第一篇:2009桩基检测技术的回顾与进展
基桩检测技术的回顾与进展
李大展关立军
(中国建筑科学研究院地基所,北京,100013)
摘要:本文对近30年来我国基桩检测技术的发展情况作了回顾,并报导了当前该领域的一些研究成果和发展方向。
关键词:基桩;检测;回顾;进展
1.检测历史的回顾
随着我国城乡建设的迅速发展,桩基工程检测技术成为工程界的一个热点技术。特别是近30年来,在各级主管部门的指导和支持下,广大检测人员的努力下,检测领域取得了长足的发展。基于工程经验的不断积累,使得检测技术更加趋于成熟和先进。在此基础上,现对我国基桩检测技术的发展情况作一回顾,供同行指正。
1.1基桩检测方法的分类
从我国实际情况来看,基桩施工后的检测可分为成孔检测和成桩检测两大类。
成孔检测主要由孔径检测、垂直度检测和孔底沉渣检测。孔径检测一般采用铁环法或井径仪(伞形检测器),也可采用较先进的水下摄像和发射仪器。垂直度检测一般只能采用开挖后实际量测的方法,必要时也可采用测斜仪。对于孔底沉渣检测,垂球法仍是目前工地常用的方法,也可采用电容法等孔底沉渣检测仪。就防患于未然的观点来看,充分重视成孔检测,显然具有十分重要的现实意义。
成桩检测可分为完整性检测和承载力检测两大类。
历年来我国先后开展的完整性检测方法主要有:动刚度法,机械阻抗法(瞬态、稳态),水电效应法,共振法,球击法(以上泛称低应变动测法)。另外尚有钻芯法,声波透射法,孔内摄像法。对于承载力检测主要有:静载试验、锤击贯入法、高应变法、静动法、自平衡法。
现着重对如下两个问题,作一回顾。
1.2对高应变动测法历史的回顾
我国基桩动测技术的研发始于上世纪70年代末,锤击贯入试桩法作为我国自行研制开发的一种高应变动测法,于1981年通过鉴定,并于1991年编制完成我国基桩动测领域的第一本标准《锤击贯入试桩法规程 CECS 35:91》。1982年上海铁道学院与甘肃省建筑科学研究所共同研制了我国首台打桩分析仪DZH-3型,限于当时条件该系统未能推广应用,但仍不失为我国研制基桩动测仪器的先驱。1986年前后,我国开始从瑞典和美国引进国外的高应变动测仪器(PID和PDA)。通过对国外新技术的消化、吸收和改进,80年代中期中国科学院武汉岩土力学研究所推出了RSM系列试桩分析仪,1989年交通部第三航务工程局科研所研制的SDF-1型打桩分析系统通过鉴定。1992中国建筑科学研究院推出FEI-A型基桩分析系统,并通过鉴定。该系统包括低应变、高应变动测的全套软、硬件系统,达到了国际上90年代先进水平。与此同时,对高应变动测法的认识,也经历了一个由盲目到理性的过程。在国外仪器引进初期,由于宣传不当等原因,以为只要引进一台国外仪器,桩的承载力就能
在现场“一锤定音”的说法有相当的市场;更有甚者,认为高应变动测将会取代静载试验。实践是检验真理的唯一标准,是工程实践的多年经验,使人们对高应变动测的适用性逐渐有了较正确的认识(详见下文)。
1.3低应变动测法确定基桩承载力问题
历年来我国先后开展的低应变动测方法主要有:动刚度法,机械阻抗法(瞬态、稳态),水电效应法,共振法,球击法等。
对于低应变动测法的适用范围和功能,80年代中以来一直是桩基工程学术界争论的热点,焦点是低应变动测能否确定桩的承载力。早在1987年3月江苏南通召开的《桩基工程质量监测会议》上就有两种不同观点,一种观点认为,就桩的动测而言,确定桩的承载力应采用高应变法,低应变法不能使土阻力得到充分发挥,因而无法实测桩的承载力;另一种观点认为,通过单桩动、静刚度的对比与假定桩的允许沉降量,低应变法可以确定桩的允许承载力。1995年《基桩低应变动力检测规程》JGJ/T 93-95的施行和《全国小(低)应变确定桩承载力会议》的召开,使低应变法测桩在基桩检测市场中迅速发展。据称已经积累几千份动静对比资料;个别者称,与静载试验比较其检测误差可达到5%,甚至0。也有认为,低应变法确定桩的承载力在国际上是首创,不能迷信洋人;应反对(所谓高应变派的)学阀作风。
[1]与此同时,不同观点双方在学术杂志上展开激烈的辩论,1992~1993年间《岩土工
程学报》相继发表多篇署名文章。正方认为通过单桩动、静刚度的对比与假定桩的允许沉降量,低应变法可以确定桩的允许承载力。“认为小(低)应变法不能测桩承载力的说法是片面的,难以苟同”;而反方则认为如此检测基桩承载力的方法,长此以往会“贻笑国际”,“愧对后人”。
基于上述情况,1993年9月在山东济南召开的《第一届全国桩基工程学术会议》上,[2]笔者等发表的《桩基工程检测技术的现状与展望》(以下简称《展望》)一文中,表明了
我们的态度是“如果要得到对这一课题的更有说服力的论据,显然最好的办法还是要通过今后数年内从事桩基动测工作者的更多的实践”。
多年后工程实践的经历和教训,使人们对低应变动测法的适用性开始有了较正确的认识。江苏省建委等建设主管部门相继下文,停止采用低应变法检测基桩承载力。
2008年住房和城乡建设部以建标 [2008] 104号文,公布2007年工程建设标准复审结果为:《基桩低应变动力检测规程》JGJ/T 93-95 废止。
2.若干新规定
住房和城乡建设部已于2008年4月22日批准《建筑桩基技术规范》为行业标准,编号为JGJ 94-2008(以下简称新规范),自2008年10月1日起实施。通过对新规范的初步学习,现仅对有关基桩检测领域相关问题,提出下列心得供同行讨论和指正。[3]
2.1新规范明确工程桩的全过程检验
新规范规定,桩基工程的检验按时间顺序可分为三个阶段:施工前检验、施工检验、施工后检验。
施工前应检验桩位是否合格。对于预制桩应对其外观、桩身混凝土强度、焊条与压力表的质量等进行检验;而对于灌注桩应对混凝土拌制、混凝土强度等级、钢筋笼质量与规格是否附合规范要求进行检验。
施工过程中的检验,对于预制桩应包括:打入(静压)标准、接桩质量、锤击数和最终贯入度等;对于灌注桩应包括:成孔质量、孔底沉渣厚度、钢筋笼安放位置等。干作业条件下成孔的大直径桩,还应对桩端持力层性状进行检验。
施工后首先应检查成桩桩位偏差,然后应进行承载力和桩身质量检验。
综上所述,可见按照新规范的要求,将施工前、施工过程中检验作为与施工后检测同样重要,防患于未然,显然具有十分重要的现实意义。
2.2新规范继续强调静载试验的重要性
新规范规定:设计等级为甲级的建筑桩基,设计采用的竖向极限承载力标准值应通过单桩静载试验确定。
同时新规范将第9.4.2条:“工程桩应进行承载力和桩身质量检验”,列为强制条文,必须严格执行。有下列情况之一的桩基工程,在选择承载力检验方法时,应采用静载试验:
(1)工程施工前已进行单桩静载试验,但施工过程变更了工艺参数或施工质量出现异常时;
(2)施工前工程未按新规范第5.3.1条规定进行单桩静载试验的工程;
(3)地质条件复杂、桩的施工质量可靠性低;
(4)采用新桩型或新工艺。
可见,新规范在总结我国桩基工程检验的科研成果和工程实践的基础上,再次突出的强调了确定单桩承载力时,静载试验的可靠性、重要性。
2.3新规范规定了高应变动测法的适用范围
新规范也对高应变动测法的适用范围作出了规定,有下列情况之一的桩基工程,可采用高应变动测法对工程桩单桩竖向承载力进行检测:
(1)工程施工前已按新规范规定进行单桩静载试验,施工过程又未变更工艺参数和施工质量又未出现异常时;
(2)不属于地质条件复杂、桩的施工质量可靠性低、确定单桩竖向承载力的可靠性低、采用新桩型或新工艺的情况之一者的乙级建筑桩基;
(3)丙级建筑桩基;
(4)设计等级为甲、乙级的建筑桩基静载试验检测的辅助检测。
综上所述,新规范规定的高应变动测法的适用范围仅为工程桩(施工后)单桩竖向承载力的检测,而对于设计采用的竖向极限承载力标准值的确定,不应采用高应变动测法。
3.最近的进展
3.1静载试验
静载试验在基桩承载力检测中的重要性已如上述,近年来,静载试验的自动化系统的研制和开发有了长足的进步。但也应看到,由于检测市场的不规范竞争,导致不愿采用自动化仪器或修改固有的试验程序的情况也有所发生。在现场严格执行规范规定,确保检测数据的可靠性和可比性,已是当前静载试验工作中的迫切任务。
本届论文集中(下同)涂荫玖等的《从静载试验结果看勘察报告的承载力取值》一文,根据基桩静载试验结果(部分桩埋设测试元件)与舟山地区岩土工程勘察报告提供的承载力、桩周土侧阻力、端阻力值比较,发现勘察报告提供的桩基参数值普遍偏低。单桩竖向极限承载力标准值最大相差达1.10~3.26倍,尤以嵌岩桩为甚;沉管灌注桩因桩长较短,桩周土以淤泥质土为主,相差较小。该文作者建议,应进一步试验研究,尽快编制舟山地区基桩设计参数汇编,为工程建设服务。
鲁海涛等的《饱和黄土场地桩基的静载试验研究》一文,介绍了某工程中钻孔灌注桩、夯扩桩的竖向和水平静载试验。研究表明:该工程饱和黄土场地中基桩竖向承载力以端承力为主,侧阻力所占比重较小。为此建议,设计时应选择良好的持力层,并保证夯扩桩桩端扩大头直径达到0.8m以上,钻孔桩进入卵石层深度应大于0.8m。
3.2高应变动测
多年积累的工程实践经验,使人们对高应变动测法的适用性有了较正确的认识;与此同时,在高应变动测数据的无线传输方面也作了有益的探索,并已趋于实用阶段。
郑健等的《高应变动测试验的现状和问题浅析》一文,介绍了上海市建设工程检测行业协会组织的检测单位现场高应变比对试验的结果,基本上反映了上海地区高应变动测法的现状。根据统计结果:(1)在选用合适的重锤和落高的前提下,对于预制桩,统计得到的高应变法检测的承载力与静载试验承载力的差异在-17~+26%之间。(2)正常桩的高应变法检测的承载力总体上是偏安全的;桩的承载力越高,高应变法检测的承载力平均值越偏安全。
(3)对于个别单位,高应变动测法有高估承载力的现象,高估幅度为0~20%。(4)对于锤击贯入度较大的桩,高应变动测法很可能会高估承载力,高估幅度达60~70%。(5)对于严重缺陷桩,很可能会出现承载力的严重高估,高估的幅度达60~70%。
笔者认为由于高应变动测法确定基桩承载力时,有一定的经验因素,因此上述统计结果反映的是上海地区高应变动测法的现状。
3.3低应变动测
正如笔者等1993年在《展望》一文中所述,“低应变动测方法很多,随着桩基动测市场的激烈竞争,最终会使其中某几种方法在发展中趋于明显优势。原因是这些方法的理论依据可靠,仪器设备轻便并在保证测试精度的前提下做到价格适中,数据分析方法规范化并有可比性。”近年来,工程界进行低应变动测时,已主要采用应力波反射法(瞬态机械阻抗法),而其无线袖珍型仪器的性能也已渐趋成熟。另外,对应力波反射法的适用性和功能还作了许多新探索,如采用旁孔法测定桩长;采用双通道采样法测定桩身波速,从而比较准确的测定桩长。还探索了将应力波反射法用于混凝土底板下的基桩检测、地下连续墙检测等。
邓业灿等的《基桩倾斜时应力波检测法的振幅谱特征》一文,通过多个模型桩及工程桩实例,说明基桩倾斜方向及倾斜度大小可通过频率域作出较准确的判定。⑴当基桩倾斜时频率域振幅谱会产生明显的桩倾斜异常。⑵基桩垂直时,各向激振与接收的振幅谱差异很少;而基桩倾斜时,各向振幅谱差异较大。⑶基桩由干扰频率振幅值大,向干扰频率振幅值小方向倾斜。⑷基桩由振幅谱畸变大,向振幅谱畸变小方向倾斜。⑸通过振幅谱频差f值可方便地求出基桩垂直度偏差值(ξ)。上述采用振幅谱特征求基桩垂直度偏差的方法,可供同行探讨和借鉴。
孔继东的《管桩工程质量验收与检测》一文,针对预应力混凝土管桩的特点,提出管桩沉桩完成后的质量检验新方法和定量标准,并推荐采用孔内摄像法检测基桩完整性。该法采用孔内电视摄像仪进行探测,能对管(孔)中出现的缺陷进行定性和定量判定,具有检测方便快捷、检测结果直观的特点,是桩身质量检测的一种新手段。目前,由福建省建筑科学研究院主编完成的中国工程建设标准化协会标准《基桩孔内摄像检测技术规程》CECS 253,已自2009 年6月1日起发布、施行。
赵 伟的《黄土场地基桩动测法中波速的确定》一文,应用波动理论阐述动测法中应力波在基桩中的传播规律,计算出应力波在三维状态下的波速与一维状态下波速的关系。认为用一维杆件理论分析短桩或桩的浅部,计算的波速往往偏低,应充分考虑基桩的三维效应;由于混凝土变形特性所至,基桩动力检测中高、低应变的波速应该是不同的,低应变法的波速应高于高应变法。实际检测时,应对波速进行合理的修正,结合测试的其他因素综合确定波速值。
3.4声波透射法
从上世纪90年代中至今,声波透射法测试仪器在我国经历了多次更新换代,从模拟式、数字式、便携式到最近的自动式。但仍有许多需要改进之处,如测试中如何消除数据断点现象,提高仪器的稳定性等。为提高测试信号质量,宜将目前采用的收发一体换能器,改进为
多通道仪器。
韩亮的《论基桩声波透射测试中过滤法判定桩身缺陷》一文,讨论了基桩声波透射测试中概率法的局限性,论述了过滤法中相对能量概念、首波初至时间阈值选取以及波列图对判定桩身缺陷的优势,并归纳出过滤法声学参数与缺陷的关系。认为过滤法引入了相对能量判据,较真实地反映了接收信号强度;采用阈值确定首波初至时间比绝对量的概率法更加合理;过滤法采用波列图综合识别缺陷,识别的分辨率和对比度更高。该文作者通过大量工程实践,认为过滤法能使缺陷的识别更为可靠。
赵守全等的《浅谈声波透射法在基桩检测过程中的分析和研究》一文,强调了声波透射法中声测管的埋设方法及其重要性。施工前应合理布设声测管,做到认真埋设;检测中发现有缺陷桩时应持慎重态度,必要时可结合低应变反射波法或钻孔取芯法进行综合评价。
赵常要等的《关于声波透射法检测中对倾斜声测管管间距修正方法的探讨》一文,针对声波透射法中由于声测管倾斜引起的声速失常问题,提出了利用最小二乘法中的线性回归法和曲线拟合法对声测管间距作回归统计,对测点声波波速进行修正,从而较准确地判定基桩质量。笔者认为基于现场声测管管间的多变性和复杂性,首先还是应详情了解实际工况,而将该法作为提高综合评定基桩桩身完整性的判据之一为妥。
3.5自平衡法
自平衡法(国外称为Osterberg法)是基桩静载试验的一种新方法,近年来已在美、欧、日等国家及香港、台湾地区广泛应用,解决了许多传统静载试验无法解决的难题。我国自1996年来开始应用,已进行了大量的工程实践,解决了工程实际的需要。
聂如松等的《对自平衡试桩法几个关键问题的探讨》一文,从桩周土有效应力和桩体泊松比效应的角度,证明了自平衡法比传统的单桩竖向抗压静载试验测得的承载力会偏低;论述了自平衡法中荷载箱位置的重要性;并对等效转换方法存在的问题进行了讨论。可见由该法发展现状来看,显然在测试数据的处理和分析方法上还有大量的工作要做。
王文军等的《Osterberg法静载荷试桩技术分析及改进研究》一文,同样也分析国内自平衡法存在的主要问题。并提出一种桩顶适当加荷的自平衡法测试新思路,认为可有助于上段桩侧阻力的发挥,以便上、下段桩阻力能同时达到极限状态。并提出在核算荷载箱埋设位置时,对上段桩侧阻力不进行折减,使极限承载力的确定和Q~s曲线的转化方法较为简单。笔者认为该文作者提出的方法,可供探讨、研究,并求更多的工程实践验证。
龚维明等的《基桩静载试验 自平衡法》交通行业标准介绍》一文,报道了根据交通部关于下达2007年交通标准化计划的通知,依据《公路桥涵施工技术规范》附录中静载试验的规定,考虑到自平衡法的发展而制定了《基桩静载试验 自平衡法》测试标准,为交通行业基桩设计及施工提供依据。作者认为,自平衡法具有对深基础指定区域单独加载的独特功能,是一种有用的检测方法。该法已成功地应用于桩的时间效应、岩层水平抗力系数、循环加载效应和施工技术对钻孔灌注桩承载力的影响等的研究,还有望进行打入桩残余应力的测试研究。笔者认为自平衡法仍是一种新的测试方法,今后应着重研发其数据处理方法,和积累更多的实测数据和工程经验。
3.6其他方法
童立元等的《基于多功能孔压静力触探测试的桩基承载力预测方法探讨》一文,介绍了国际上多功能地震波孔压静力触探(SCPTU)的发展情况,并探讨了基于SCPTU的基桩反应分析及基桩承载力的预测问题。该文作者认为,就CPT方法而言,使预测承载力产生误差的主要因素是没有考虑土中孔隙水压力、剪胀效应和有效应力的影响;而采用SCPTU方法可以避免这些不足。SCPTU方法具有简单、快速、多参数的优点,并且不受操作者主观性的影响,在桩基工程中值得推广应用。笔者认为,采用静力触探预测基桩承载力是一种经验统计方法,增加了孔隙水压力等参数后,重要的是积累大量实测数据。
4.结语
(1)基于目前基桩检测市场的现状,严格执行检测规范、标准中的规定,确保现场检测数据的可靠性和可比性,是当前基桩检测工作中的迫切任务。
(2)大力提倡成孔检测技术的开发,特别是对桩承载力有很大影响的灌注桩桩底沉渣厚度测试手段的研究,今后仍是我国桩基工程中的一项任务。
(3)由于桩土系统的复杂性,对于各种基桩检测方法,都应充分重视工程实践经验的积累,特别是对桩荷载传递机理的基本认识,严格按照有关规范、标准规定的适用范围进行检测。各种检测方法应该取长补短,必要时检测结果宜采用综合评价的方法确定。
(4)在电子计算机技术快速发展的今天,开发出更实用、简便的检测仪器是完全必要的、可能的。与此同时,大力加强检测理论的研究,以开发出具有我国特色的,自主知识产权的基桩检测新方法,实为当前人们的殷切希望。
30年来,我国基桩检测技术无论在软件或硬件上都已取得了公认的成绩, 部分项目已经接近或达到了当前国际先进水平。相信通过同行的努力,检测技术必将取得更大的进展,为提高我国工程建设投资效益和社会经济效益,为基桩检测事业的发展作出更大的贡献。
参考文献:
[1] 徐攸在.对“动力测定桩承载力的方法”讨论的答复.岩土工程学报[J],1993,15(2):
113~118
[2] 刘金砺,李大展,黄强.桩基工程检测技术的现状与展望--桩基工程检测技术[M].北京:
中国建材工业出版社,1993
[3] 中华人民共和国行业标准,建筑桩基技术规范(JGJ94-2008)[S].北京:中国建筑工业出
版社,2008
第二篇:桩基检测技术及优缺点
摘要:随着高层建筑物高强度地基处理的需要,桩基础成为土木工程中主要的基础形式之一,其理论成果也不断出现。在桩基础的施工过程中,桩基检测是一个不可缺少的环节。桩基检测是对单桩承载力和桩身质量等内容进行全面评价的重要措施,它是评价桩基工程是否合格的依据,同时也是对不合格桩进行补强的基础。又因为桩基是隐蔽工程,所以其检测和事故后的处理均较困难,因此,在桩基设计前和施工后都需要进行必要的试验和检测,以保证桩基工程的质量。
关键词:桩基检测;静载试验;高应变动力检测;低应变动力检测
1.概述:
作为一种古老的基础形式,桩的应用至今已经有 12000~14000 年的历史,最初的桩是木桩。我国是使用桩基比较早的国家之一,始建于公元 247 年的上海龙华塔及十世纪筑成的杭州湾大海塘的石砌岸壁,是凝聚我国古代劳动人民聪明智慧的,最早采用桩基础而完好保存至今的著名建筑。在浙江省余姚市河姆渡村发掘的新石器时代的文化遗址中,发现数百根桩(圆桩直径约Φ60mm~180mm 不等,方桩的截面约 60×100mm 至150×180mm 不等),经测定这些桩距今约为 6000 年至 7000 年,这是全球迄今发现的规模最大的木桩遗存。人类应用木桩经历了漫长的历史时期,直到 19 世纪后期,钢筋、水泥和钢筋混凝土相继问世,木桩逐渐被钢桩和钢筋混凝土桩取代。最先出现的是打入式预制桩,随后发展了灌注桩。后来随着机械设备的不断改进和高层建筑对桩基的需要,产生了很多新的桩型,开辟了桩利用的广阔天地;桩的广泛应用也促进了人们对桩的进一步探索研究,其中包括新桩型、施工手段、检测手段、模型实验和设计计算方法等的研究。近年来由于高层建筑和大型构筑物的大量兴建,桩基显示出卓越的优越性,它以其巨大的承载潜力和抵御复杂荷载的特殊本质以及对各种地质条件的良好适应性,已成为高层建筑的主要基础形式。19 世纪以来,随着水泥、混凝土、钢材、大型打桩机械和成孔机械的运用,使桩的形式多样化,规模和强度大大提高。国内外基础工程中所采用的桩型大约有 100余种。随着科技的发展,桩基的施工、试验及检测等技术也等到了极大的发展。
2.桩基检测技术及优缺点:
2.1 桩基检测技术
这种方法具有科学、直观、实用等特点,在检测混凝土灌注桩方面应用较广。一次完整、成功的钻芯检测,可以得到桩长、桩身混凝土强度、桩底沉渣厚度和桩身完整性的情况,并判定或鉴别桩端持力层的岩土性状。抽芯技术对检测判断的影响很大。某工程先用XY-1型工程钻机,采用硬质合金单管钻具,用低压慢速小泵量及干钻相结合的钻进方法,结果采芯率不到70%,芯样完整性极差,大多呈碎块;后来改用SCZ-1型液压钻机,采用金刚石单动双管钻具,采芯率达99%,芯样呈较完整的圆柱状。所以,《技术规范》对钻机和钻头作了相应的规定,就是为了避免抽芯验桩的误判。在桩的施工中,成孔质量的检测方法有:超声波接触式仪器组合法两种法和。成孔质量的好坏直接影响到混凝土浇注后的成桩质量:桩孔的孔径偏小则使整桩的承载能力降低;桩孔上部扩径将导致成桩上部侧阻力增大,而下部侧阻力不能完全发挥;桩孔偏斜则会削弱了基桩承载力的有效发挥;桩底沉渣过厚使得有效桩长减少。因此,成孔质量检测对于控制成桩质量尤为重要。成孔质量检验的内容主要包括桩孔位置、孔深、孔径、垂直度、沉渣厚度等。
优缺点:科学、直观实用。抽芯技术对结果的影响较大,由于钻孔施工时往往采用泥浆护壁,如果施工时泥浆原料不适合。地质条件复杂或施工人员操作不当等,容易导致泥浆性能指标达不到规范要求,从而施工过程中出现坍塌孔、扩径、缩径、孔底沉渣厚度等缺陷。进而导致桩基出现各种各样的质量问题,因此有必要在成孔后灌注混凝土前对成孔质量进行检测,减少桩基安全隐患。
2.2 桩的承载力的检测
I
2.2.1静荷载试验法
这是目前公认的检测基桩竖向抗压承载力最直接、最可靠的试验方法。但在工程实践中发现,基准桩的问题有时会被检测人员所忽视,容易出现基准桩打入深度不足,试验过程产生位移的问题。静荷载试验法用于检测基桩承载力静荷载试验法包括基桩竖向和水平承载力检测,工程中多用到竖向静载荷试验。静荷载试验法显著的优点是其受力条件比较接近桩基础的实际受力状况。静载试验主要适用于工程试桩的承载力检测,对于工程桩检测不能做破坏性试验。其检测精度高,相对误差在10%范围内。
优点;操作过程比较简单,最直接、最可靠,适用性强。
缺点;劳动强度大,危险性高,测试人员十几小时长期呆在荷载底下,容易疲劳,困乏,影响测试工作,而且。危险时时存在,人为干扰因素多。
2.2.2高应变动测法
桩基高应变动检测,就是利用重锤对桩顶进行瞬态冲击,使桩周土产生塑性变形,在桩头实测力和速度的时程曲线,通过应力波理论分析得到桩土体系的有关参数,揭示桩土体系在接近极限阶段时的工作性能,分析桩身质量,确定桩的极限承载力。它的主要功能是判定桩竖向抗压承载力是否满足设计要求。高应变法在判定桩身水平整合型缝隙、预制桩接头等缺陷时,能够在查明这些“缺陷“是否影响竖向抗压承载力的基础上,合理判定缺陷程度,可作为低应变法的补充验证手段。目前在某些地区,利用高应变法增加承载力和完整性的抽查频率,已成为一种普遍做法.优点:仪器设备较为轻便,检测速度快费用较传统的静荷载试验,高应变动测技术具有下列优点:低,这是高应变动测相对传统的静荷载试验比较突出的有点,所以可做到对工程进行大比例检测:高应变动测除了和静载荷试验所不具备的功能:在混凝土预制桩及钢桩打桩过程中检测桩身应力,进行锤击效率监测,为选择沉桩工艺参数和确定桩长确定依据。
缺点:力量一旦过大就会破坏桩的结构。
2.3 桩的完整性检测 2.3.1应变动测法
基桩的低应变动测法就是通过对桩顶施加较低的激振能量,引起桩身及周围土体的微幅振动,同时用仪表量测和记录桩顶的振动速度和加速度,利用波动理论或机械阻抗理论对记录结果加以分析,从而达到检验桩基施工质量、判断桩身完整性、预估基桩承载力等目的。测试过程是获取好信号的关键,测试中应注意:①测试点的选择。测试点数依桩径不同、测试信号情况不同而有所不同,一般要求桩径在120cm以上,测试3~4 点。②锤击点的选择。锤击点宜选择距传感器 20~30 cm 处不必考虑桩径大小。③传感器安装。传感器根据所选测试点位置安装,注意选择好粘贴方式,一般有石蜡、黄油、橡皮泥在保证桩头干燥,没积水的情况下。④尽量多采集信号。一根桩不少于10 锤,在不同点,不同激振情况下,观测波形的一致性,以保证波形真实且不漏测。
2.3.2超声波透射法
用高精度超声波透射法检测桩身结构完整性的基本原理是:由超声脉冲发射源在砼内激发高频弹性脉冲波,并的接收系统记录该脉冲波在砼内传播过程中表现的波动特性;当砼内存在不连续或破损界面时,缺陷面形成波阻抗界面,波到达该界面时,产生波的透射和反射,使接收到的透射波能量明显降低;当砼内存在松散、蜂窝、孔洞等严重缺陷时,将产生波的散射和绕射;根据波的初至到达时间和波的能量衰减特性、频率变化及波形畸变程度等特征,可以获得测区范围内砼的密实度参数。检测记录不同侧面、不同
高度上的超声波动特征,经过处理分析就能判别测区内部存在缺陷的性质、大小及空间位置。
声测管是探头运动的通道。在实际检测中,声测管埋设时应按设计图要求绑缚于桩基的钢筋笼上。因为超声波透射法检测桩基质量不受桩长,桩径的影响,成为目前我国较受欢迎的桩基检测方法。为使检测工作顺利,可先用测绳进行声测管检查,检测项目包括实际桩长,声测管内有无异物堵塞等,检查完毕后在管中装入清水以待检测桩基质量。
优点:其他完整性检测方法相比,声波透射法能够进行全面、细致的检测,且基本上无其他限制条件。缺点:由于存在漫射、透射、反射,对检测结果会造成影响。
2.3.3反射波法
又称为低应变发射波法,它是以应力波在桩身中的传播反射特征为理论基础的一种方法。使用小锤敲击桩顶,通过粘结在桩顶的传感器接收来自桩中的应力波信号,采用应力波理论来研究桩土体系的动态响应,反演分析实测速度信号、频率信号,桩身的缺陷、桩底均可以根据反射波的相位、振幅、频率特性,辅以地层资料、施工记录以及实践分析经验,对其性质进行综合分析判断。反射波法目前在国内,绝大多数的检测机构采用反射波法(瞬态时域分析法)检测桩身完整性,主要原因是其仪器轻便、现场检测快捷,同时将激励方式、频域分析方法等作为测试、辅助分析手段融合进去。当然,低应变法检测时,不论缺陷的类型如何,其综合表现均为桩的阻抗变小,而对缺陷的性质难以区分,这是其最大的局限性。
优点:仪器轻便、现场检测快捷,以其测点多。经济。便捷等优点,应用十分普遍,尽管从理论到实际应用较为成熟但本身还有一定的局限性。
缺点:测量时桩的阻抗变小,对缺陷的性质难以区分。
3.结束语:
利用成孔质量检测、静载试验检测、低应变动力检测和高应变动力检测等技术对某办公楼工程的基桩进行了检测,了解被测桩的桩身完整性和桩身混凝土质量,并初步判断桩端土支承强弱,选择合适的方法,进而对桩基质量做出评价,以确保建设工程的质量。基检测人员在测试工作中要做到实事求是,一丝不苟,来不得半点马虎,以免给工程造成事故隐患。
参考文献
[1]蒋建平.大直径桩基础竖向承载性状研究[D].上海:同济大学.2004.[3]侯健.对低应变法检测桩基的几点看法[J],科技创新导报,2011,27(4):23-25.[4]王锦庆.浅谈桩基动力检测技术[J],城市建设理论研究,2011,7(2):34-36.[5]陈凡、徐天平等.基桩质量检测技术[M],北京:中国建筑工业出版社,2003,45.[6]龚献忠.反射波法检测基桩完整性的探讨[J],山西建筑,2007,33(3):45-47.[2]刘金砺.桩基础设计施工与检测[M].北京:中国建材工业出版社.2001,67.
第三篇:桩基检测
Xx市建筑工程基桩施工及检测管理办法(试行)
第一章总 则
第一条为了加强我市建筑工程基桩施工及检测的管理,确保桩基础工程质量,规范基桩施工及检测市场、质量行为,根据《建筑法》、《建设工程质量管理条例》等相关法律法规,制定本办法。
第二条在本市范围内从事基桩施工及基桩检测活动的单位(机构)和人员,须遵守本办法。
第三条市规划建设局是本市行政区域内基桩工程施工和检测的行政主管部门。市质监站、安监站、招标办等部门按照各自的工作职责,履行基桩施工及检测工作的监督管理。
第四条各工程监理单位(未委托监理的项目的建设单位)应做好工程所涉及的有关混凝土预制桩生产企业的质量控制和预制桩的进场质量检查工作,并做好基桩施工及检测的管理工作,对进场人员、设备、材料、构配件应进行核查及验收工作。
第五条市外基桩施工单位在本市从事基桩施工前,应按规定办理进市施工手续。
市外基桩检测机构经单项工程检测资格(资质)核验后方可在本市从事基桩检测业务活动。
资格(资质)核验的要求,参照太规建建〔2006〕24号文《关于贯彻落实<江苏省建设工程质量检测管理实施细则>的通知》的相关要求。
第二章基桩施工
第六条从事建筑工程基桩施工的单位,应具有与承接工程规模相适应的总承包或地基与基础工程专业承包资质。
第七条建筑工程基桩施工应当依法签订基桩工程施工合同。合同宜使用国家推荐的建筑施工合同示范文本,明确发包方和承包方的权利和义务,明确现场项目部负责人(项目经理)。
基桩施工合同可以与业主直接签订,也可以包含在总承包施工单位的工程总承包合同中。
基桩施工合同(直接发包合同或分包合同)应当在市招投标管理办公室进行合同备案。直接发包的还应办理工程安全、质量监督手续,领取基桩工程单项施工许可证。
总承包施工单位依法对基桩工程进行分包时,应当与基桩施工单位签订分包合同。
第八条基桩施工过程中各岗位(工种)的人员应持证上岗。基桩施工的计量器具、设备应定期检定或校准,且在有效期内,有关检定或校准证书(资料)应放在现场备查。
第九条基桩施工单位应当按照经审查合格的施工图纸进行施工。在施工过程中如遇到与设计图纸不符的情况,应及时报告监理(建设)单位。监理(建设)单位应及时组织勘察、设计单位论证,必要时进行设计变更。
第十条基桩施工单位应主动向安全、质量监督部门申报基桩施工开始时间和基桩施工组织设计(或施工方案)。基桩施工应严格遵守有关规范、规程和省、市对各类基桩施工的各项专项规定。
第十一条工厂生产的预制桩(预制方桩和管桩)必须是具有混凝土预制构件专业资质企业的产品。预制桩进场时,生产厂家应提供资质证书、产品合格证、使用说明书及配筋图。
桩在现场预制的,按照地基与基础分部工程的相关规定实施验收管理,并应对原材料、钢筋骨架、混凝土强度进行复试、验收。
第十二条在使用预制砼方桩时,必须按进场批次现场抽查其配筋(破桩)及桩身混凝土强度(回弹或钻芯),并做好相关记录。
预应力混凝土管桩应现场检查外观质量,并抽查桩身混凝土强度(由管桩采购单位委托,采用钻芯法,按《钻芯检测离心高强度混凝土抗压强度试验方法》GB/T19496-2004)。
现场核查由监理(建设)单位组织,预制桩生产厂家、基桩施工单位参加,并同时通知市建设工程质量监督站。
第十三条禁止使用硫磺胶泥锚接桩。
第十四条基桩施工单位在施工完毕、验收合格后,应将基桩完整的施工原始记录及其它施工资料移交给建设单位或总包
单位。基桩施工资料应真实、完整、整理及时。原始记录应有连续编号且不允许转誊。原始记录上有关责任人的签字应齐全。
第十五条基桩施工时尚未办理质量监督手续的,基桩桩身质量检测数量应在规定的基础上增加一倍,否则其检测结果将不能作为验收的依据。
第三章基桩检测
第十六条进行基桩质量及承载力检测的试验桩的选定,由监理单位(未委托监理的,由建设单位)负责,并填写《选桩表》,经设计部门审核后在实施检测前报市质监站。
第十七条在本市范围内从事基桩检测工作的工程基桩检测机构,应取得计量认证合格证书和省建设行政主管部门核发的或经省建设行政主管部门审核备案的法定有效期内的基桩检测资质证书。市外检测机构还应经市规划建设局资格(资质)核验。检测机构未经资格(资质)核验,则出具的基桩检测报告不予认可。
第十八条基桩检测单位(包括外地进市单位)派驻现场的持证检测人员数量不应少于5人,且应相对固定。试验现场检测操作人员应取得上岗证,每一台班记录人员不少于2人。
第十九条基桩检测单位应配备与检测业务相适应的检测设备。所有检测设备应按要求进行检定或校准,且在法定有效期内。检定或校准的资料(证书复印件)应放在工作现场备查。
第二十条基桩检测机构应将原始记录、检测报告按规定时间保留。记录的保存应便于查阅。
检测原始记录应采用带连续编号的制式表格,且不得转誊。如发现有任何以白纸或其它形式的草稿记录,均按舞弊论处。
第二十一条基桩检测的委托应由建设单位提出。若是施工单位进行工程总承包的并有合法分包的,也可由总承包单位提出,并取得建设单位认可。
第二十二条基桩检测应当签订基桩检测委托合同,并在市招标办备案。
第二十三条基桩检测单位应按规范、省市规定的检测要求、数量进行基桩检测,不得任意减少基桩检测数量。
第二十四条基桩检测合同签订后七天内或正式检测前,应向市质监站报送检测合同、选桩表及检测方案。向市安监站报送基桩静载试验安全管理措施。
第二十五条基桩检测单位应建立完善的质量、安全保证体系,在现场检测管理中,应满足以下条件:
1.基桩检测对检测数量、检测位置、检测程序、检测方法和检测报告等的具体要求,应严格遵照《选桩表》、《建筑基桩检测技术规范》(JGJ106-2003)和《江苏省规范基桩质量检测工作实施导则》等现行相关规范、规程及规定执行,否则,该检测报告不能作为验收依据。
2.检测现场应建立工作联系单制度,会同业主或监理单位对试验桩位进行核实;
3.基桩静载试验应制定可行的试验安全管理措施。试验安全管理措施应报送市建筑安全监督站,并主动接受检查;
4.试验前应编制能反映检测时间、部位、人员、方式的试验方案,该方案应在试验现场便于获取。
5.基桩检测单位应设专职核查人员,对静载最后一级荷载加荷及稳定情况进行核实并做好相应记录。
第二十六条基桩承载检测实行首根试验报告制。当第一根桩开始加压检测时,应报告市质监站。市质监站根据情况随机抽查。若基桩承载力不满足设计要求时,应及时通知业主或监理核实,并报市质监站。
第二十七条基桩检测报告在交委托方时,同时送市质监站一份。
第四章其他规定和要求
第二十八条本市各相关管理部门按分工加强对全市基桩施工和基桩检测行为的监督管理,建立基桩施工和基桩检测(机构)的信用档案。对监督抽查中发现的监理、施工、检测等方面的问题进行记录,定期向社会公布。对存在严重问题或不良行为的单位(机构),市建设行政主管部门将按相关法规处理,并对市外施工、检测机构还将实施限制准入制度。
第二十九条对基桩施工单位的下列行为应予记录:
1.未按照经审查合格的施工图或违反工程建设强制性标准的;
2.未按规定通知有关单位对进场的预制桩进行检验,或检验不合格擅自使用的;
3.未按规定对现场预制砼桩所用的原材料或成品桩进行检验、复试,或检验、复试不合格擅自使用的;或对应进行隐蔽验收的项目未经验收,进入下一道工序的;
4.市外单位未经资格(资质)核验,即在本市承揽业务的;
5.基桩施工合同(分包合同)未经备案的,或者将合同内容进行转包或违法分包的;
6.超越本单位资质等级和范围或者未取得安全生产许可证承揽工程的;
7.施工期间,因工程质量和施工安全原因被责令暂停施工的;
8.工程技术资料弄虚作假,或缺损严重;
9.基桩施工未编制施工方案或编制不合要求;施工过程中关键岗位未持证上岗的;
10.施工计量设备未定期检定、校正或检定、校正证书不全的;
11.违反本规定进行基桩检测委托的;
12.其它按规定应当记录的行为。
第三十条对基桩检测机构的下列不良行为应予记录:
1.检测机构未经备案、市外检测机构未经资格(资质)核验的;
2.未签订基桩检测合同或合同未经备案的;
3.不按经设计审核确认的桩号、现行技术标准从事检测工作、情节严重的;
4.检测机构人员数量配备、资格条件等不符合本办法第十八条规定的,或从事检测的人员与备案登记人员不符的,或现场有无证上岗行为的;
5.伪造检测数据,出具虚假检测报告或检测结论的;
6.因检测报告错误,造成后果的;
7.检测设备未按要求检定或校准,或不在有效期内,或检定(较准)资料在现场无法查验的;
8.基桩静载试验安全管理措施未经安全监督站备案或措施不落实造成后果的, 静载试验反力容量大于500kN时仍使用袋装砂、土堆载的;
9.检测结论不合格的报告未及时按有关规定向市质监站等相关单位报告的;
10.检测原始记录不符合本办法规定要求的;
11.未按规定报送检测合同、选桩表及检测方案或未执行基桩首根试验报告制度的;
12.其它按规定应当记录的行为。
第三十一条对监督抽查中发现的监理(建设)单位未能按规定对基桩施工、检测工作实施监理或对基桩施工、检测过程中违反法规、强制性标准的行为未进行书面制止并上报以及与相关单位串通弄虚作假的行为将予以记录,情节严重的,市规划建设局将按有关法规进行必要的处理,并对市外监理单位还将实施限制准入制度。
第三十二条任何单位和个人都有权举报不按照有关规定进行的基桩施工和基桩检测的行为。
第三十三条本办法试行期间,若上级机关有新的管理规定发布,以其为准。
第三十四条本办法由市规划建设局负责解释,自2007年11月1日起执行。
第四篇:桩基检测管理办法
西咸北环线高速公路建设管理处
关于印发《桥梁桩基检测管理办法(试行)》的通知
各施工、监理单位:
西咸北环线高速公路建设项目桥梁桩基工程已开始施工,为了准确评价桥梁桩基的施工质量,根据相关技术规范及西咸北环线高速公路路基桥梁工程施工招标文件的要求,认真做好桥梁桩基检测、评定工作,特制定《桥梁桩基检测管理办法(试行)》,现印发给你们,请遵照执行。
附件:桥梁桩基检测管理办法(试行)
2013年9月13日
附件:
一、总则 桥梁桩基检测管理办法
(试行)为加强西咸北环线高速公路建设项目(以下简称“本项目”)桩基检测管理,准确评价桩基工程施工质量,根据相关技术规范、本项目路基桥梁工程施工招标文件和相关文件的要求,认真做好桥梁桩基检测、评定工作,特制定本办法。
二、基本要求
(一)桩基检测采用超声波检测法(《公路工程基桩动测技术规程》JTG/T F81-01-2004、《建筑基桩检测技术规范》JGJ106-2003)进行完整性检测,检测频率为100%。
(二)对桩基进行超声波检测后,检测单位如怀疑可能存在质量问题或难以判定质量等级的桩,可建议采取钻芯取样法进行补充检测,通过观察芯样的完整性质量情况和芯样的强度试验,进一步判定桩基质量等级。
三、检测程序
桩基检测须在成桩7d以上且破凿完桩头后进行,应由施工单位向总监办提交经驻地办审核的桩基检测申请书(见表1),写明检测的部位及数量,由总监办通知检测单位进行检测,同时通知驻地办工程师参加。
(一)准备阶段
检测单位进场后应立即与相对应合同段的监理单位联系,掌握工程概况及与检测工作有关的工程数量、工程进度等内容。
(二)检测阶段
由总监办统一安排实施,施工单位协助,做好各项配合工作,总监办、驻地办负责见证、监督、协调工作。
(三)结果处理
1.检测单位受管理处和施工单位共同委托,对检测结果负责。
2.检测单位应及时、准确、全面的完成检测工作并提交检测结果,不得影响施工单位的正常施工进度。3.检测成果应提交的报告份数为五份。(管理处二份,总监办、驻地办、施工单位各一份,由驻地办负责分发)
4.经进一步检测或取芯钻探确认存在质量问题的缺陷桩,检测单位应在核实无误的情况下,将检测结论报管理处、总监办、驻地办,由驻地办拿出相关处理方案和意见,经管理处和总监办审查同意后,由施工单位进行实施整改,处理完成后由检测单位重新检测,符合规范及设计要求后方可进行下道工序;对于未经批准施工单位擅自处理或补强的缺陷桩一律不予认可,并给予相应处罚。
四、检测单位职责
(一)桩基检测单位必须坚守职业道德,独立、公正、科学的做好本项目的桩基检测工作,并对签认出具的《桩基质量检测评定报告》终身负责。
(二)检测单位进场后,应及时与管理处、总监办、驻地办和施工单位建立相应的工作联系,同时必须常驻工地现场,做到及时检测,随叫随到。
(三)检测单位应牢固树立服务意识,不得以任何借口拖延检测时间,必要时须派出多个检测小组分组进行,各检测单位的负责人应随时保持电话通畅。
(四)检测费中已包含检测人员的人工费、差旅费、设备使用费等,检测单位不得以任何借口要求被检方接待、提供食宿、车辆接送、收受礼金赠券等,一经发现或被举报查实,将严肃处理,并扣减相应检测费用。
(五)检测单位应在每周日下午五点前提交桩检周报表电子版(见表4)报驻地办。
(六)检测时驻地办现场监理工程师、施工单位桥梁工程师必须现场旁站,总监办需派人参加。检测完成后,为便于下道工序的施工展开,桩基检测单位应及时向该段所属驻地办提交桩基检测临时检测报告(表2),并加盖公章。检测报告一式四份,其中管理处、总监办、驻地办、施工单位各一份,由驻地办及时负责分发。
五、监理单位职责
(一)检测单位进场后,各级监理单位应将其纳入正常质量管理范围,对日常开展的检测工作提供必要的监理服务,并做好监理日记。
(二)各级监理单位必须派桥梁专业监理工程师现场跟踪桩检,对检测结果及时予以签字确认。
(三)总监办应统筹安排并制定合理检测计划,尽量减少检测单位频繁变换检测点而耽误的路程,节约时间。
(四)总监办根据检测单位提供的检测报告或初步判定意见,对所存在的问题要及时、严格整改落实。
(五)驻地办应建立管段内桩基检测台帐(表3),同时每周一向总监办报送桩基检测台账及桩检周报表,由总监办整理汇总后每周二向管理处质量安全科报送。
六、施工单位职责
(一)按规范规定埋设声测管,对于声测管材的材质选定、连接、密封等按照规范要求进行,不得出现短埋、偏位、堵管等现象,因自身原因造成 4 声测工作延误和费用的增加由施工单位自行承担。
(二)配合检测单位做好检测的准备工作和进场引导工作。
(三)对于通过声测判定和取芯检测判定均不合格的桩基,按相关要求处理或废桩、返工等造成的费用增加由施工方承担。
(四)应做好安全保护工作,确保进场检测人员的人身和仪器设备的安全。
七、对桩基质量的认定和计量支付
桩基质量的认定必须由检测单位出具正式的质量检测报告,确定桩基的完整合格。
桩基桩基工程计量时,质检资料必须齐全,且必须有合格的《桩基质量检测评定报告》,正式报告未提交时,可附桩基检测临时报告,检测数量须经管理处、总监办、驻地办、检测单位、施工单位共同核对无误后,按工程量清单相关细目予以计量;对桩基存在明显缺陷需进一步检测或缺陷未处理完的桩基一律不予计量。
检测费用支付由各施工单位出具委托支付证明,管理处从各施工单位合同相应费用中扣除,代施工单位支付给检测单位。费用支付分二次进行,检测单位进场后15日个工作日内预付估算合同费用的20%;全部检测完成,且提交检测报告,数量核对无误,支付剩余的全部费用。
各施工、监理单位应积极配合检测单位做好桩基检测工作,并做好检测记录,务必使桩基检测结果真实可靠,确保本项目桥梁桩基工程的内在质量。
八、其他
(一)本办法适用于西咸北环线高速公路建设项目建设项目。
(二)本办法由西咸北环线高速公路建设管理处负责解释。
(三)本办法自下发之日起执行。
第五篇:桩基检测规范
总 则
1.0.1 为了确保基桩检测工作质量,统一基桩检测方法,为设计和施工验收提供可靠依据,使基桩质量检测工作符合安全适用、技术先进、数据准确、正确评价的要求,制定本规范。
1.0.2 本规范适用于建筑工程基桩的承载力和桩身完整性的检测与评价。
1.0.3 基桩检测方法应根据各种检测方法的特点和适用范围,考虑地质条件、桩型及施工质量可靠性、使用要求等因素进行合理选择搭配。基桩检测结果应结合上述因素进行分析判定。
1.0.4 建筑工程基桩的质量检测除应执行本规范外,尚应符合国家现行有关强制性标准的规定。
术语、符号
2.1 术 语
2.1.1 基桩 foundation pile
桩基础中的单桩。
2.1.2 桩身完整性 pi1e integrity
反映桩身截面尺寸相对变化、桩身材料密实性和连续性的综合定性指标。
2.1.3 桩身缺陷 pile defects
使桩身完整性恶化,在一定程度上引起桩身结构强度和耐久性降低的桩身断裂、裂缝、缩颈、夹泥(杂物)、空洞、蜂窝、松散等现象的统称。
2.1.4 静载试验static loading test
在桩顶部逐级施加竖向压力、竖向上拔力或水平推力,观测桩顶部随时间产生的沉降、上拔位移或水平位移,以确定相应的单桩竖向抗压承载力、单桩竖向抗拔承载力或单桩水平承载力的试验方法。
2.1.5 钻芯法 core drilling method
用钻机钻取芯样以检测桩长、桩身缺陷、桩底沉渣厚度以及桩身混凝土的强度、密实性和连续性,判定桩端岩土性状的方法。
2.1.6 低 应变法 low strain integriiy testing
采用低能量瞬态或稳态激振方式在桩顶激振,实测桩顶部的速度时程曲线或速度导纳曲线,通过波动理论分析或频域分析,对桩身完整性进行判定的检测方法。
2.1.7 高应变法high strain dynamic testing
用重锤冲击桩顶,实测桩顶部的速度和力时程曲线,通过波动理论分析,对单桩竖向抗压承载力和桩身完整性进行判定的检测方法。
2.1.8 声波透射法 crosshole sonic logging
在预埋声测管之间发射并接收声波,通过实测声波在混凝土介质中传播的声时、频率和波幅衰减等声学参数的相对变化,对桩身完整性进行检测的方法。
2.2 符 号
2.2.1 抗力和材料性能
c ——桩身一维纵向应力波传播速度(简称桩身波速);
E ——桩身材料弹性模量;
cu f ——混凝土芯样试件抗压强度;
m ——地基土水平抗力系数的比例系数;
u Q ——单桩竖向抗压极限承载力;
a R ——单桩竖向抗压承载力特征值;
c R ——由凯司法判定的单桩竖向抗压承载力;
x R ——缺陷以上部位土阻力的估计值;
|? ——桩身混凝土声速;
Z ——桩身截面力学阻抗;
|? ——桩身材料质量密度。
2.2.2 作 用与作用效应 F ——锤击力;
H ——单桩水平静载试验中作用于地面的水平力;
P ——芯样抗压试验测得的破坏荷载;
Q ——单桩竖向抗压静载试验中施加的竖向荷载、桩身轴力;
s ——桩顶竖向沉降、桩身竖向位移;
U ——单桩竖向抗拔静载试验中施加的上拔荷载;
V ——质点运动速度;
0 Y ——水平力作用点的水平位移;
|? ——桩顶上拔量;
S |ò ——钢筋应力。
2.2.3 几何参数
A ——桩身截面面积;
B ——矩形桩的边宽;
0 b ——桩身计算宽度;
D ——桩身直径(外径);
d ——芯样试件的平均直径;
I ——桩身换算截面惯性矩;
l ??——每检测剖面相应两声测管的外壁间净距离;
L ——测点下桩长;
x ——传感器安装点至桩身缺陷的距离;
z ——测点深度。
2.2.4 计算系数 c J ——凯司法阻尼系数;
|á ——桩的水平变形系数;
|? ——高应变法桩身完整性系数;
|? ——样本中不同统计个数对应的系数;
y |í ——桩顶水平位移系数;
|? ——混凝土芯样试件抗压强度折算系数。
2.2.5 其他
m A ——声波波幅平均值;
p A ——声波波幅值;
a ——信号首波峰值电压;
0 a ——零分贝信号峰值电压;
m c ——桩身波速的平均值;
f ——频率、声波信号主频;
n ——数目、样本数量;
x s ——标准差;
T ——信号周期;
t ??——声测管及耦合水层声时修正值;
0 t ——仪器系统延迟时间;
t ——速度第一峰对应的时刻;
c t ——声时;
i t ——时间、声时测量值;
r t ——锤击力上升时间; x t ——缺陷反射峰对应的时刻;
0 |? ——声速的异常判断值;
c |? ——声速的异常判断临界值;
L |? ——声速低限值;
m |? ——声速平均值;
f.——幅频曲线上桩底相邻谐振峰间的频差;
f ??.——幅频曲线上缺陷相邻谐振峰间的频差;
T.——速度波第一峰与桩底反射波峰间的时间差;
x t.——速度波第一峰与缺陷反射波峰间的时间差。
基本规定
3.1 检测方法和内容
3.1.1 工程桩应进行单桩承载力和桩身完整性抽样检测。
3.1.2 基 桩检测方法应根据检测目的按表3.1.2 选择。
表3.1.2 检测方法及检测目的
检测方法检测目的:
单桩竖向抗压静载试验,确定单桩竖向抗压极限承载力,判定竖向抗压承载力是否满足设计要求,通过桩身内力及变形测试、测定桩侧、桩端阻力;验证高应变法的单桩竖向抗压承载力检测结果。
单桩竖向抗拔静载试验,确定单桩竖向抗把极限承载力,判定竖向抗拔承载力是否满足设计要求。
通过桩身内力及变形测试,测定桩的抗拔摩阻力。
单桩水平静载试验确定单桩水平临界和极限承载力,推定土抗力参数判定水平承载力是否满足设计要求。
通过桩身内力及变形测试,测定桩身弯矩。钻芯法:
检测灌注桩桩长、桩身混凝土强度、桩底沉渣厚度,判断或鉴别桩端岩土性状,判定桩身完整性类别。
低应变法检测桩身缺陷及其位置,判定桩身完整性类别。
高应变法:
判定单桩竖向抗压承载力是否满足设计要求;
检测桩身缺陷及其位置,判定桩身完整性类别,分析桩侧和桩端土阻力。
声波透射法检测灌注桩桩身缺陷及其位置,判定桩身完整性类别。
3.1.3 桩身完整性检测宜采用两种或多种合适的检测方法进
3.1.4 基桩检测除应在施工前和施工后进行外,尚应采取符合本规范规定的检测方法或专业验收规范规定的其他检测方法,进行桩基施工过程中的检测,加强施工过程质量控制。
3.2 检测工作程序
3.2.2 调查、资料收集阶段宜包括下列内容:
收集被检测工程的岩土工程勘察资料、桩基设计图纸、施工记录;了解施工工艺和施工中出现的异常情况。
进一步明确委托方的具体要求。
检测项目现场实施的可行性。
3.2.3 应 根据调查结果和确定的检测目的,选择检测方法,制定检测方案。检测方案宜包含以下内容:工程概况,检测方法及其依据的标准,抽样方案,所需的机械或人工配合,试验周期。
3.2.4 检测前应对仪器设备检查调试。
3.2.5 检测用计量器具必须在计量检定周期的有效期内。
3.2.6 检测开始时间应符合下列规定:
当采用低应变法或声波透射法检测时,受检桩混凝土强度至少达到设计强度的
70%,且不小于15MPa。
当采用钻芯法检测时,受检桩的混凝土龄期达到28d 或预留同条件养护试块强度达到设计强度。
承载力检测前的休止时间除应达到本条第2 款规定的混凝土强度外,当无成熟的地区经验时,尚不应少于表3.2.6 规定的时间。
表3.2.6 休止时间
土的类型休止时间(d)
砂土7
粉土10
非饱和15 粘性土
饱和25
注:对于泥浆护壁灌注桩,宜适当延长休止时间。
3.2.7 施 工后,宜先进行工程桩的桩身完整性检测,后进行承载力检测。当基础埋深较大时,桩身完整性检测应在基坑开挖至基底标高后进行。
3.2.8 现场检测期间,除应执行本规范的有关规定外,还应遵守国家有关安全生产的规定。当现场操作环境不符合仪器设备使用要求时,应采取有效的防护措施。
3.2.9 当发现检测数据异常时,应查找原因,重新检测。
3.2.10 当 需要进行验证或扩大检测时,应得到有关各方的确认,并按本规范第3.4.1 ~
3.4.7 条的有关规定执行。
3.3 检测数量
3.3.1 当设计有要求或满足下列条件之一时,施工前应采用静载试验确定单桩竖向抗压承载力特征值:
设计等级为甲级、乙级的桩基;
地 质条件复杂、桩施工质量可靠性低;
本地区采用的新桩型或新工艺。检测数量在同一条件下不应少于3 根,且不宜少于总桩数的1%;当工程桩总数在50 根以内时,不应少于2 根。
3.3.2 打入式预制桩有下列条件要求之一时,应采用高应变法进行试打桩的打桩过程监测:
控制打桩过程中的桩身应力;
选择沉桩设备和确定工艺参数;
选择桩端持力层。
在相同施工工艺和相近地质条件下,试打桩数量不应少于3 根。
3.3.3 单桩承载力和桩身完整性验收抽样检测的受检桩选择宜符合下列规定:
施工质量有疑问的桩;
设计方认为重要的桩;
局部地质条件出现异常的桩;
施工工艺不同的桩;
承载力验收检测时适量选择完整性检测中判定的Ⅲ类桩;
除上述规定外,同类型桩宜均匀随机分布。
3.3.4 混凝土桩的桩身完整性检测的抽检数量应符合下列规定:
柱下三桩或三桩以下的承台抽检桩数不得少于1 根。
设 计等级为甲级,或地质条件复杂。成桩质量可靠性较低的灌注桩,抽检数量不应少于总桩数的30%,且不得少于20 根;其他桩基工程的抽检数量不应少于总桩数的20%,且不得少于10 根。
注:1 对端承型大直径灌注桩,应在上述两款规定的抽检桩数范围内,选用钻芯法或声波透射法对部分受检桩进行桩身完整性检测。抽检数量不应少于总桩数的10%。
地下水位以上且终孔后桩端持力层已通过核验的人工挖孔桩,以及单节混凝土预制桩,抽检数量可适当减少,但不应少于总桩数的10%,且不应少于10 根。
当符合第3.3.3 条第1~4 款规定的桩数较多,或为了全面了解整个工程基桩的 桩身完整性情况时,应适当增加抽检数量。
3.3.5 对单位工程内且在同一条件下的工程桩,当符合下列条件之一时,应采用单桩竖向抗压承载力静载试验进行验收检测:
设计等级为甲级的桩基;
地 质条件复杂、桩施工质量可靠性低;
本 地区采用的新桩型或新工艺;
挤土群桩施工产生挤土效应。
抽检数量不应少于总桩数的l%,且不少于3 根;当总桩数在50 根以内时,不应少
于2 根。
注:对上述第1~4 款规定条件外的工程桩,当采用竖向抗压静载试验进行验收承载力检测时,抽检数量宜按本条规定执行。
3.3.6 对第3.3.5 条规定条件外的预制桩和满足高应变法适用检测范围的灌注桩,可采用高应变法进行单桩竖向抗压承载力验收检测。当有本地区相近条件的对比验证资料时,高应变法也可作为第3.3.5 条规定条件下单桩竖向抗压承载力验收检测的补充。抽检数量不宜少于总桩数的5%,且不得少于5 根。
3.3.7 对 于端承型大直径灌注桩,当受设备或现场条件限制无法检测单桩竖向抗压承载力时,可采用钻芯法测定桩底沉渣厚度并钻取桩端持力层岩土芯样检验桩端持力层。抽检数量不应少于总桩数的10%,且不应少于10 根。
3.3.8 对于承受拔力和水平力较大的桩基,应进行单桩竖向抗拔、水平承载力检测。检测数量不应少于总桩数的l%,且不应少于3 根。
3.4 验证与扩大检测
3.4.1 当 出现本规范第8.4.5~8.4.6 条和第9.4.7 条中所列情况时,应进行验证检测。验证方法宜采用单桩竖向抗压静载试验;对于嵌岩灌注桩,可采用钻芯法验证。
3.4.2 桩身浅部缺陷可采用开挖验证。
3.4.3 桩身或接头存在裂隙的预制桩可采用高应变法验证。
3.4.4 单 孔钻芯检测发现桩身混凝土质量问题时,宜在同一基桩增加钻孔验证。
3.4.5 对 低应变法检测中不能明确完整性类别的桩或Ⅲ类桩,可根据实际情况采用静载法、钻芯法、高应变法、开挖等适宜的方法验证检测。
3.4.6 当单桩承载力或钻芯法抽检结果不满足设计要求时,应分析原因,并经确认后扩大抽检。
3.4.7 当采用低应变法、高应变法和声波透射法抽检桩身完整性所发现的Ⅲ、Ⅳ类桩之和大于抽检桩数的20%时,宜采用原检测方法(声波透射法可改用钻芯法),在未检桩中继续扩大抽检。
3.5 检测结果评价和检测报告
3.5.1 桩 身完整性检测结果评价,应给出每根受检桩的桩身完整性类别。桩身完整性分类应符合表 3.5.1 的规定,并按本规范第7~10 章分别规定的技术内容划分。表3.5.1 桩身完整性分类表
桩身完整性类别分类原则
Ⅰ类桩桩身完整
Ⅱ类桩桩身有轻微缺陷,不会影响桩身结构承载力的正常发挥
Ⅲ类桩桩身有明显缺陷,对桩身结构承载力有影响
Ⅳ类桩桩身存在严重缺陷
3.5.2 Ⅳ类桩应进行工程处理。
3.5.3 工 程桩承载力检测结果的评价,应给出每根受检桩的承载力检测值,并据此给出单位工程同一条件下的单桩承载力特征值是否满足设计要求的结论。
3.5.4 检 测报告应结论准确,用词规范。
3.5.5 检 测报告应包含以下内容:
委托方名称,工程名称、地点,建设、勘察、设计、监理和施工单位,基础、结构型式,层数,设计要求,检测目的,检测依据,检测数量,检测日期;
地质条件描述;
受检桩的桩号、桩位和相关施工记录;
检测方法,检测仪器设备,检测过程叙述;
受检桩的检测数据,实测与计算分析曲线、表格和汇总结果;
与检测内容相应的检测结论。
3.6 检测机构和检测人员
3.6.1 检测机构应通过计量认证,并具有基桩检测的资质。
3.6.2 检测人员应经过培训合格,并具有相应的资质。
单桩竖向抗压静载试验
4.1 适用范围
4.1.1 本方法适用于检测革桩的竖向抗压承载力。
4.1.2 当埋设有测量桩身应力、应变、桩底反力的传感器或位移杆时,可测定桩的分层侧阻力和端阻力或桩身截面的位移量。
4.1.3 为设计提供依据的试验桩,应加载至破坏;当桩的承载力以桩身强度控制时,可按设计要求的加载量进行。
4.1.4 对 工程桩抽样检测时,加载量不应小于设计要求的单桩承载力特征值的2.0 倍。
4.2 设备仪器及其安装
4.2.1 试验加载宜采用油压千斤顶。当采用两台及两台以上千斤顶加载时应并联同步工作,且应符合下列规定:
采用的千斤顶型号、规格应相同。
千斤顶的合力中心应与桩轴线重合。
4.2.2 加载反力装置可根据现场条件选择锚桩横梁反力装置、压重平台反力装置、锚桩压重联合反力装置、地锚反力装置,并应符合下列规定:
加载反力装置能提供的反力不得小于最大加载量的1.2 倍。
应对加载反力装置的全部构件进行强度和变形验算。
应对锚桩抗拔力(地基土、抗拔钢筋、桩的接头)进行验算;采用工程桩作锚桩时,锚桩数量不应少于4 根,并应监测锚桩上拔量。
压重宜在检测前一次加足,并均匀稳固地放置于平台上。5 压 重施加于地基的压应力不宜大于地基承载力特征值的1.5 倍,有条件时宜利用工程桩作为堆载支点。
4.2.3 荷 载测量可用放置在千斤顶上的荷重传感器直接测定;或采用并联于千斤顶油路的压力表或压力传感器测定油压,根据千斤顶率定曲线换算荷载。传感器的测量误差不应大于1%,压力表精度应优于或等于0.4 级。试验用压力表、油泵、油管在最大加载时的压力不应超过规定工作压力的80%。的压力不应超过规定工作压力的80%。
4.2.4 沉降测量宜采用位移传感器或大量程百分表,并应符合下列规定:4.2.4 沉降测量宜采用位移传感器或大量程百分表,并应符合下列规定:
测量误差不大于0.1%,分辨力优于或等于0.01mm。1 测量误差不大于0.1%,分辨力优于或等于0.01mm。
直径或边宽大于500 mm 的桩,应在其两个方向对称安置4 个位移测试仪表,直径或边宽小于等于500mm 的桩可对称安置2 个位移测试仪表。
直径或边宽大于500 mm 的桩,应在其两个方向对称安置4 个位移测试仪表,直
径或边宽小于等于500mm 的桩可对称安置2 个位移测试仪表。
沉降测定平面宜在桩顶200mm以下位置,测点应牢固地固定于桩身。3沉降测定平面宜在桩顶200mm 以下位置,测点应牢固地固定于桩身。
基准梁应具有一定的刚度,梁的一端应固定在基准桩上,另一端应简支于基准
桩上。
基准梁应具有一定的刚度,梁的一端应固定在基准桩上,另一端应简支于基准
桩上。
固定和支撑位移计(百分表)的夹具及基准梁应避免气温、振动及其他外界因素的影响。
4.2.5 试桩、锚桩(压重平台支墩边)和基准桩之间的中心距离应符合表4.2.5 规定。4.2.5 试桩、锚桩(压重平台支墩边)和基准桩之间的中心距离应符合表4.2.5 规定。
4.2.6 当 需要测试桩侧阻力和桩端阻力时,桩身内埋设传感器应按本规范附录A 执行。4.2.6 当 需要测试桩侧阻力和桩端阻力时,桩身内埋设传感器应按本规范附录A 执行。
4.3 现场检测
4.3.1 试桩的成桩工艺和质量控制标准应与工程桩一致。
4.3.2 桩顶部宜高出试坑底面,试坑底面宜与桩承台底标高一致。混凝土桩头加固可按本规范附录B 执行。
4.3.3 对作为锚桩用的灌注桩和有接头的混凝土预制桩,检测前宜对其桩身完整性进行检测。
4.3.4 试 验加卸载方式应符合下列规定:
加载应分级进行,采用逐级等量加载;分级荷载宜为最大加载量或预估极限承载力的1/10,其中第一级可取分级荷载的2 倍。
卸载应分级进行,每级卸载量取加载时分级荷载的2 倍,逐级等量卸载。
加、卸载时应使荷载传递均匀、连续、无冲击,每级荷载在维持过程中的变化幅度不得超过分级荷载的±10%。
4.3.5 为设计提供依据的竖向抗压静载试验应采用慢速维持荷载法。
4.3.6 慢速维持荷载法试验步骤应符合下列规定:
每级荷载施加后按第5、15、30、45、60min 测读桩顶沉降量,以后每隔30min测读一次。
试 桩沉降相对稳定标准:每一小时内的桩顶沉降量不超过0.1mm,并连续出现两次(从分级荷载施加后第30min 开始,按1.5h 连续三次每30min 的沉降观测值计算)。
当 桩顶沉降速率达到相对稳定标准时,再施加下一级荷载。
卸载时,每级荷载维持lh,按第15、30、60min 测读桩顶沉降量后,即可卸下一级荷载。卸载至零后,应测读桩顶残余沉降量,维持时间为3h,测读时间为第15,30min,以后每隔30min 测读一次。
4.3.7 施工后的工程桩验收检测宜采用慢速维持荷载法。当有成熟的地区经验时,也可采用快速维持荷载法。快速维持荷载法的每级荷载维持时间至少为1h,是否延长维持荷载时间应根据桩顶沉降收敛情况确定。
4.3.8 当出现下列情况之一时,可终止加载:
某级荷载作用下,桩顶沉降量大于前一级荷载作用下沉降量的5 倍。
注:当桩顶沉降能相对稳定且总沉降量小于40mm 时,宜加载至桩顶总沉降量超过40mm。
某级荷载作用下,桩顶沉降量大于前一级荷载作用下沉降量的2 倍,且经24h 尚未达到相对稳定标准。
已达到设计要求的最大加载量。
当工程桩作锚桩时,锚桩上拔量已达到允许值。
当荷载.沉降曲线呈缓变型时,可加载至桩顶总沉降量60~80mm;在特殊情况下,可根据具体要求加载至桩顶累计沉降量超过80mm。
4.3.9 检 测数据宜按本规范附录c 附表C.0.1 的格式记录。
4.3.10 测 试桩侧阻力和桩端阻力时,测试数据的测读时间宜符合第4.3.6 条的规定。
4.4 检测数据的分析与判定
4.4.1 检测数据的整理应符合下列规定:
确定单桩竖向抗压承载力时,应绘制竖向荷载-沉降(Q)、沉降-时间对数()曲线,需要时也可绘制其他辅助分析所需曲线。
当进行桩身应力、应变和桩底反力测定时,应整理出有关数据的记录表,并按本规范附录A 绘制桩身轴力分布图,计算不同土层的分层侧摩阻力和端阻力值。
4.4.2 单桩竖向抗压极限承载力。可按下列方法综合分析确定:
根据沉降随荷载变化的特征确定:对于陡降型Q 曲线,取其发生明显陡降的
起始点对应的荷载值。
根 据沉降随时间变化的特征确定:取曲线尾部出现明显向下弯曲的前一级
荷载值。
出现第4.3.8 条第2 款情况,取前一级荷载值。
对于缓变型Q 曲 线可根据沉降量确定,宜取S=40mm 对应的荷载值;当桩长
大于40m 时,宜考虑桩身弹性压缩量;对直径大于或等于8mmm 的桩,可取S=0.05D(D为桩端直径)对应的荷载值。
注:当按上述四款判定桩的竖向抗压承载力未达到极限时,桩的竖向抗压极限承载力应取最大试验荷载值。
4.4.3 单桩竖向抗压极限承载力统计值的确定应符合下列规定:
参加统计的试桩结果,当满足其极差不超过平均值的30%时,取其平均值为单桩竖向抗压极限承载力。
当极差超过平均值的30%时,应分析极差过大的原因,结合工程具体情况综合确
定,必要时可增加试桩数量。
对桩数为3 根或3 根以下的柱下承台,或工程桩抽检数量少于3 根时,应取低值。
4.4.4 单位工程同一条件下的单桩竖向抗压承级力特征值应按单桩竖向抗压极限承载力统计值的一半取值。
4.4.5 检测报告除应包括本规范第3.5.5 条内容外,还应包括:
受检桩桩位对应的地质柱状图;
受检桩及锚桩的尺寸、材料强度、锚桩数量、配筋情况;
加载反力种类,堆载法应指明堆载重量,锚桩法应有反力梁布置平面图;
加卸载方法,荷载分级;
本规范第4.4.1 要求绘制的曲线及对应的数据表;与承载力判定有关的曲线及数据;
承载力判定依据;
当进行分层摩阻力测试时,还应有传感器类型、安装位置,轴力计算方法,各级荷载下桩身轴力变化曲线,各土层的桩侧极限摩阻力和桩端阻力。
单桩竖向抗拔静载试验
5.1 适用范围
5.1.1 本方法适用于检测单柱的竖向抗拔承载力。
5.1.2 当 埋设有桩身应力、应变测量传感器时,或桩端埋设有位移测量杆时,可直接测量桩侧抗拔摩阻力,或桩端上拔量。
5.1.3 为设计提供依据的试验桩应加载至桩侧土破坏或桩身材料达到设计强度;对工程桩抽样检测时,可按设计要求确定最大加载量。
5.2 设备仪器及其安装 5.2.1 抗拔桩试验加载装置宜采用油压千斤顶,加载方式应符合本规范第4.2.1 条规定。
5.2.2 试验反力装置宜采用反力桩(或工程桩)提供支座反力,也可根据现场情况采用天然地基提供支座反力。反力架系统应具有1.2 倍的安全系数并符合下列规定:
采用反力桩(或工程桩)提供支座反力时,反力桩顶面应平整并具有一定的强度。
采用天然地基提供反力时,施加于地基的压应力不宜超过地基承载力特征值的1.5 倍;反力梁的支点重心应与支座中心重合。
5.2.3 荷 载测量及其仪器的技术要求应符合本规范第4.2.3 条的规定。
5.2.4 桩顶上拔量测量及其仪器的技术要求应符合本规范4.2.4 条的有关规定。
注:桩顶上拔量观测点可固定在桩顶面的桩身混凝土上。
5.2.5 试桩、支座和基准桩之间的中心距离应符合表4.2.5 的规定。
5.2.6 当 需要测试桩侧抗拔摩阻力分布或桩端上拔位移时,桩身内埋设传感器或桩端埋设位移杆应按本规范附录A 执行。
5.3 现场检测
5.3.1 对混凝土灌注桩、有接头的预制桩,宜在拔桩试验前采用低应变法检测受检桩的桩身完整性。为设计提供依据的抗拔灌注桩施工时应进行成孔质量检测,发现桩身中、下部位有明显扩径的桩不宜作为抗拔试验桩;对有接头的预制桩,应验算接头强度。
5.3.2 单 桩竖向抗拔静载试验宜采用慢速维持荷载法。需要时,也可采用多循环加、卸载方法。慢速维持荷载法的加卸载分级、试验方法及稳定标准应按本规范第4.3.4 条和4.3.6 条有关规定执行,并仔细观察桩身混凝土开裂情况。
5.3.3 当出现下列情况之一时,可终止加载:
在 某级荷载作用下,桩顶上拔量大于前一级上拔荷载作用下的上拔量5 倍。
按桩顶上拔量控制,当累计桩顶上拔量超过100mm 时。
按 钢筋抗拉强度控制,桩顶上拔荷载达到钢筋强度标准值的0.9 倍。
对 于验收抽样检测的工程桩,达到设计要求的最大上拔荷载值。
5.3.4 检测数据可按本规范附录C 附表C.0.1 的格式记录。5.3.5 测试桩侧抗拔摩阻力或桩端上拔位移时,测试数据的测读时间宜符合本规范第
4.3.6 条的规定。
5.4 检测数据的分析与判定
5.4.1 数据整理应绘制上拔荷载-桩顶上拔量(U)关系曲线和桩顶上拔量-时间对数(关系曲线)。
5.4.2 单 桩竖向抗把极限承载力可按下列方法综合判定:
根据上拔量随荷载变化的特征确定:对陡变型U 曲线,取陡升起始点对应的荷载值;
根据上拔量随时间变化的特征确定:取曲线斜率明显变陡或曲线尾部明显弯曲的前一级荷载值。
当在某级荷载下抗拔钢筋断裂时,取其前一级荷载值。
5.4.3 单 桩竖向抗拔极限承载力统计值的确定应符合本规范第4.4.3 条的规定。
5.4.4 当作为验收抽样检测的受检桩在最大上拔荷载作用下,未出现本规范第5.4.2 条所列三款情况时,可按设计要求判定。
5.4.5 单位工程同一条件下的单桩竖向抗拔承载力特征值应按单桩竖向抗拔极限承载力统计值的一半取值。
注:当工程桩不允许带裂缝工作时,取桩身开裂的前一级荷载作为单桩竖向抗拔承载力特征值,并与按极限荷载一半取值确定的承载力特征值相比取小值。
5.4.6 检 测报告除应包括本规范第3.5.5 条内容外,还应包括:
受检桩桩位对应的地质柱状图;
受检桩尺寸(灌注桩宜标明孔径曲线)及配筋情况;
加卸载方法,荷载分级;
第5.4.1 条要求绘制的曲线及对应的数据表;
承载力判定依据;
当进行抗拔摩阻力测试时,应有传感器类型、安装位置、轴力计算方法,各级荷载下桩身轴力变化曲线,各土层中的抗拔极限摩阻力。6 单桩水平静载试验
6.1 适用范围
6.1.1 本 方法适用于桩顶自由时的单桩水平静载试验;其他形式的水平静载试验可参照使用。
6.1.2 本方法适用于检测单桩的水平承载力,推定地基土抗力系数的比例系数。
6.1.3 当埋设有桩身应变测量传感器时,可测量相应水平荷载作用下的桩身应力,并由此计算桩身弯矩。
6.1.4 为设计提供依据的试验桩宜加载至桩顶出现较大水平位移或桩身结构破坏;对工程桩抽样检测,可按设计要求的水平位移允许值控制加载。
6.2 设备仪器及其安装
6.2.1 水平推力加载装置宜采用油压千斤顶,加载能力不得小于最大试验荷载的1.2倍。
6.2.2 水平推力的反力可由相邻桩提供;当专门设置反力结构时,其承载能力和刚度应大于试验桩的1.2 倍。
6.2.3 荷 载测量及其仪器的技术要求应符合本规范第4.2.3 条的规定;水平力作用点宜与实际工程的桩基承台底面标高一致;千斤顶和试验桩接触处应安置球形支座,千斤顶作用力应水平通过桩身轴线;千斤顶与试桩的接触处宜适当补强。
6.2.4 桩的水平位移测量及其仪器的技术要求应符合本规范第4.2.4 条的有关规定。在水平力作用平面的受检桩两侧应对称安装两个位移计;当需要测量桩顶转角时,尚应在水平力作用平面以上50cm 的受检桩两侧对称安装两个位移计。
6.2.5 位 移测量的基准点设置不应受试验和其他因素的影响,基准点应设置在与作用力方向垂直且与位移方向相反的试桩侧面,基准点与试桩净距不应小于1 倍桩径。
6.2.6 测量桩身应力或应变时,各测试断面的测量传感器应沿受力方向对称布置在远离中性轴的受拉和受压主筋上;埋设传感器的纵剖面与受力方向之间的夹角不得大于10 °。
在地面下10 倍桩径(桩宽)的主要受力部分应加密测试断面,断面间距不宜超过1 倍桩径;超过此深度,测试断面间距可适当加大。桩身内埋设传感器应按本规范附录A 执行。
6.3 现场检测
6.3.1 加 载方法宜根据工程桩实际受力特性选用单向多循环加载法或本规范第4 章规定的慢速维持荷载法,也可按设计要求采用其他加载方法。需要测量桩身应力或应变的试桩宜采用维持荷载法。
6.3.2 试验加卸载方式和水平位移测量应符合下列规定:
单向多循环加载法的分级荷载应小干预估水平极限承载力或最大试验荷载的1/10。每级荷载施加后,恒载4min 后可测读水平位移,然后卸载至零,停2min 测读残余水平位移,至此完成一个加卸载循环。如此循环5 次,完成一级荷载的位移观测。试验不得中间停顿。
慢速维持荷载法的加卸载分级、试验方法及稳定标准应按本规范第4.3.4 条和4.3.6 条有关规定执行。
6.3.3 当 出现下列情况之一时,可终止加载:
桩身折断;
水平位移超过30~40mm(软土取40mm);
水平位移达到设计要求的水平位移允许值。
6.3.4 检测数据可按本规范附录C 附表c.0.2 的格式记录。
6.3.5 测量桩身应力或应变时,测试数据的测读宜与水平位移测量同步。
6.4 检测数据的分析与判定
6.4.1 检测数据应按下列要求整理:
采用单向多循环加载法时应绘制水平力-时间-作用点位移()关系曲线
和水平力-位移梯度(关系曲线)。
采用慢速维持荷载法时应绘制水平力,力作用点位移()关系曲线、水平
力-位移梯度()关系曲线、力作用点位移-时间对数(Y)关系曲线和水平力-力作用点位移双对数(lg)关系曲线。
绘 制水平力、水平力作用点水平位移-地基土水平抗力系数的比例系数的关系曲线。
当桩顶自由且水平力作用位置位于地面处时,值可按下列公式确定:
式中m ——地基上水平抗力系数的比例系数(kN/m);4
|á ——桩的水平变形系数();
y |í ——桩顶水平位移系数,由式(6.4.1-2)试算,当≥4.0 时(h 为桩的入土
深度),;|á h |á441.2 0 =y |í
H ——作用于地面的水平力(KN);
0 Y ——水平力作用点的水平位移(m);
EI ——桩身抗弯刚度(KN ²m2);其中E 为桩身材料弹性模量,I 为桩身换算截面
惯性矩;
0 b ——桩身计算宽度(m);对于圆形桩:当桩径D≤1m 时,b =0.9(1.5D+0.5);
当桩径D>1m 时,b =0.9(D+1)。对于矩形桩:当边宽B≤1m 时,b :1.5B+0.5;当边宽B>1m 时,b =B+1。
6.4.2 对埋设有应力或应变测量传感器的试验应绘制下列曲线,并列表给出相应的据:
各级水平力作用下的桩身弯矩分布图;
水平力-最大弯矩截面钢筋拉应力((H-)曲线。S |ò
6.4.3 单桩的水平临界荷载可按下列方法综合确定:
取单向多循环加载法时的曲线或慢速维持荷载法时的从曲线出
现拐点的前一级水平荷载值。
取曲线或lg 曲线上第一拐点对应的水平荷载值。曲线第一拐点对应的水平荷载值。
6.4.4 单桩的水平极限承载力可按下列方法综合确定:
取单向多循环加载法时的曲线产生明显陡降的前一级、或慢速维持荷载法时的曲线发生明显陡降的起始点对应的水平荷载值。
取慢速维持荷载法时的Y 曲线尾部出现明显弯曲的前一级水平荷载值。t lg 0-
取 曲 线或lg 曲线上第二拐点对应的水平荷载值。H Y H..-/ 0 0 lgY H-4 取 桩身折断或受拉钢筋屈服时的前一级水平荷载值。
6.4.5 单桩水平极限承载力和水平临界荷载统计值的确定应符合本规范第4.4.3 条的规定。
6.4.6 单位工程同一条件下的单桩水平承载力特征值的确定应符合下列规定:
当水平承载力按桩身强度控制时,取水平临界荷载统计值为单桩水承载力特征值。
当桩受长期水平荷载作用且状不允许开裂时,取水平临界荷载统计值的0.8 倍作为单桩水平承载力特征值。
6.4.7 除本规范第6.4.6 条规定外,当水平承载力按设计要求的水平允许位移控制时,可取设计要求的水平允许位移对应的水平荷载作为单桩水平承载力特征值,但应满足有关规范抗裂设计的要求。
6.4.8 检测报告除应包括本规范第3.5.5 条内容外,还应包括:
受检桩桩位对应的地质柱状图;
受检桩的截面尺寸及配筋情况;
加卸载方法,荷载分级:
第6.4.1 条要求绘制的曲线及对应的数据表;
承载力判定依据;
当进行钢筋应力测试并由此计算桩身弯矩时,应有传感器类型、安装位置、内力计算方法和第6.4.2 条要求绘制的曲线及其对应的数据表。