《相交线与平行线》教学反思

时间:2019-05-15 14:44:16下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《《相交线与平行线》教学反思》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《《相交线与平行线》教学反思》。

第一篇:《相交线与平行线》教学反思

《相交线与平行线》复习教学反思(1)

相交线与平行线在平面几何计算和证明中应用十分广泛,对学生分析问题的能力、综合解题的能力要求更高。在学生学完《相交线与平行线》一章后,我们及时组织了两节复习课,第一节课着重复习《相交线与平行线》的基本知识及基本技能,第二节课则采取“探究式教学”,培养学生的实践能力、探索能力,收到了较好的效果。

我们认为“探究式教学"注重学生自己提出问题或自己提出解决问题的方法、寻找问题解决的途径、体验解决问题的过程,从而提高解决问题的能力,逐步改变学生的学习方式。在初中数学教学中,开展探究式教学活动,既是对教师的教学观念和教学能力的挑战,也是培养学生创新意识和实践能力的重要途径。下面是这节课的过程描述及课后反思。

本课的设计意图:在数学课堂中开展探究式学习是接受性学习的补充,它有效地促进了学生学习方式的改变,学生从被动的接受性学习变为主动的探究性学习。

本案例力争在以下三个方面有所体现:

一、尊重学生主体地位

本课以学生的自主探究为主线:课前学生自己对比例线段的运用进行整理。这样不仅复习了所学知识,而且可以使学生逐渐学会反思、总结,提高自主学习的能力;课堂上学生亲身体验“实验操作-探索发现-科学论证”获得知识(结论)的过程,体验科学发现的一般规律;解决问题时学生自己提出探索方案,学生的主体地位得到了尊重;课后学有余力的学生继续挖掘题目资源,发展的眼光看问题,观察运动中的“形异实同”,提高学习效率,培养学生思维的深刻性。

二、教师发挥主导作用

在探究式教学中教师是学生学习的组织者、引导者、合作者、共同研究者,鼓励学生大胆探索,引导学生关注过程,及时肯定学生的表现,鼓励创新,哪怕是微小的进步或幼稚的想法都给予热情的赞扬。备课时思考得更多的是学生学法的突破,上课时教师只在关键处点拨,在不足时补充。三次恰到好处的电脑演示,向学生展示了电脑的省时、高效以及对数学实验的巨大帮助,推荐给他们运用电脑技术的学习研究方法。教师与学生平等地交流,创设民主、和谐的学习氛围,促进教学相长。

三、提升学生课堂关注点

学生在体验了“实验操作--探索发现--科学论证”的学习过程后,从单纯地重视知识点的记忆、复习变为有意识关注学习方法的掌握,数学思想的领悟。如在原问题的取点中教师小结了从特殊到一般的归纳,学生在探究矩形的比值时就能意识地把解决特殊问题的策略、方法迁移到解决一般问题中去。在课堂小结中,学生也谈到了这点体会,而且还感悟了一题多解、一题多变等数学学习方法。

第二篇:相交线与平行线的教学反思

相交线与平行线的教学反思

红星学校:单小燕

每章内容考试前的认真复习是考试前的必备工作,它会直接影响到考试的质量,为此我做了大量的工作,效果不是很理想,现将反思如下:

1、知识点的梳理。

本章的教学目标是复习第五章《相交线与平行线》的基本知识点,并进行简单的应用。因为这是初中生第一次接触的逻辑性概念,考虑到知识的连贯性和完整性,本章内容的覆盖面广,因此我要求学生考前归纳整理了本章的所有知识点。

2、理解掌握并区别平行线的性质和判定。

上课一开始让一名中等学生口头归纳知识点,其他学生补充,结果这名学生在做有关这类题目的时候出乎意料,把平行线的性质和判定混淆,如:个别学生把“两直线平行,同位角相等与同位角相等,两直线平行同等”看待,这是不逻辑的。最后我让大家的共同帮助纠正下记住了性质和判定。

其次,我再让几名学生上黑板演练练习题,大部分掌握的很好,个别学生还是混淆,我只好多讲练习题,学生多做,反复讲、练,练习题的选择由浅入深,有简有易,题型也很全,操作方式上有学生口答的,有板演的,有小组讨论交流的,也有合作探究的。对照课标教学要求,自我感觉还行,实际上学生真用起来还是把性质与判定混乱,这是我的不足,有待于提高。

第三篇:《相交线与平行线》复习教学反思

.《相交线与平行线》复习教学反思

这一段时间复习了《相交线与平行线》,发现学生存在以下问题:

1.对于“三线八角”中,有不少同学一直认为,只要是同位角和内错角,就应该相等,只要是同旁内角就是互补的,把前提条件两直线平行这个条件就给忘记了,《相交线与平行线》复习教学反思。这个知识点要再给学生讲清楚,不能让学生有误解的。

2.在平行线的性质和判定的应用中,学生不太明白是哪两条直线应该平行,或者说由哪两条直线应该得到哪些角平行,不少学生搞不太清楚。比如在平行四边形ABCD中,连接AC,不少学生搞不明白,假如是AB∥CD,应该得到∠DCA=∠CAB还是得到∠DAC=∠ACB,所以在学生练习时要结合图形,让学生明白在平行的三条线中,到底是哪两条直线被哪一条直线所截,应该得到哪些角相等,要让学生完全弄明白,教学反思《《相交线与平行线》复习教学反思》。

3.在平移中,学生对于画平移的图形掌握的不是太好,要么是画图时不体现画图痕迹,要么是不会画,完全凭自己的感觉在画图,说明学生对于平移的规律和特征没有掌握,要以后练习中要加强这方面的训练。

4.对于有关平行的计算和证明,做的也不是太好,有的同学根本不会做,也有一部分学生会做,但是不会写解题过程,没有严格的逻辑推理。

综上所述,在以后的复习中要注意,加强基础知识点的掌握,对于一些概念和定理,要让学生准确无误的掌握,不能让学生因为基础知识掌握的不好,出现这样那样的问题。对学生的解题过程要加强训练和指导,让学生尽快的掌握几何的书写过种和推理过程。

第四篇:数学课《相交线与平行线》的教学反思

本期第一章就是几何知识《相交线与平行线》,这对学生来说,无疑是很大的挑战。虽然上期的最后一章是图形的初步认识,已经涉及到相关的知识,但在我看来,从以前的具体文字突然跨越至大量的符号、图形语言,以及逻辑推理能力的常态化使用。对学生而言还是显得一下适应不了,太难了。从上学期开始,学校就配备了多媒体电子讲台。现代教育技术的应用,不仅仅是方便了教师,更重要的是可以轻松呈现数学中特别是几何中的抽象的内容,《同位角,内错角,同旁内角》这一内容以前上了多次,尽管有教师的当场作图,学生操作等程序,但因为缺失了多媒体,始终觉得效果不太好,学生理解得不深刻。如今,我就充分发挥多媒体的作用。通过图形中符号标记、线条的动态闪烁、整体图形翻转,移动和变化,再辅之以文字说明等等方式,并对基本图形进行简化,定型,随后再出示变式的,复杂的图形巩固训练。以往要么因为黑板面积小,容纳不下,要么因为亲自作图费时间,造成种种遗憾。现在一切都不是问题,从作业看,效果是大不一样。因此,学生还有没有问题,还有哪些具体的想法和理解,一直未去关注。但一进入平行线的判定后,无论是从课堂还是作业都有种感觉,学生眼神里有着很多困惑,很多时候回答问题跟不上。于是昨晚自习对学生进行了口头调查。

发现困扰学生的两个问题:

其一就是不知道怎么看图,简单的还好,稍稍复杂的图就茫然不知所措。或许在老师眼里,在熟练者那里,这完全不成为问题,但对于初学者来说,偏偏就是问题,从数字过渡到图像,尽管直观,但必须在理解题意的基础进行识图,并能去除干扰条件和因素,确实不容易。

其二不知道怎么写推理的步骤。比如说哪些要写在“因为”后?哪些要写在“所以”后。针对这两个普遍问题,我先让掌握情况比较好的学生谈谈自己的经验,然后自己逐一总结,归纳,甚至说了一些小窍门,比如说告诉学生,拿到图,先观察哪些是截线,哪些是被截的直线,然后让学生回忆“三种角”的外形特征,再去辨认;对于推理过程,指出哪些可以作为“因为”后写的,“所以”后的就是推出的结论。有些内容可以说直白点,具体点,哪怕是一些不成熟的小窍门,这对于初学者反而有帮助。当然学习几何,甚至整个学习,还是需要悟性。有悟性的,教师只需稍稍点拨,而悟性差点的,往往是启而不发。这里也就涉及到学生的资质等等因素。想起来难免有些悲观,但事实就是这样,我们不得不承认,这反而有利于我们保持清醒的头脑,不盲目乐观,不给自己太大的压力,同时也可以避免给学生太大的压力。

第五篇:相交线与平行线难题

第一讲 相交线与平行线

【难题巧解点拨】

例1求证三角形的内角和为180度。

例2如图,AB、CD两相交直线与EF、MN两平行直线相交,试问一共可以得到同旁内角多少对?

B

C

3例3已知:∠B+∠D+∠F=360o.求证:AB∥EF.例4如图,∠1+∠2=∠BCD,求证AB∥DE。

A B

CDA E

【典型热点考题】

例1 如图2—15,∠1=∠2,∠2+∠3=180°,AB∥CD吗? AC∥BD吗?为什么?

例2平面上有10条直线,无任何三条交于一点,欲使它们出现31个交点.怎样安排才能办到?

例3已知直线a、b、c在同一平面内,a∥b,a与c相交于p,那么b与c也一定相交.请说明理由.

一、选择题

1.图2—17中,同旁内角共有

()

A.4对B.3对C.2对D.1对

2、光线a照射到平面镜CD上,然后在平面镜AB和CD之

间来回反射,光线的反射角等于入射角.若已知∠1=35°,∠3=75°,则∠2=()A.50°B.55°C.66° D.65°

3、如图为中华人民共和国国旗上的一个五角星,同学们再熟悉不过了,那么它的每个角的度数为()

000045303640ABC

4、如图3,把长方形纸片沿EF折叠,使D,C分别落在D,C的位置,若∠EFB65,则∠AED等于()

A.

5.两条直线被第三条直线所截,如果所成8个角中有一对内错角相等,那么()

A.8角均相等B.只有这一对内错角相等

B.55C.

60D.

5C.凡是内错角的两角都相等,凡是同位角的两角也相等 D.凡是内错角的两角都相等,凡是同位角的两角都不相等

6、如图,在ABC中,已知AB=AC,点D、E分别在AC、AB上,且BD=BC,AD=DE=EB,那么A的度数是(B)

A、30°B、45°C、35°D、60°

C7、一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上

平行前进,则这两次拐弯的角度可以是()A.第一次向右拐40°,第二次向左拐140° B.第一次向左拐40°,第二次向右拐40° C.第一次向左拐40°,第二次向左拐140° D.第一次向右拐40°,第二次向右拐40°

8、已知:如图,AB//CD,则图中、、三个角之间的数量关系为().A、++=360B、++=180C、+-=180D、--=90

9、如图,把三角形纸片沿DE折叠,当点A落在四边形BCED内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个 规律,你发现的规律是().(A)∠A=∠1+∠2(B)2∠A=∠1+∠2(C)3∠A=2∠1+∠2(D)3∠A=2(∠1十∠2)

二、填空题

1、用等腰直角三角板画∠AOB45,并将三角板沿OB方向平移到如图17所示的虚线处后绕点M逆时针方向旋转22,则三角板的斜边与射线OA的夹角为______

2、如图2—30,直线CD、EF相交于点A,则在∠

1、∠

2、∠

3、∠

4、∠B和∠C这6个角中.

(1)同位角有______;(2)内错角有______;(3)同旁内角有_____。

3、如图2—31,直线a、b被直线AB所截,且AB⊥BC,(1)∠1和∠2是_______角;

(2)若∠1与∠2互补,则∠1-∠

3=_______.4、如图,图中有_________对同位角,_________对内错角,_________对同旁内角.

(千万别遗漏)

三、解答题

1、已知:如图2—33,∠ABC=∠ADC,BF、DE是∠ABC、∠ADC的角平分线,∠1=∠2.求证:DC∥AB.

2、在3×3的正方形ABCD的方格中,1+2+3+4+5+6+7+8+9之和是多少度? 解:

3、已知:如图,CD//EF,∠1=65,∠2=35,求∠3与∠4的度数.解:

4、如图,哪些条件能判定直线AB∥

CD?

A B

C D5、如图,已知DE、BF平分∠ADC和∠ABC,∠ABF=∠AED,∠ADC=∠ABC,由此可推得图中哪些线段平行?并写出理由.

6、实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.(1)如图,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b反射.若被b反射出的光线n与光线m平行,且∠1=50°,则∠2=°,∠3=°.(2)在(1)中,若∠1=55°,则∠3=°;若∠1=40°,则∠3=°.(3)由(1)、(2),请你猜想:当两平面镜a、3=°时,可以使任何射到平面镜a经过平面镜a、b的两次反射后,入射光线

b的夹角∠

a1m

上的光线m,m与反射光线

n平行.你能说明理由吗?

b

n

7、潜望镜中的两个镜子MN和PQ是互相平行的,如图所示,光线AB经镜面反射后,∠1=∠2,∠3=∠4,试说明,进入的光线AB与射出的光线CD平行吗?为什么?

8、如图:已知ABC与DEF是一副三角板的拼图,A,E,C,D在同一条线上.(1)、求证EF//BC ;(2)、求1与2的度数

下载《相交线与平行线》教学反思word格式文档
下载《相交线与平行线》教学反思.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    相交线与平行线(难题)

    戴氏中·高考学校新余分校要考试找戴氏相交线与平行线复习题A D 1、如图,要把角钢(1)弯成120°的钢架(2),则在角钢(1)上截去的缺口是_____度。BC第1题第2题第3题2、(2009年崇左)如图,把......

    平行线与相交线基础知识

    西安学知教育天才出于勤奋,学习要持之以恒 第二章平行线与相交线 一、余角与补角1、如果两个角的和是直角,那么称这两个角互为余角,简称为互余,称其中一个角是另一个角的余角。......

    相交线与平行线知识点

    第五章相交线与平行线知识点小结● 相交线1.相交线:在同一平面内,相交的两条直线。-----特点:有一个交点2.对顶角----特点:(1)有一个公共定点(2)两边互为反向延长线-----性质:对顶角......

    相交线与平行线教案

    第七章 相交线与平行线 7.1相交线 【教学目标】 1.了解两条直线相交形成四个角; 2.理解对顶角、邻补角的概念; 3.掌握对顶角的性质及它的推导过程; 4.能运用对顶角的性质解......

    相交线与平行线证明题

    相交线与平行线证明题1.已知:如图⑿,CE平分∠ACD,∠1=∠B,求证:AB∥CE2.如图:∠1=53,∠2=127,∠3=53, 试说明直线AB与CD,BC与DE的位置关系。3.如图:已知∠A=∠D,∠B=∠FCB,能否确定ED与CF的......

    平行线与相交线证明题

    1七年级数学第五章相交线平行线证明题专项1如图,已知AB∥CD, ∠1=∠3AB 试说明AC∥BD. 231 CD2、如图,已知∠BAF=50°,∠ACE=140°,CD⊥CE,能判断DC∥AB吗?为什F么? ABCDE3、如图,已知......

    相交线平行线证明题

    相交线平行线证明题由于分成了2部分那么肯定E在正方形的边上,不然就没分成2部分拉,哈哈。如果AE是直线,那么不用想拉,呵呵,直接E点就是C点了。由于可以是曲线,所以才有了其他不同......

    平行线相交线证明

    平行钱相交练习题1.(2005•安徽)如图,直线AB∥CD,直线EF分别交AB、CD于点M、N,∠EMB=50°,MG平分∠BMF,MG交CD于G,求∠1的度数.2.如图所示,直线AB、CD相交于O,OE平分∠AOD,∠FOC=90°,∠1=4......