第一篇:《四边形》专题训练——证明题(平行四边形,矩形,菱形,正方形)
《四边形》专题训练
(一)————证明题,求解题专题训练
1.中,∠C=60°,DE⊥AB于E,DF⊥BC于F;
(1)求∠EDF的度数;
(2)若AE=4,CF=7,求的周长。
2.如图,已知的周长是32㎝,BC
(1)求∠C的度数;
(2)求BE、DF的长。
3.如图,在矩形ABCD中,DE⊥AC于E,AE:EC=3:1,若DC=6㎝,求AC的长。
4.如图,在矩形ABCD中,AB=2BC,E在AB延长线上,∠BCE=60°,求∠ADE.1 D 35AB,AE⊥BC,AF⊥CD,E、F是垂足,且∠EAF=2∠C; D C B E D C C
5.如图,在菱形ABCD中,E是AB的中点,且DE⊥AB,AB=a.(1)求∠ABC的度数;(2)求对角线AC的长;
(3)求菱形ABCD的面积。
D
C
6.如图,将
中的对角线BD向两个方向延长至点E和点F,使BE=DF,求证:四边形AECF是平行四边形。
7.中,点E在AD上,连接BE,DF∥BE交BC于点F,AF与BE交于点M,CE与DF交于点N,求证:四边形MFNE是平行四边形。
A
F
A E
D
C
8.如图,在△ABC中,D,E,F分别为边AB,BC,CA的中点.求证:四边形DECF是平行四边形.A
9.如图,在中,E,F为BC上两点,且BE=CF,AF=DE.(1)求证:△ABF≌△DCE;(2)求证:四边形ABCD是矩形。
10已知:如图,AD是△ABC的角平分线,DE∥AC交AB于E,DF∥AB交AC于F,求证:四边形AEDF是菱形。
F
C
A
D
A
F
C
11.如图,已知点E、F在正方形ABCD的对角线AC上,AE=CF.求证:四边形BFDE是菱形.12.如图,在△ABC中,∠ACB=90°,CD平分∠ACB,DE∥BC,DF∥AC,分别交AC、BC于E、F.求证:四边形DECF是正方形.13.如图,在正方形ABCD中,F是AC上一点,FC=BC,EF⊥AC交AB于E,求证:AF=EB.C
D
D
C
A
D
第二篇:平行四边形、矩形、菱形、正方形练习证明题
1、已知如图,在□ABCD中,E、F分别是边BC和AD上的点,且BE=DF。求证:AE=CF
2如图,在□ABCD中,∠ADC的平分线与AB相交于点E,求证:BE+BC=CD
3、如图,在△ABC中,AB=AC,点D是BC的中点,过点A、D分别作BC于AB的平行线,并交于点E,连接EC、AD,求证四边形ADCE是矩形。
4、如图,在△ABC中,AB=AC,AD ⊥BC,垂足为点D,AG是 △ABC的外角 ∠FAC 的平分线,DE ‖AB , 交AG于点E,求证:四边形ADCE是矩形.
5、如图,已知菱形ABCD的边长为2cm,∠BAD=120°,对角线AC、BD相交于点O,试求这个菱形的两条对角线AC与BD的长.
6、如图,G、H是□ABCD对角线AC上的两点,且AG=CH,E、F分别是边AB和CD的中点,求证:四边形EHFG 是平行四边形。
7、如图,在△ABC中,AB=AC,点D是BC的中点,DE⊥AC于点E,DG⊥AB于点G,EK⊥AB于点K,GH⊥AC于点H,EK和GH相交于点F。求证:GE与FD互相垂直平分。
8、如图,在△ABC中,∠C=90°,∠CAB、∠CBA的平分线相交于点D,DE⊥BC于点E,DF⊥AC于点F,求证:
(1)四边形CFDE是矩形。(2)四边形CFDE是正方形。
第三篇:平行四边形、矩形、菱形、正方形性质定理总结
平行四边形、矩形、菱形、正方形性质定理总结(耿培灏制)
平行四边形的性质:
平行四边形的对边相等、对角相等、对角线互相平分.平行四边形的判定定理:
两组对边分别平行的四边形叫做平行四边形.
两组对边分别相等的四边形是平行四边形.
一组对边平行且相等的四边形是平行四边形.
对角线互相平分的四边形是平行四边形.
两组对角分别相等的四边形是平行四边形.(不能在证明题中作为依据使用.)
矩形的特有性质:
矩形的四个角都是直角,对角线相等.矩形的判定定理:
有一个角是直角的平行四边形是矩形. 三个角是直角的四边形是矩形.
对角线相等的平行四边形是矩形.
菱形的特有性质:
菱形的四条边相等,对角线互相垂直.菱形的判定定理:
有一组邻边相等的平行四边形叫做菱形.
对角线互相垂直的平行四边形
四条边都相等的四边形
正方形的性质:
对称性----既是中心对称图形,又是轴对称图形.
边----对边平行,4条边都相等.
角----4个角都是直角.
对角线----对角线相等、垂直且互相平分.
正方形的判定定理:
有一组邻边相等并且有一个角是直角的平行四边形叫做正方形. 有一组邻边相等的矩形是正方形.
有一个角是直角的菱形是正方形.
第四篇:《矩形、菱形、正方形》教案
《矩形、菱形、正方形》教案
【教学目标】
.理解矩形的判定定理并会用矩形的判定定理证明一个四边形(平行四边形)是矩形.
2.了解两条平行线之间的距离的意义,并会求两条平行线之间的距离.
3.会有条理的思考与表达,并逐步学会分析与综合的思考方法.
4经历矩形的三种判定方法的引导建模和自主建模过程。
【重、难点】
建模研究六(市级公开):范波矩形判定教案XX37(同题异构)重点:会用矩形的判定定理证明一个四边形(平行四边形)是矩形.
难点:综合运用矩形的性质定理与判定定理进行计算与证明.
【教学过程】
一、活动1、模型准备:一天,小丽和吴娟到一个商店准备给今天要过生日的肖华买生日礼物,选了半天,她们俩最后决定买相框送给她,在里面摆放她们三个好朋友的相片,为了保证相框摆放的美观性,她们选择了矩形的相框,那么她们是用什么方法可以知道她们拿的就是矩形相框呢?
2、模型构成与求解分析:度量角
抽象1:矩形的四个角都是直角,反过来,四个角(或三个角)都是直角的四边形是矩形吗?如果是,请给出证明.
已知:在四边形ABD中,∠A=∠B=∠=90°
求证:四边形ABD是矩形。
证明:∵∠A=∠B=90°
∴∠A+∠B=180°
∴AD∥B
同理可证:AB∥D
∴四边形ABD是平行四边形
又∵∠A=90°
∴四边形ABD是矩形
3、归纳总结:有三个角是直角的四边形是矩形
追问:两个角是直角的四边形是矩形吗?为什么?
设计意图:从实际生活中遇到的问题出发,建模成数学问题,通过学生自主探索、思考、归纳,形成结论,再用结论解决实际问题。
二、活动2、学生自主建模:
除度量角度之外,她们需要度量什么也能知道做好的相框是矩形呢?
猜测(1)对角线相等的四边形是矩形吗?
猜测(2)当一个平行四边形框架扭动成矩形时,它的两条对角线相等,反过来,对角线相等的平行四边形是矩形吗?如果是,请给出证明.
已知:平行四边形ABD,A=BD。
求证:四边形ABD是矩形。
证明:∵AB=D,B=B,A=BD
∴△AB≌△DB(SSS)
∴∠AB=∠DB
∵
AB//D
∴∠AB+∠DB=180°
∴∠AB=∠DB=90°
又∵
四边形ABD是平行四边形
∴四边形ABD是矩形
2、判断:(1)对角线互相平分且相等的四边形是矩形吗?
3、归纳总结:有三个角是直角的四边形是矩形。
对角线相等的平行四边形是矩形。
设计意图:再次从实际生活中遇到的问题出发,从另一角度建模成数学问题,通过学生自主探索、思考、归纳,形成结论,再用结论解决实际问题。通过生活经验找出平行四边形与矩形对角线的区别。深化学生对“对角线相等的平行四边形是矩形。”的这一基本模型的理解。
三、模型验证与应用
(一)在四边形ABD中,AB=D,AD=B请再添加一个条,使四边形ABD是矩形你添
加的条是_____________
(二)判断题
、对角线相等的四边形是矩形。
2、对角线互相平分且相等的四边形是矩形。
3、有一个角是直角的四边形是矩形。
4、四个角都是直角的四边形是矩形。
、四个角都相等的四边形是矩形。
6、对角线相等且有一个角是直角的四边形是矩形。
7、对角线相等且互相垂直的四边形是矩形。
设计意图:找区别,深化知识。提高学生辨别能力。提高判断能力,能用“说理”来得结论。提高学生“说”的能力。
(三)说一说、练一练:
例1如图,直线l1∥l2,A、是直线l1上任意两点,AB⊥l2,D⊥l2,垂足分别为B、D.线段AB、D相等吗?为什么?
解:由AB⊥l2,D⊥l2,可知AB∥D.
又因为l1∥l2,所以四边形ABD是矩形,AB=D.
定义、性质:
两条平行线中,一条直线上任意一点到另一条直线的距离,叫做两条平行线之间的距离。
两条平行线之间的距离处处相等。
练习:
在直线l1上任意取两点E、F,连接EB、ED、FB、FD。问:△EBD与△FBD的面积有何关系?为什么?
设计意图:通过学生应用新知解决问题后,理解两条平行线之间的距离的定义和性质,同时能进行简单的应用,进一步理解“同底等高”的内涵。
例2
如图,在△AB中,点D在AB上,且AD=D=BD,DE、DF分别是∠BD、∠AD的平分线。
问题1:这里有几个等腰三角形?它有什么特殊性质?
问题2:由DE、DF分别是∠BD、∠AD的平分线,你能想到什么?
建模研究六(市级公开):范波矩形判定教案XX37(同题异构)问题3:四边形FDE是矩形吗?为什么?
练习
已知:如图,在△AB中,∠AB=90°,点D是AB的中点,DE、DF分别是△BD
△AD的角平分线。
求证:四边形DEF是矩形。
设计意图:“新知”与“旧知”的结合,题1做铺垫,为题2学生自主书写做
好准备。
a2431163
例3
已知:如图.矩形ABD的对角线A、BD相交于点,且E、F、G、H分别是A、B、、D的中点,求证四边形EFGH是矩形.
变式:
已知:如图,矩形ABD的对角线A、BD相交于点,E、F、G、H分别是A、B、、D上的一点,且AE=BF=G=DH求证:四边形EFGH是矩形
建模研究六(市级公开):范波矩形判定教案XX37(同题异构)
设计意图:在前一题的铺垫下,通过“变式”进一步提高学生应用新知的能力。
四、小结收获:
矩形判定口诀:任意一个四边形,三角直角定矩形。对于平行四边形,一个直角即可定;对线相等也矩形。
五、反馈练习:
.下面说法正确的是()
A.有一个角是直角的四边形是矩形;
B.有两条对角线相等四边形是矩形;
.有一组对边平行,有一个内角是直角的四边形是矩形;
D.有两组对角分别相等,且有一个角是直角的四边形是矩形.
2.矩形的两条对角线的夹角为120°,矩形的宽为3,则矩形的面积为__________.
3.如图所示,矩形ABD中,AE平分∠BAD交B于E,∠AE=1°,则下面的结论:①△D是等边三角形;②B=2AB;③∠AE=13°;④S△AE=S△E其中正确的结论有()A.1个
B.2个
.3个
D.4个
第五篇:特殊四边形证明题(正方形)
特殊四边形证明题(正方形)
1.如图,四边形ABCD是正方形, 点G是BC上任意一点,DE⊥AG于点E,BF⊥AG于点F.求证:DE-BF = EF.
2.如图,ABCD是正方形.G是 BC 上的一点,DE⊥AG于 E,BF⊥AG于 F. A D
(1)求证:△ABF≌△DAE;(2)求证:DEEFFB.
3.如图,在正方形ABCD中,CEDF.若CE10cm,求DF的长.
4.正方形ABCD中,MNGH,求证:MN=HG。
5.在正方形ABCD的边CD上任取一点E,延长BC到F,使CF=CE,求证:BEDF
6.在正方形ABCD的CD边上取一点G,在CG上向原正方形外作正方形GCEF,求证:DEBG,DE=BG。
F B C
A
E B
F
C
_B _C_E
7.已知如图,四边形ABCD是正方形,F、E分别为BC、CD上的点,且EF=BF+DE,AM⊥EF,垂足为M,求证:(1)AM=AB;(2)连AF,连AE,求∠FAE.
D
E
8.正方形ABCD中,∠EAF=45.求证:BE+DF=EF。
9.若分别以三角形ABC的边AB、AC
为边,在三角形外作正方形ABDE、ACFG,求证:BG=EC,BGEC。
10.若以三角形ABC的边AB、AC为边 向三角形外作正方形ABDE、ACFG,求证:SAEG
=SABC。
C
_ F
B_
_ E
_ B
_C
11.若以三角形ABC的边AB、BC为边向 三角形外作正方形ABDE、BCFG,N为AC 中点,求证:DG=2BN,BMDG。
12.正方形ABCD的边AD上有一点E,满足BE=ED+DC,如果M是AD的中点,求证:∠EBC=2∠ABM,_B_
C
_A_
N_C
_B
_C
13.正方形ABCD中,E是边CD的中点,F是线段CE的中点
求证:∠DAE=∠BAF。
_ E _ B
_C
14.已知,如图,正方形ABCD中,AC、BD交于O点,EA平分∠BAC交BD于F点.求证:FO=
D
C
EC.
215.如图,正方形ABCD对角线BD、AC交于O,E是OC上一点,AG⊥DE交BD于F,B求证:EF∥DC。A
C DG
16.如图,正方形ABCD中对角线AC、BD相交于O,E为AC上一点,AG⊥EB交EB于G,AG交BD于F。(1)说明OE=OF的道理;
(2)在(1)中,若E为AC延长线上,AG⊥EB交EB的延长线于G,AG、BD的延长线交于F,其他条件不变,如图2,则结论:“OE=OF”还成立吗?请说明理由。
AD
D
B
C
F
G
E
17.在正方形ABCD中,直线EF平行于对角线AC,与边AB、BC的交点 为E、F,在DA的延长线上取一点G,使AG=AD,若EG与DF的交点为H,求证:AH与正方形的边长相等。
_B
_ F
_
C
18.若以直角三角形ABC的边AB为边,在三角形ABC的外部作正方形ABDE,AF是BC边的高,延长FA使AG=BC,求证:BG=CD。
19.正方形ABCD,E、F分别是AB、AD延长线上的一点,且AE=AF=AC,EF交BC于G,交AC 于K,交CD于H,求证:EG=GC=CH=HF。
20.在正方形ABCD的对角线BD上,取BE=AB,若过E作BD的垂线EF交CD于F,求证:CF=ED。
21.在正方形ABCD中,P是BD上一点,过P引PEBC交BC于E,过P 引PFCD于F,求证:APEF。
22.过正方形ABCD的顶点B引对角线AC的平行线BE,在BE上取一点F,使AF=AC,若作菱形CAFÉ,求证:AE及AF三等分∠BAC。
_ B_ F_C
_A
_ B_ E
_D
_ F
_ B
_C
_D
_F
_C
_ E
23.正方形ABCD中,M为AB的任意点,MNDM,BN平分∠CBF,求证:MD=NM
24.从正方形ABCD的一个顶点C作CE平行 于BD,使BE=BD,若BE、CD的交点为F,求证:DE=DF。
_
_ B
C_
25.如图,M、N分别是正方形ABCD两边AD、DC的中点,CM与BM交于点P.求证:PA=AB.
26.如图,边长为1的正方形ABCD被两条与边平行的线段EF、GH分割为四个小矩形,EF与GH交于点P。(1)若AG=AE,证明:AP=AH;
(2)若∠FAH=45°,证明:AG+AE=FH;
(3)若Rt△GBH的周长为1,求矩形EPHD的面积;
(4)若矩形AEGP的面积为矩形PFCH面积的一半,求∠FAH的度数。
27.已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)求证:EG=CG;
(2)将图①中△BEF绕B点逆时针旋转45º,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.
(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明)
第24题图①
第24题图②
第24题图③
D
D
28.如同,在正方形ABCD中,对角线AC与BD
相交于点E,AF平分∠BAC,交BD于点F。(1)EF+0.5AC =AB;
(2)点C1从点C出发,沿着线段CB向点B运动(不与点B重合),同时点A1从点A出发,沿着BA的延长线运动,点C1与点A1运动速度相同,当动点C1停止运动时,另一动点A1也随之停止运动。如图,AF1平分∠B A1 C1,交BD于F1,过F1作F1E1⊥A1 C1,垂足为E1,试猜想F1E1,0.5 A1 C1与AB之间的数量关系,并证明你的猜想。
(3)在(2)的条件下,当A1 C1=3,C1 E1=2时,求BD的长。