,焊接变形小,劳动条件好,不需另加焊接材料操作简便,易实现机械化等优点。但其设备较一般熔焊复杂,耗电量大,适用的接头形式与可焊工件厚度受到限制。电阻焊分为点焊,缝焊和对焊三种形式。

影响点焊质量的主要因素有焊接电流,通电时间,电极压力及工件表面清理情况等。缝焊过程与点焊相似,只是用旋转的圆盘状流动电极代替了柱状电极。对焊即对接电阻焊,是利用电阻热使两个工件在整个接触面上焊接起来的一种方法。根据焊接操作方法的不同,对焊又可分为电阻对焊和闪光对焊。

对焊一定注意清理端面,否则出现加热不均匀,连接不牢现象,端面容还易再生氧化。

摩擦焊:是利用工件接触端面相对旋转运动中摩擦产生的热量,同时加压顶锻而进行焊接的方法。

摩擦焊特点:1,在此过程中,工件接触表面的氧化膜与杂质被清除。2,可焊接的金属范围较广,不仅可焊同种金属,也可以焊接异种金属。3,焊接操作简单,不需焊接材料,容易实现自动控制,生产率高。4,设备简单,电能消耗少。但要求刹车及加压装置的控制灵敏。

钎焊:是利用熔点比焊件低的锋料作填充金属,加热时钎料熔化而将工件连接起来的焊接方法。

根据钎料熔点不同,钎焊可分为硬钎焊(钎料熔点在450度以上,接头强度在200Mpa以上。主要用于腕力较大的钢铁和铜合金构件的焊接以及工具,刀具的焊接)与软钎焊(钎料熔点在450度以下,接头强度较低,一般不超过70Mpa。主要用于焊接腕力不大的常温下工作的登记表,导电元件以及,铜及铜合金等制造的构件)两类。

钎焊特点是:1,工件加热温度较低,组织和力学性能变化很小,变形也小。接头光滑夹带,工件尺寸精确。2,可焊接性能差异很大的异种,对工件厚度的差别也没有严格限制。3,对工件整体钎焊时,可同时钎焊多条接缝组成的复杂形状构件,生产率很高。4,设备简单,投资费用少。

钎焊主要用于制造精密登记表,电气部件,异种金属构件以及某些复杂薄板结构,还用于各类导线与硬质合金刀具。

真空电子束焊接——激光焊接——高频焊

第三章 常用金属材料的焊接

金属材料的焊接性是指在限定的施工条件下,焊接成按规定设计要求的构件,并满足预定服役要求的能力。即金属材料在一定焊接工艺条件下,表现出来的焊接程度。焊接性包括两个方面:一是工艺焊接性,二是使用焊接性。

利用碳当量法估算钢材焊接性是粗略的,因为钢材的焊接性还受结构刚度,焊后应力条件,环境温度等因素的影响。

铸铁的焊接特点:1,熔合区易产生白口组织2,易产生裂纹3,易产生气孔 按焊前是否预热,铸铁的补焊可分为热焊法和冷焊法两大类。

铜及铜合金的焊接比低碳钢困难得多:1,铜的导热性很高,焊接时热量极易散失。2,液态铜易氧化,生成的Cu2O与铜可组成低熔点共晶体,分布在晶界上形成薄弱环节。3,铜在液态时吸气性强,特别容易吸收氢气。凝固时,气体将从熔池中析出,来不及逸出应付在工件中形成气孔。4,铜的电阻极小,不适于电阻焊。5,某些铜合金比纯铜更容易氧化,使焊接的困难增大。

铜及铜合金可用氩孤焊,气焊,碳弧焊,钎焊等进行焊接。其中氩孤焊主要用于焊接紫铜和表铜件。气焊主要用于焊接黄铜件。

铝及铝合金的焊接特点:1,铝与氧的亲和力很大,极易氧化生成氧化铝。氧化铝组织致密,熔点高达2050度,覆盖在金属表面,能阻碍金属熔合。此外,氧化铝的密度较大,易使焊缝形成夹渣缺陷。2,铝的导热系数较大,焊接中要使用大功率或能量集中的热源。3,液态铝能吸收大量氢气,而固态铝却几乎不能溶解氢。因此在熔池凝固中易产生气孔。4,铝在高温时强度和塑性很低,焊接中常由于不能支持熔池金属而形成焊缝塌陷。因此常需采用垫板进行焊接。

目前焊接铝及铝合金的常用方法有氩弧焊,气焊,点焊,缝焊和纤焊。其中氩弧焊是焊接铝及铝合金较好的方法,焊接时可不用焊剂。但要求氩气纯度大于99.9%。气焊常用于要求不高的铝及铝合金工件的焊接。常用金属材料的焊接性表格

P185

下载2013中考金属和金属材料除杂鉴定知识点复习2012.12word格式文档
下载2013中考金属和金属材料除杂鉴定知识点复习2012.12.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    金属凝固原理复习大纲

    金属凝固原理复习大纲 绪论 1、凝固定义 宏观上:物质从液态转变成固态的过程。微观上:激烈运动的液体原子回复到规则排列的过程。 2、液态金属凝固的实质:原子由近程有序状态过......

    高一化学必修一《金属及其化合物》知识点汇总(大全)

    高一化学必修一《金属及其化合物》知识点汇总 高一化学必修一《金属及其化合物》知识点汇总 1.了解钠、铝、铁、铜等金属及其重要化合物的主要物理性质 (1).钠、铝、铁、铜在自......

    金属学与热处理期末复习总结

    一、名词解释: 1热强性:在室温下,钢的力学性能与加载时间无关,但在高温下钢的强度及变形量不但与时间有关,而且与温度有关,这就是耐热钢所谓的热强性。 2形变热处理:是将塑性变形同......

    海洋工程材料复习大纲金属电化学腐蚀原理

    第二章金属电化学腐蚀原理§2.1腐蚀的基本概念2.1.1什么是腐蚀(corrosion)?埃文斯:金属腐蚀是金属从元素态转变为化合态的化学变化及电化学变化。方坦纳:金属腐蚀是金属冶金的逆......

    专题复习:金属的化学性质(教学案)

    专题复习:金属的化学性质(教学案) 发布:马桂萍 时间:2010-4-14 10:21:25 来源:宁夏教研网 点击: 576 讨论: 2 专题复习:金属的化学性质(教学案)银川二十中 杨青 学习目标: 1、通过实验探......

    金属和金属材料复习课教学设计

    金属和金属材料 复习课教学设计 一、教学目标 1.知识目标 了解金属的物理性质,认识金属材料在生产、生活和社会发展中的重要作用;掌握金属的一些重要化学性质。 2.能力目标 通......

    金属牌号鉴定 金属材质分析(共5篇)

    金属牌号鉴定 金属材质分析一:金属牌号鉴定概述(003) 科标无机检测中心提供金属牌号鉴定、不锈钢牌号鉴定、钢材分析、金属材质分析等。 主要适用类型: 1、钢铁类:各种高低合金钢......

    2011年中考化学单元复习教学案:第八单元 金属和金属材料(范文模版)

    www.xiexiebang.com 中考资源网 第八单元 金属和金属材料 走近新课标 三维点击 1.了解金属的物理性质及合金的知识;铁的冶炼过程;金属资源保护的几种方法;掌握铁钉锈蚀条件的探......