5.3.2《命题、定理、证明》同步练习题(共5篇)

时间:2019-05-13 07:38:09下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《5.3.2《命题、定理、证明》同步练习题》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《5.3.2《命题、定理、证明》同步练习题》。

第一篇:5.3.2《命题、定理、证明》同步练习题

新课标第一网不用注册,免费下载!

5.3.2《命题、定理、证明》同步练习题(1)

知识点:

命题:判断一件事情的语句,命题由题设和结论组成真命题:题设成立,结论成立的命题

假命题:题设成立,结论不一定成立的命题

同步练习:

一、填空题:(每题4分,共40分)

1、每个命题都由_____和_____两部分组成。

2、命题“对顶角相等”的题设是_____________,结论是_____

3、命题“同位角相等”改写成“如果„,那么„”的形式是____________

4、请用“如果„,那么„”的形式写一个命题:________________

5、一个命题,如果题设成立,结论一定成立,这样的命题是___命题;如果题设成立,结论不成立或不一定成立,这样的命题是___命题(填“真”、“假”)

6、以下四个命题:①一个锐角与一个钝角的和为180°;②若m不是正数,则m一定小于零;③若ab>0,则a>0,b>0;④如果一个数能被2整除,那么这个数一定能被4整除。其中真命题有___个。新-课-标-第-一-网

7、下列语句:①对顶角相等;②OA是∠BOC的平分线;③相等的角都直角;④线段AB。其中不是命题的是_______(填序号)

8、“两直线相交只有一个交点”的题设是____________________。

9、命题“a、b是有理数,若a>b,则a2>b2”,若结论保持不变,怎样改变条件,命题才是真命题。请你写出一种改法:______________________

10、对于同一平面内的三条直线a、b、c给出以下五个结论:① a∥b;② b∥c;③ a⊥b;④ a∥c;⑤ a⊥c。以其中两个为题设,一个为结论,组成一个正确的命题:____

二、选择题(每题4分,共20分)

11、如图,直线c与a、b相交,且a∥b,则下列结论:(1)∠1=∠2;(2)1a2∠1=∠3;(3)∠2=∠3。其中正确的个数为()

3A 0B 1C 2D 3 b

c12、下列命题正确的是()

A两直线与第三条直线相交,同位角相等; B两直线与第三条直线相交,内错角相等

C两直线平行,内错角相等;D两直线平行,同旁内角相等

13、在同一平面内,直线a、b相交于O,b∥c,则a与c的位置关系是()

A平行B 相交C 重合D平行或重合14、下列语句不是命题的为()

A两点之间,线段最短B同角的余角不相等

C作线段AB的垂线D不相等的角一定不是对顶角

15、下列命题是真命题的是()

A和为180°的两个角是邻补角;B一条直线的垂线有且只有一条;C点到直线的距离是指这点到直线的垂线段;

D两条直线被第三条直线所截,内错角相等,则同位角必相等。

新课标第一网系列资料

新课标第一网不用注册,免费下载!

5.3.2《命题、定理、证明》同步练习题(1)答案:

一、填空题

1、题设结论

2、两个角是对顶角 ;这两个角相等

3、如果两个角是同位角,那么这两个角相等

4、如果同位角相等,那么两直线平行

5、真;假 X kB 1.com6、07、②④

8、两直线相交

9、若a>b,且a>0,b>010、④

二、选择题

11、D12、C13、B14、C15、D16、新课标第一网系列资料

第二篇:命题、定理和证明教案

命题、定理、证明

重点:命题、定理、证明的概念 难点:命题、定理、证明的概念

一、板书课题,揭示目标

同学们,到现在为止,我们已经学习了一些简单的性质、判定、定义,这些命题都是真命题,那什么是命题呢?我们今天就来学习5.3.2命题、定理.本节课的学习目标是:(请看投影)

二、学习目标

1、理解命题、定理、证明的概念.2、会判断一个命题是真命题还是假命题.三、指导自学

认真看课本(P21-22练习前).1结合例子理解命题的定义,会把一个命题写成“如果„„那么„„”的形式;○2理解真命题、假命题的概念并会判断一个命题的真假.○如有疑问,可以小声问同学或举手问老师.6分钟后,比谁能正确地做出检测题.三、先学

1、教师巡视,督促学生认真紧张地自学

2、学生练习:

检测题 P22 练习补充题:

1、下列是命题的是()1对顶角相等.○2答案A是正确的.③若a=b,则a+c=b+c.④画射○线BC.⑤这条边长等于多少?

2、下列命题是真命题的是()1同角的补角相等。○2相等的角是对顶角。○③互补的角是邻补角。

④若∠1=∠2,∠2=∠3,则∠1=∠3 分别让两位同学上堂板演,其余同学在位上做。

四、更正、讨论、归纳、总结

1、自由更正

请同学们认真看堂上板演的内容,如果有错误或不同解法的请上来更正或补充。

2、讨论、归纳 评讲2(1):命题假设的对吗?为什么?怎样找一个命题的假设?引导学生回答:“如果”后接的部分是假设(师板书)

(2)命题的题设正确吗?为什么?他没有“如果„„那么„„”的形式该怎么办呢?如何把命题写成“如果„„那么„„”的形式,引导学生回答:题设——已知事项;结论——是由已知事项推出来的事项。

评补充题:

1、答案正确吗?为什么?引导学生回答:命题的条件是什么?(1)命题必须是一个完整的句子.(2)对某件事做出了判断。

2、“同位角相等“是真命题吗?为什么?引导学生画图说明:

五、课堂作业(见测试题)

六、教学反思

第三篇:09命题、定理、证明

第9节命题、定理、证明

【学习目标】

A级:掌握命题的定义,结构,分类

B级:会将命题改成“如果„„,那么„„”的形式,并由此找出题设和结论部分 C级:会使用反例来说明一个命题是假命题

D级:掌握文字命题证明的步骤并会证明文字命题。【自学导引】自主学习教材P20—P22.【夯实基础】

一、前面我们学过一些对某一件事情进行判断的语句,请举例(多举)。

像这样判断一件事情的语句,叫做命题。判断下列语句是否是命题(1)画线段AB=CD(2)对顶角相等吗?(3)x=1是方程x2

1的根

(4)2>1

(5)不相等的角不是对顶角。

二、命题的结构

命题是由题设和结论两部分组成的,题设是已知事项(已知条件),结论是由已知事项推出的事项。所以命题往往可以改写:

命题常常改写成“如果„„,那么„„”的形式。这样容易找到题设和结论两部分。例如:对顶角相等

可以改为:“如果两个角是对顶角,那么这两个角相等” 题设就是:如果两个角是对顶角,结论就是:那么这两个角相等

将下列命题改成“如果„„,那么„„”的形式(1)两直线平行,同位角相等(2)内错角相等,两直线平行

(3)在同一平面内,垂直于同一条直线的两条直线平行。(4)互为相反数的两个数的绝对值相等。

三、命题的分类:

请说明命题、真命题、假命题、公理和定理五个概念间的关系

思考:如何说明命题“一个锐角与一个钝角的和等于一个平角”是假命题?

四、证明 证明的步骤

(1)根据题意画出图形。(2)写出已知、求证

(3)证明:即写出推理过程。

1、求证:邻补角的角平分线互相垂直

2、求证:两平行线被第三条直线所截,内错角的角平分线互相平行。

3、求证:两平行线被第三条直线所截,同旁内角的角平分线互相垂直。

4、书P24、第13提,册P20、第14题。

第四篇:命题定理证明教案

5、3命题定理证明教案

学习目标:

(1)了解命题的概念以及命题的构成(如果……那么……的形式).

(2)知道什么是真命题和假命题.

(3)理解什么是定理和证明.

(4)知道如何判断一个命题的真假.

学习重点:

对命题结构的认识.理解证明要步步有据

一、自学基础:(看书20页---22页)

1、对一件事情___________________的语句,叫做命题。

2、命题由______和________组成。__________是已知事项,__________是由已知事项推出的事项。

3、命题常可以写成__________________的形式。“_______”后接的部分是题设,“________”后面接的部分是结论。

4、_________________叫真命题,_______________叫假命题。

二、探究新知

问题1 什么叫做命题?

像这样判断一件事情的语句,叫做命题(proposition).问题2思考命题是由几部分组成的?

命题是由题设和结论两部分组成。题设是已知事项,结论是由已知事项推出的事项。

问题3 下列语句是命题吗?如果是,请将它们改 写成“如果„„,那么„„”的形式.问题4 什么样的命题叫做真命题?什么样的命题叫做假命题? 真命题:如果题设成立,那么结论一定成立,这样的命题叫做真命题.

假命题:如果题设成立时,不能保证结论一定成立,这样的命题叫做假命题.

问题 请同学们举例说出一些真命题和假命题. 问题5公理定理

有些命题的正确性是人们在长期实践中总结出来的,这样的真命题叫做公理。

有些命题的正确性是经过推理证实的,这样的真命题叫做定理。问题6证明

三、课堂小结

四、当堂检测

五、布置作业

第五篇:命题、定理、证明-导学案

《命题、定理、证明》导学案

一、学习目标:

知识点: 1了解命题、定理和证明的概念,能区分命题的题设和结论,2能判断命题的真假

3能对命题的正确性进行证明 重点:命题的判断及区分题设、结论 难点:对命题的正确性进行证明

二、合作探究:自学课本21-23页,5分钟内完成下列问题。要求先自主学习,确有困难以组为单位,组长组织讨论解决,仍解决不了的可跨组讨论。

1、叫命题,命题是由和组成,2 数学中的命题常可以写成“如果„,那么„”的形式.

“如果”后接的部分是,“那么”后接的部分是.3命题分为两种和

如果题设成立,那么结论一定成立,这样的命题叫如果题设成立,不能保证结论一定成立 这样的命题

4有些命题的正确性是人们在长期实践中总结出来的,这样的真命题叫做写出我们学过的两个基本事实5有些命题的正确性是经过推理证实的,这样的真命题叫做

如:平行线判定定理平行线性质定理6证明的根据可以是

三、尝试应用

1、判断下列语句是不是命题?(1)你吃饭了吗?()(2)两点之间,线段最短。()(3)请画出两条互相平行的直线。()(4)过直线外一点作已知直线的垂线。()(5)如果两个角的和是90º,那么这两个角互余。()(6)对顶角不相等。()

2、下列命题中的题设是什么?结论是什么? ①如果两个角是邻补角,那么这两个角互补

② 如果a>b,b>c,那么a=c

③ 对顶角相等

④同位角相等下列语句是命题吗?如果是请将它们改写成“如果„„,那么„„”的形式.(1)两条直线被第三条直线所截,同旁内角互补;

(2)等式两边都加同一个数,结果仍是等式;

(3)互为相反数的两个数相加得0

(4)对顶角相等

4判断下列命题的真假。真的用“√”,假的用“× 表示。1 一个角的补角大于这个角()2 相等的两个角是对顶角()3 若A=B,则2A =2B()4)同旁内角互补()

四、拓展提升:

1请同学们判断下列两个命题的真假,并思考如何判断命题的真假.

命题1: 在同一平面内,如果一条直线垂直于两条平行线中的一条,那么它也垂直于另一条.

命题1是真命题还是假命题?

你能画出图形并用符号语言表述命题的题设和结论吗?

请同学们思考如何利用已经学过的定义定理 来证明这个结论呢?

命题2相等的角是对顶角 判断这个命题的真假

这个命题题设和结论分别是什么?

你能举出反例吗?(画出图形)

五、知识小结:

谈一谈本节课你的收获:

下载5.3.2《命题、定理、证明》同步练习题(共5篇)word格式文档
下载5.3.2《命题、定理、证明》同步练习题(共5篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    5.3.2 命题、定理、证明(教案)(共五篇)

    5.3.2 命题、定理、证明 【知识与技能】 1.知道什么叫做命题,什么叫真命题,什么叫做假命题,什么叫定理. 2.理解命题由题设和结论两部分组成,能将命题写成“如果……那么……”的......

    命题、定理、证明教学设计5则范文

    登陆21世纪教育 助您教考全无忧 课题:5.3.2 命题、定理、证明 教学目标: 1.理解命题、定理、证明的概念,能区分命题的题设和结论; 2.会判断命题的真假,能写出简单的推理过程. 重点:......

    5.3.2 命题、定理、证明教学设计

    5.3.2 命题、定理、证明 (第1课时) 学习目标: (1)了解命题的概念以及命题的构成(如果……那么……的形式). (2)知道什么是真命题和假命题. 学习重点: 对命题结构的认识. 命题的概念 问题......

    《命题+定理与证明》教案(合集五篇)

    《命题、定理与证明》教案 教学目标 知识与技能: 1、了解命题、定义的含义;对命题的概念有正确的理解;会区分命题的条件和结论;知道判断一个命题是假命题的方法; 2、了解命题、公......

    命题、定理、证明16(定(5篇)

    围场卉原中学2012——2013学年第二学期初一数学导学案编制人:王雅莲包科领导签字:____________评价等级:_________ 5.3.2命题、定理、证明(应用稿)NO.16 姓名__________________......

    命题与证明之公理定理[推荐阅读]

    公理和定理教学要求:1 了解公理与定理到概念,以及他们之间的内在联系;2 了解公理与定理都是真命题,它们都是推理论证的依据;3 掌握教材十条公理和已学过的定理。重点难点十条公理......

    5.3.2《命题 定理 证明》教学设计五篇

    5.3.2 《命题 定理 证明》公开课教学设计 执教班级:七二班 教师:方礼花上课时间:2016.3.8 一.教材分析: 本节是第五章第三节第二小节的内容,她是学生学习了平行线的判定和性质之后......

    初一数学命题、定理与证明练习

    智立方教育初一数学“命题、定理与证明”练习1、判断下列语句是不是命题(1)延长线段AB( 不是)(2)两条直线相交,只有一交点(是 )(3)画线段AB的中点( 不是 )(4)若|x|=2,则x=2(是 )(5)角平分线是一......