第一篇:新农村设备差的问题
关于“新农村”农业设备差的解决方案
新农村设备即农业机械化在现代农业中有着极其重要的地位和作用,传统的农业生产方式,一个农业劳动力只能养活3-5人,而采用机械化作业方式,一个农业劳动力可以养活数十人乃至上百人。农业机械化在农业生产中还能节省工时、节省种子、减轻劳动强度、降低生产成本、增产、增收、抓住农时,增强抗御自然灾害的能力,在产后对农产品储藏、保鲜、加工和深加工,以实现增效。农业机械化改善了农民的生产生活条件,是现代农业重要基础设施。
但是目前中国新农村农业生产体系仍然很脆弱,科技含量低,抗御自然灾害的能力弱,我们的农业机械化水平还不高,农业设备较为差,农业生产中最苦、最累、最脏的水稻插秧问题,机械化耕作、播种、收割和农产品加工问题,传统农业地域和时季的“自然限制”等问题随着这个农业设备差而逐渐体现出其尖锐的本质。从设备差,机械化程度不高入手,我们认真分析了当前中国新农村机械化设备差的特点以及原因,并得出了一系列解决方案: 减少机械手等人员的流失。多数机手对农机具的构造、故障分析与排除均有一定的实践经验,他们极易向农机修理业转行,这就使农机无规范、质量无标准、检测无设备、修后无监督,凭经验手摸眼看定标准成为可能,给不良埋下隐患。所以通过一定的保障措施较少机械手的流失才可以有效率的解决问题。
更新农村机械化网点设备。必要的技术改造会增加成本,大多数农村农机点不愿投入更多的资金来改造设备。因此必要的提高设备的技术含量,不但可以使农村机械化设备更加成熟,而且还可以减少维护网点设备的资金消耗。
加强农业机械化的质量监督治理。一部分领导对农业机械化的重要性认识不足,重视程度不够门间治理职权界定不明,这样就很难为我国的新农村建设之农业设备提升提供直接的支援,变成一个盲区。所以有一定政策性、针对性的对质量监督进行管理,是从主动解决问题的关键。
具体落实政府关于新农村农业相关政策。虽中央政策已经明确,省、市、县应该将中央政策落到实处;发展农业机械化需要的政府大量投入,这样才可以促进农村机械化的强力发展。
大力培养基层专职治理人员,高素质的治理队伍,乡镇农机站机构改革一部分职工安置问题应该得到管理部门的重视。强化专职管理人员的职能,建立一支高素质的治理队伍。这对于新农村设备提升来讲是一必要的一步。
加强各个机械生产公司与新农村的联系,大力推动机械下乡活动并且为农民提供一系列机械使用保障措施,使先进的农用机械得到使用和普及。这样才可以更快的解决农村机械化差的问题。
大范围宣传新型机械的功能作用,使用技能,让农民彻彻底底的认识到新型机械相对与传统道具的优点和好处。刺激农民的好奇心和购买欲。这也是解决问题的一个好办法。相关农业部门成立专案小组。彻底的了解导致新农村机械化普及不广的原因和需要改进的一些办法措施。这样有利于职能部门更有针对性的做出总体工作方向。
诸如新农村设备的各种不足,表现了我国现阶段农村机械化发展的各种困难,不得不说的是我国的新农村机械化发展还存在启蒙期,针对这些困难的问题小组调查提出了一些解决办法和方案。但如何攻破一个又一个难题,实现新农村的农业提升和建设值得21世纪的我们一起努力,去改革,去创新,去创造,去开拓。
第二篇:和差问题
和差问题
志向是天才的幼苗,经过热爱劳动的双手培育,在沃土里将成长为粗壮的大树,不热爱劳动,不进行自我教育,志向这根幼苗也会连根枯死。———书霍姆林斯基
方法:画线段图。
公式:大数=(和+差)÷2小数=(和和—差)÷2
例
1、把一条长100米的绳子剪成两段,第二段比第一段长16米。第一段长多少米? 例
2、今年小强7岁,爸爸35岁,当两人年龄和是58岁时,爸爸多少岁?
例
3、红红期末测试语文和数学的平均分是94分,数学比语文多8分,语文得多少分? 例
4、甲、乙两校共有学生864人,为了执行教育局规定照顾学生就进入学,从甲校调入
乙校32人,这样甲校就比乙校多48人。甲校原来有多少人/
例
5、四个人年龄之和是88岁,最小是3岁,他与最大年龄之和比另外两个人年龄之和大
8岁,最大年龄是多少岁?
例
6、有灰兔、白兔、和黑兔若干只。白兔和灰兔关在一起共有10只,灰兔和黑兔关在一
起共有7只,黑兔和白兔关在一起共有5只,黑兔有多少支?
练习
1、期终考试王平和李扬语文成绩的总和是188分,李扬比王平少4分,李扬考了多少分/
2、小宁和小慧身高总和是264厘米,已知小宁比小慧矮8厘米,小慧身高多少厘米?
3、父亲今年44岁,儿子今年8岁,当两人年龄和是60岁时,父亲有多少岁?
4、
第三篇:和差问题
和差问题
教学目标:
1、通过直观演示的教学,让学生理解和差问题的特点及其解题思路,学会解决身边的数学问题。
2、了解数学在现实生活中的作用,体会学习数学的重要性.教学重点:
让学生通过直观演示,合作探究,掌握和差问题的特点及其解题思路。教学难点:
理解和差问题的解题思路。教学过程:
一、谈话引入
我们在小学中学习了和差问题,谁能说一说什么是和差问题吗?
二、典型例题
例1:小宁和小芳的年龄和是28岁,小宁比小芳大2岁,小芳今年几岁?小宁今年几岁?
1.学生读题,思考。2.指定学生画图分析。
师:据图所知:如果小芳增加2岁,年龄和也增加2;即28+2=30岁,30岁相当于2个小宁的年龄,因此小宁: 30 ÷2=15(岁)小芳: 15-2=13(岁)。
师:刚才我们把小芳的年龄增加了2岁,那我们能否把小宁地年龄减少2岁呢?
师:据图所知:如果小芳减少2岁,年龄和也减少2;即28-2=26岁,26岁相当于2个小芳的年龄,因此,小芳: 26 ÷2=13(岁);小宁: 13+2=15(岁)师:我们一起来总结一下解题方法。
1)已知两个数的和与它们的差,求两个数各是多少的应用题叫做和差应用题。2)解答方法:
方法一:可以假设小数增加到与大数同样多,先求大数再求小数。方法二:假设大数减少到与小数同样多,先求出小数再求出大数。3)数量关系:(和+差)÷2=大数(和-差)÷2=小数
例2: 小王、小张共买了20本书,如果小王给小张6本书那么小王就比小张少2本书。问:小王、小张各买了多少本书?
师:根据“小王、小张共买了20本书”,你们知道了什么? 生:知道了“和”
师:根据“小王给小张6本书那么小王就比小张少2 本书”,请问小王比小张多了多少本?先看PPT的演示。生:小王比小张多10本。
师:现在请同学们开始根据分析解题。解: 6+6-2=10(本)小王:(20+10)÷2=15(本)小张: 20-15=5(本)
答:小王买书15本,小张买书5本。三.巩固练习
(1)甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?(2)长方形的长和宽之和为18厘米,长比宽多2厘米,求长方形的面积。(3)甲乙两车原来共装苹果97筐,从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐,两车原来各装苹果多少筐?
(4)甲乙两车发车时共有乘客75人,到某站时甲车增加12人,乙车减少17人,此时两车乘客人数恰好相等,两车发车时车上各有乘客多少人?
5、甲、乙两筐香蕉共64千克,从甲筐里取出5千克放到乙筐里去,结果甲筐的香蕉比乙筐的香蕉多2千克。甲、乙两筐原有香蕉各有多少千克?
6、甲乙两船共载客623人,若甲船增加34人,乙船减少57人,这时两船乘客同样多,甲船原有乘客多少人?
和倍问题
教学目标:
1、通过复习,让学生理解和倍问题的特点及其解题思路,学会解决身边的数学问题。
2、了解数学在现实生活中的作用,体会学习数学的重要性.教学重点:
让学生掌握和倍问题的特点及其解题思路。教学难点:
理解和倍问题的解题思路。教学过程:
一、复习旧知,引入问题。根据题意写出关系式。
(1)白兔的只数是灰兔的4/5(2)美术小组的人数是航模小组的 1/4(3)小明的体重是爸爸的7/15(4)男生人数是女生的一半。
二、典型例题
二、探究交流解决问题。1.出示例题6
1、六(1)班参加篮球比赛,全场得了42分。下半场得分是上半场的一半,上半场和下半场各得多少分?
2.提问 :从题目中获得了哪些信息?
3.阅读与理解、重点分析:下半场得分是上半场的一半,“这句话(上半场得分× =下半场的得分或下半场的得分×2=上半场的得分)。” 4.解答例题。(1)画线段图,学生理解等量关系。
(2)对照板演的同学,检查自己的线段图有什么不足。(3)提问:根据题意,题中数量间有怎样的等量关系?
学生回答,教师板书:
上半场的得分+下半场的得分=比赛的总得分。
上半场得分× 1/2 =下半场的得分 下半场的得分×2=上半场的得分(4)学生尝试列方程解答。
解:设上半场得x分 解:设下半场得x分 X+ X=42 2X+X=42 42÷(2+1)=14
【含义】 已知两个数的和及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做和倍问题。
【数量关系】 总和 ÷(几倍+1)=较小的数
总和 - 较小的数 = 较大的数
较小的数 ×几倍 = 较大的数
【解题思路和方法】 简单的题目直接利用公式,复杂的题目变通后利用公式。也可以利用比例的方法进行练习,还可以列方程解答。
三、课堂练习:
1、商店有洗衣机和冰箱共40台,洗衣机的台数是冰箱的 2/3,洗衣机和冰箱各有多少台?
2、李明爸爸妈妈每月的总收入是8000元,妈妈的收入是爸爸的3/5,李明爸爸妈妈的月收入分别是多少元?
3、果园里有杏树和桃树共248棵,桃树的棵数是杏树的3倍,求杏树、桃树各多少棵?
4、东西两个仓库共存粮480吨,东库存粮数是西库存粮数的1.4倍,求两库各存粮多少吨?
5、甲乙丙三数之和是170,乙比甲的2倍少4,丙比甲的3倍多6,求三数各是多少?
6、修一条公路,已修的长度是未修的 3/4,已修的长度比未修的少50千米,这条路共有多少千米?
7、公园里有樟树和柳树共420棵,樟树比柳树少 1/4,樟树和柳树各有多少棵?
差倍问题
教学目标:
1、通过复习,让学生理解差倍问题的特点及其解题思路,学会解决身边的数学问题。
2、了解数学在现实生活中的作用,体会学习数学的重要性.教学重点:
让学生掌握差倍问题的特点及其解题思路。教学难点:
理解差倍问题的解题思路。教学过程:
1、已知两个数量的和(或差)与它们的倍数关系,求这两个数量。关键找出1倍数量(或说单位1),画线段图表示题意。
【含义】 已知两个数的差及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做差倍问题。
【数量关系】 两个数的差÷(几倍-1)=较小的数 较小的数×几倍=较大的数
【解题思路和方法】 简单的题目直接利用公式,复杂的题目变通后利用公式、方程或者比例解决问题。典型例题
1.一张课桌比一把椅子贵10元,如果椅子的单价是课桌单价的3/5,课桌和椅子的单价各是多少元?
2.某班男女生人数的比是4:5,已知女生比男生多5人,男生和女生各多少人?全班多少人?
1、学生说思路
2、指名汇报
3、集体讲解。
4、小结方法。
巩固练习(1)果园里桃树的棵数是杏树的3倍,而且桃树比杏树多124棵。求杏树、桃树各多少棵?
(2)爸爸比儿子大27岁,今年,爸爸的年龄是儿子年龄的4倍,求父子二人今年各是多少岁?
(3)商场改革经营管理办法后,本月盈利比上月盈利的2倍还多12万元,又知本月盈利比上月盈利多30万元,求这两个月盈利各是多少万元?
4、一根绳子长48米,截成甲、乙两段,其中乙段绳子长度是甲段绳子的3/5。甲、乙两绳各长多少米?
5、一套桌椅的价格是78元,其中椅子的价格是桌子价格的3/10。桌子和椅子的价格各是多少元?
6、体育馆内排球的个数是篮球的3/4,篮球比排球多6个。篮球和排球各有多少个?
7、一张课桌比一把椅子贵10元,如果椅子的单价是课桌单价的6/10,课桌和椅子的单价各是多少元?
8、六一班男生比女生多6人,已知男生女生人数之比为5:4,男女各有多少人,全班有多少人?(多种方法解决)
第四篇:和差问题教案
和差问题教案
教学目标
1.会判断什么样的应用题属于和差问题.已知两个数的和以及两个数的差,要分别求这两个数就属和差问题,并掌握和差问题的特性,为以后继续学习和倍、差倍问题做准备.
2.总结归纳出解决和差问题的方法,并解决一些实际问题. 知识点拨:
和差问题是已知大小两个数的和与这两个数的差,求大小两个数各是多少的应用题。
为了解答这种应用题,首先要弄清两个数相差多少的不同叙述方式.有些题目明确给了两个数的差,而有些应用题把两个数的差“暗藏”起来,我们管暗藏的差叫“暗差”。
知道两个数的和,以及它们的差,要求这两个数,解决和差问题需要我们画线段图来分析,方法如下: 方法一:(和+差)÷2=大数 和-大数=小数 方法二:(和-差)÷2=小数 和-小数=大数 例题精讲
板块
一、基本的和差问题
【例1】两筐水果共重150千克,第一筐比第二筐少10千克,两筐水果各多少千克?
【解析】本题也是和差问题的基本题型,借助线段图来分析如下:
方法一:把第二筐多的10千克减掉,看成两个第一筐的重量来计算. 列式:第一筐:,第二筐:701080(千克).(15010)270(千克)方法二:把第一筐少的10千克补上,看成两个第二筐的重量来计算. 列式:第二筐:,第一筐:801070(千克)(15010)280(千克)【巩固】甲、乙两人同时以相同的速度打字,2分钟共打了240个字,已知甲每分钟比乙多打10个字.问甲、乙两人每分钟各打多少个?
【解析】首先要理解2分钟共打了240个字,那么甲、乙两人一分钟就打了2402120(个).这样就转换成典型和差问题了. 方法一:甲:(240210)265(个)乙:651055(个)方法二:乙:(240210)255(个)甲:551065(个)
在研究完这两种方法以后,老师要注意引导学生来总结和差问题的解决方法.解答和差问题的应用题,可以先画出线段图,从线段图上找到大数和小数,并找到解决方法.(两数的和-两数的差)÷2=较小的数 较小的数+两数的差=较大的数(两数的和+两数的差)÷2=较大的数 较大的数-两数的差=较小的数
【巩固】果园共260棵桃树和梨树,其中桃树的棵数比梨树多20棵.桃树和梨树各有多少棵? 【解析】方法一:桃树:(26020)2140(棵)梨树:14020120(棵)
方法二:梨树:(26020)2120(棵)桃树:12020140(棵)
答:桃树有140棵,梨树有120棵.
【巩固】有一根钢管长12米,要锯成两段,使第一段比第二段短2米.每段各长多少米? 【解析】第一段:(122)25(米)第二段:1257(米)答:第一段长5米,第二段长7米.
【巩固】陈红和李玲平均身高为130厘米,陈红比李玲高8厘米,陈红和李玲身高各是多少厘米? 【解析】陈红和李玲平均身高为130厘米,她们身高的和为:1302260(厘米)方法一:陈红:(2608)2 134(厘米)李玲:1348126(厘米)方法二:李玲:(2608)2 126(厘米)陈红:1268134(厘米)
【例2】文具王国的尺子点点和跳跳是一对好朋友,他们一会儿高兴地把自己绑在一起,一会儿又闹起小别扭,竖起小脑袋比比谁长的高,每天他们总是有使不完的劲儿.同学们!你能根据下面的图,算出点点和跳跳各有多长吗?
【解析】解决和差问题的应用题,首先学会画线段图是关键,在这里借助两把尺子来进行比较分析,比较直观和形象,然后再从直观的实物图过渡到抽象的线段图学生比较容易理解.此处是本节课的难点突破所在,对于方法的研究老师要引导学生来思考.
方法一:假设跳跳多4厘米,那么就和点点一样长,这时总长增长到了16420(厘米),2个点点的长是20厘米,那么点点的长就是20210(厘米),跳跳就是1046(厘米). 列式:点点(大数):;跳跳(小数):1046(164)210(厘米)(厘米).
方法二:假设点点少4厘米,那么就和跳跳一样长,这时总长就减少到了,2个跳跳的长是12厘米,那么跳跳的长就是16412(厘米),点点就是6410(厘米). 1226(厘米)列式:跳跳(小数):;点点(大数):6410(164)26(厘米)(厘米)
【巩固】二年级一班和二班共有85人,一班比二班多3人.问一班、二班各有多少人?
【解析】本题是和差问题的基本题型,已知两个数的和与两个数的差,然后求大小两个数各是多少.和差问题一般可以借助线段图来进行分析. 方法一:一班人数:(853)244(人),二班人数:44341(人)方法二:二班人数:(853)241(人),一班人数:41344(人)
【巩固】两个连续奇数的和是36,这两个数分别是多少? 【解析】两个连续奇数的差是2,利用和差公式解答如下.
较小数:(36-2)217 较大数:361719
【巩固】一辆公交车里有30位乘客,到大桥站有17人下车,又上来19人,现在车上和原来比,人多了还是少了,多(或少)几个人?
【解析】这道题有两种不同的思维方法.
方法一:先求出现在车上有多少人,再和原来车上30人进行比较,就知道人多了还是人少了,再用减法计算,就能求出多或少了几个人. 列式:现在车上人数:30171932(人)现在车上比原来多几人?32302(人)
方法二:聪明的学生会想到只要把下车和上车的人数进行比较,就知道答案了,因为下车17人,上车19人,上车的人比下车的多2人.这样原来车上的“30人”就是多余条件了. 列式:19172(人)
答:现在车上人多了,多2人.
【例3】长方形操场的长与宽相差80米,沿操场跑一周是400米,求这个操场的长与宽是多少米?
【解析】长方形一周的长是指两条长和两条宽的和,由条件可知一条长与一条宽的和为4002200(米),由此我们就知道了长和宽之和是200米,又知道长和宽之差是80米,根据和差问题来解答: 方法一:长:(20080)2140(米)宽:1408060(米)方法二:宽:(20080)260(米)长:6080140(米)
【巩固】丁丁在期中考试时,语文、数学两科平均分是91分,数学比语文多2分,那么丁丁语文和数学各得了多少分?
【解析】在这道题中,我们已知丁丁数学成绩比语文成绩多2分,也就是知道了数学成绩和语文成绩之差,如果找到数学成绩和语文成绩之和,就转换成和差问题来解答了.又因为知道了语文和数学的平均分是91分,那么两科成绩之和就是912182(分). 方法一:数学:(1822)292(分)语文:92290(分)方法二:语文:(1822)290(分)语文:90292(分)
【例4】学校水果店运来苹果和梨共40千克,苹果比梨多2袋,苹果和梨每袋都重5千克,则水果店运来苹果和梨各多少袋?
【解析】方法一:题目中知道了苹果比梨多2袋,如果能求出苹果和梨一共的袋数,就可以用和差问题来解决了.而题目中只告诉我们苹果和梨共40千克,不过还告诉我们苹果和梨每袋都重5千克,那么就可以求出苹果和梨一共有4058(袋),现在就可以求出梨有,苹果有(82)23(袋).(82)25(袋)方法二:部分学生可能根据题目中告诉的苹果和梨的总千克数,然后求出苹果比梨多2510(千克),算出苹果和梨各多少千克,最后再算出各多少袋.解答如下:
苹果比梨多:2510(千克)苹果的重量:(4010)225(千克)梨的重量:251015(千克)苹果的袋数:2555(袋)梨的袋数:1553(袋)
两种方法相比较,第一种方法更简便、直观.
【巩固】有一种小虫,每隔2秒钟分裂一次.分裂后的2只新的小虫经过2秒钟后又会分裂.如果最初瓶中只有1只小虫,那么2秒后变2只,再过2秒后就变4只„„2分钟后,正好满满一瓶小虫.现在这个瓶内最初放入2只这样的小虫.经过多长时间,正巧也是满满一瓶小虫? 【解析】如果刚开始瓶里有1只小虫,每隔2秒钟分裂一次,第一次就分裂成2个,第二次就分裂成4个„„这样2分钟就正好有了满满一瓶小虫.如果瓶里开始就放有2只小虫,那么第一次就分裂成4个,和原来比少了1个分裂成两个的2秒,直接已经有了2个.这样如果瓶里有2只小虫,就会原来的时间少2秒,需要1分钟58秒就分裂成了满满一瓶小虫.
【例5】小勇家养的白兔和黑兔一共有22只,如果再买4只白兔,白兔和黑兔的只数一样多.小勇家养的白兔和黑兔各多少只?
【解析】解决这道题的关键就是理解“如果再买4只白兔,白兔和黑兔的只数一样多”,这句话的意思也就是白兔的只数比黑兔的只数少4只,或黑兔的只数比白兔多4只.只要理解了这个已知条件,我们就可以把这个题转换成典型和差问题来解决了.
方法一:把黑兔多的4只减掉,看成两个白兔的数量来计算. 列式:白兔:,黑兔:22913(只)或9413(只)(224)29(只)方法二:把白兔少的4只加上,看成两个黑兔的数量来计算. 列式:黑兔:(224)213(只),白兔:22139(只)或 1349(只)【巩固】图书馆的书架上、下两层共存书220本,如果从上层拿出10本放入下层,则两层书架上书数相等.求原来上、下层各存书多少本?
【解析】根据从上层拿出10本放入下层后两层书架上的书同样多,可以知道上层书架上的书比下层书架上的书多2个10本,如果从上层书架中减去10220(本),就和下层书架上的书同样多,那么上、下两层书架上书的总数减少了20本,这时上、下两层书架上的书的总数就相当于下层书架上书的2倍. 方法一:下层:(22020)2100(本)上层:220100120(本)方法二:上层:(22020)2120(本)下层:220120100(本)【例6】小华每天写8个大字,比小军每天多写2个.小华和小军一星期一共写多少个大字? 【解析】方法一:要知道小华和小军一星期一共写多少个大字,就要先求出小华和小军每天共写几个大字.小华每天写8个大字,比小军每天多写2个,可以算出小军每天写6个大字,他俩每天共写14个大字.“一星期有7天”这是个隐藏条件,这个条件也是解决问题的关键,因此要认真读题才能找到这个已知条件.最后我们就可以用乘法计算出小华和小军一星期一共写多少个大字. 列式:小华和小军每天共写多少个大字? 82814(个)小华和小军一星期一共写多少个大字?14798(个)
方法二:可以先分别求出小华一个星期写了多少个大字和小军一个星期写了多少个大字,然后把他们一共写的个数加起来.
列式:小华一星期写了多少个大字?8756(个)小军一星期一共写多少个大字?(82)742(个)
小华和小军一星期一共写多少个大字? 564298(个)
答:小华和小军一星期一共写98个大字.
【巩固】商店里每天卖出电脑10台,卖出的彩电比电脑多5台,一个星期商店卖出电脑和彩电一共多少台? 【解析】方法一:每天卖出电脑和彩电多少台?1051025(台)
一个星期商店卖出电脑和彩电一共多少台?257175(台)
方法二:电脑一个星期共卖出多少台?10770(台)
彩电一个星期共卖出多少台?(105)7105(台)
一个星期商店卖出电脑和彩电一共多少台?70105175(台)
答:一个星期商店卖出电脑和彩电一共175台.
【例7】甲、乙两校共有学生1050人,部分学生因搬家需要转学,已知由甲校转入乙校20人,这样甲校比乙校还多10人,求两校原来有学生多少人?
【解析】这道题虽然只告诉了我们两个数的和,但是两数的差属于隐藏条件.由甲校转入乙校20人,这样甲校比乙校还多10人,实际上甲校比乙校多2021050(人),找到了隐藏的差,就转变成了典型的和差问题. 列式:乙:(105050)2500(人)甲:1050500550(人)【巩固】小华和小敏共有铅笔25枝,如果小华用去4枝,小敏用去3枝,那么小华还比小敏多2枝,小华和小敏原来各有多少枝铅笔?
【解析】如果小华用去4枝,小敏用去3枝,那么小华还比小敏多2枝,这就说明原来小华的铅笔比小敏的铅笔多3枝.找到了这个暗差,这道题就简单了. 方法一:小华:(253)214(枝)小敏:14311(枝)方法二:小敏:(253)211(枝)小华:11314(枝)
【例8】周明和王刚两人数学成绩的和是182分.周明如果多考5分,就比王刚多3分.周明和王刚的数学各考了多少分?
【解析】已知周明和王刚两人数学成绩的和是182分,根据条件“周明如果多考5分,就比王刚多3分“可知,王刚的数学成绩比周明多532(分).转换成和差问题解答如下: 方法一:王刚:(1822)292(分)周明:92290(分)方法二:周明:(1822)290(分)王刚:90292(分)
【巩固】有大、小两个油桶,一共装油24千克,两个油桶都倒出同样多的油后分别还剩9千克和5千克.问:原来大、小两个油桶各装油多少千克?
【解析】两个油桶都倒出同样多的油后分别还剩9千克和5千克,那么也就是说大桶比小桶多4千克的油,知道这两桶油的和,又找到了这两桶油的差,这道题就变成了典型的和差问题的应用题了. 方法一:大桶:(244)214(千克)小桶:14410(千克)方法二:小桶:(244)210(千克)大桶:10414(千克)
【例9】兔妈妈拔了29个萝卜分给了小白兔和小黑兔,因为分的萝卜不一样多,兔妈妈让小白兔给了小黑兔5个,这时再来数发现小黑兔比小白兔多出1个萝卜,你知道原来小白兔和小黑兔各分到了多少个萝卜吗?
【解析】这道题关键也是要找到暗差,小白兔给了小黑兔5个后,小黑兔又比小白兔多出1个萝卜,画图来分析,可以得出原来小白兔比小黑兔多5219个萝卜.这时就可以根据和差问题问题来解决了.
方法一:小白兔:,小黑兔:291910(个)(299)219(个)方法二:小黑兔:,小白兔:291019(个).(299)210(个)【巩固】甲乙两个仓库共存大米56包,从乙仓库调8包到甲仓库,两个仓库大米的包数就同样多了,甲、乙两个仓库原有大米各多少包?
【解析】乙比甲多8216(包)
甲:(5616)220(包)乙:562036(包)答:甲仓库有大米20包,乙仓库有大米36包.
【例10】甲校原来比乙校多48人,为方便就近入学,甲校有若干人转入乙校,这时甲校反而比乙校少12人.甲校有多少人转入乙校?
【解析】利用移多补少思想思考,48224(人),当甲校转入乙校24人时,那么甲乙两校的人数就一样多,当甲校继续有同学转入到乙校时,每转入一个同学,甲校就比乙校少2人,1226,当再从甲校转入6人到乙校时,甲校就比乙校少12人,所以甲校一共转入乙校24630(人)时,甲校就比乙校少12人.
【巩固】两箱图书共有66本,甲箱如果借出10本,就比乙箱少4本.甲、乙两箱原有图书各多少本? 【解析】已知甲箱借出10本图书后,比乙箱少4本,可知甲箱原来比乙箱多1046(本)图书.
方法一:甲箱:(666)236(本)乙箱:36630(本)方法二:乙箱:(666)230(本)甲箱:30636(本)
【巩固】方方和圆圆共有图书70本,如果方方给圆圆5本,那么圆圆就比方方多4本.问:方方和圆圆原来各有图书多少本?
【解析】方方给圆圆5本后,圆圆比方方多4本.,那么芳芳比圆圆多5246(本)图书.原来圆圆有:,圆圆有:38632(本).(706)238(本)【例11】有三块布料一共190米,第二块比第一块长20米,第三块比第二块长30米.每块布料各长多少米?
【解析】先画线段图,从线段图可以看出,以第一块为标准,第二块减少20米,第三块减少203050(米),总和减少205070(米),即19070120(米).120米相当于第一块布料长的3倍,求出第一块布料的长度,第二块、第三块就可以求出. ⑴ 第一块布料长度的3倍是:190(202030)120(米)⑵ 第一块布料的长度是: 120340(米)⑶ 第二块布料的长度是: 402060(米)⑷ 第三块布料的长度是: 603090(米)【巩固】甲、乙、丙三个数的和是105,甲数比乙数多4,乙数比丙数多4,求丙数. 【解析】已知甲数比乙数多4,乙数比丙数多4,可求出甲数比丙数多448.如果甲数少8,乙数少4,则甲、乙、丙三数相等,105,差正好是丙的3倍,除以3便可求出丙数. ’(84)105(84)93 93331„„丙数 答:丙数是31。
【巩固】有3条绳子,共长95米,第一条比第二条长7米,第二条比第三条长8米,问3条绳子各长多少米?
【解析】以第一条绳子为标准,变化后的绳子总长 95-7+8=96(米)
第二条绳长: 96÷(1+1+1)=32(米)。第一条绳长:32+7=39(米)。第三条绳长:32-8=24(米).【巩固】甲、乙两校共有学生864人,为了照顾学生就近入学,从甲校调入乙校32名同学,这样甲校学生还比乙校多48人,问甲、乙两校原来各有学生多少人?
【解析】甲、乙两校学生人数的和是864人,根据由甲校调入乙校32人,这样甲校比乙校还多48人可以知道,甲校比乙校多 32×2+48=112(人).112是两校人数差。①乙校原有的学生:(864-32×2-48)÷2=376(人)②甲校原有学生:864-376=488(人)
答:甲校原有学生488人,乙校原有学生376人。
【巩固】小猴和小熊到动物商店一共买了30块糖,小猴把买的糖给了小熊10块,还比小熊多2块.小熊比小猴少买几块糖?
【解析】一共买了30块糖是一个多余的条件,小猴把买的糖给了小熊10块,还比小熊多2块,说明小猴的糖比小熊一共多22块,可画图分析. 列式:1010222(块)答:小熊比小猴少买22块糖.
【巩固】学而思学校新进99本书,分给三、四、五三个年级,三年级比四年级多分了2本,四年级比五年级多分了5本,三个年级各分得多少本书? 【解析】我们用图来表示题意:
此题从两个数量扩展到三个数量.已知三年级比四 年级 多分了2本,四年级比五年级多分了5本,从线段图上可以清楚地看出:三年级比五年级多分了2+5=7(本).如果三年级少拿7本,四年级少拿5本,那么书的总数就要减少7+5=12(本),总共就是99-12=87(本).87本相当于五年级所有的书本数的3倍,由此可以算出三年级四年级五年级三人各自书本的数量. 五年级:[99-(2+5)-5]÷3=29(本)四年级:29+5=34(本)三年级:34+2=36(本)【巩固】甲的书比乙多9本,比丙多2本,乙、丙共有书47本.问:甲、乙、丙各有多少本书?
【解析】和差问题是指两个数的和与差,现在出现了三个数,需要化为两个数的和差问题.因为“甲的书比乙多9本,比丙多2本”,说明乙的书比丙少927(本).由“乙、丙共有书47本”,乙比丙少7本,可用和差公式求解. 乙有书(477)220(本),丙有书 472027(本),甲有书 20929(本).
答:甲有29本,乙有20本,丙有27本.
【巩固】二年级原来女同学比男同学多25人,今年二年级又增加了80个男同学和65个女同学,请问:现在是男同学多还是女同学多?多几人?
【解析】这道题有两种思维方法:
方法一:如果原来女同学与男同学人数同样多,那么增加后的人数男同学比女同学多806515(人),实际上“原来女同学比男同学多25人”,尽管男同学人数比女同学多增加了15人,结果还是女同学人数多,多251510(人).
说明: 我们也可以这样思考:如果今年二年级增加的男同学人数和女同学人数同样多,都增加65人,那么女同学仍比男同学多25人,实际上男同学比女同学多增加了806515(人),由于“原来女同学比男同学多25人”,所以,增加后的人数女同学仍比男同学多,多251510(人). 列式:806515(人)
251510(人)
方法二:我们先不看男同学的变化,先观察女同学的变化,二年级原来女同学比男同学多25人,今年二年级又增加了65个女同学,如果男同学人数不增加,女同学就要比男同学增加256590(人).而男同学又增加了80人,现在女同学就比男同学多901010人. 列式:256590(人)
908010(人)
答:现在女同学多,多10人.
【巩固】草地上有黑兔、白兔、灰兔共27只,黑兔比白兔多2只,灰兔比白免少2只.黑兔、白兔、灰兔各有多少只?
【解析】画图分析:黑兔比白兔多2只,灰兔比白免少2只,把黑兔比白兔多的,补到灰兔比白免少的部分,这样黑兔、白兔、灰兔共27只也可以看成是3倍白兔这么多,因此可以先求出白兔的只数. 列式:白兔:2739(只)黑兔:9211(只)灰兔:927(只)
【例12】大象、老虎、猴子三只动物的年龄中,大象和老虎共90岁,大象和猴子共70岁,老虎和猴子共40岁,请你算一算,三只动物各多少岁?
【解析】大象、老虎、猴子三只动物的年龄和:(907040)2100(只)
大象的年龄:1004060(岁)老虎的年龄:1007030(岁)猴子的年龄:1009010(岁)答:大象60岁,老虎30岁,猴子10岁.
【巩固】小强、中强、大强去称体重,大强和小强一起称是50千克,小强和中强一起称是49千克,三个人一起称是76千克.三人的体重各是多少千克?
【解析】解答这道题,要用比较的方法,要抓住“三个人一起称76千克”这个重要条件.又知“大强和小强一起称50千克”,这样就可先求出中强的体重,或者根据“小强和中强一起称是49千克”可求出小强的体重.
方法一:中强的体重:765026(千克)
小强的体重:492623(千克)大强的体重:502327(千克)
方法二:大强的体重:764927(千克)
小强的体重:502723(千克)中强的体重:492326(千克)
答:小强23千克,大强27千克,中强26千克.
【例13】四年级有4个班,不算甲班其余三个班的总人数是131人;不算丁班其余三个班的总人数是134人;乙、丙两班的总人数比甲、丁两班的总人数少1人,问这四个班共多少人?
【解析】乙+丙+丁=131 甲+乙+丙=134,两式相加(甲+丁)+2(乙+丙)=265,而甲+丁=(乙+丙)+1 所以 3(乙+丙)=265-1,乙+丙=88,甲+丁=89 这四个班共有88+89=177人。
【巩固】甲乙共储蓄32元,乙丙共储蓄30元,甲丙共储蓄22元,三人各储蓄多少元? 【解析】甲乙+乙丙+甲丙=32+22+30=84(元)即2倍的(甲+乙+丙)等于84元
甲+乙+丙=84÷2=42(元)丙:42—32=10(元)甲:42—30=12(元)乙:42—22=20(元)【巩固】大明、小荣、豆豆三个小朋友去称体重,大明和小荣一起称是55千克,大明和豆豆一起称是49千克,小荣和豆豆一起称是 56千克.三人的体重各是多少千克?
【解析】这道题是上一题的拓展,看起来无从下手,但是把50千克、49千克、61千克加起来,其实就是三个人体重的2倍,这样我们就可以先求出三个人的总重量,接下来的思路就跟例10一样了. 列式:三个人的总重量:(554956)280(千克)豆豆的体重:805525(千克)小荣的体重:804931(千克)大明的体重:805624(千克)
答:大明24千克,小荣31千克,豆豆25千克.
【例14】地震灾区希望小学正筹备建设图书馆,春蕾小学发动全校同学给山区的学生捐书,二(1)班、二(2)班、二(3)班三个班共捐书300本,二(1)班、二(2)班两个班捐书总数比二(3)班多60本,如果二(3)班拿出20本给二(2)班,则两个班捐书数目相等.求三个班各捐了多少本书?
【解析】方法一:如图,二(1)班、二(2)班两个班捐书总数比二(3)班多60本,又知道三个班一共有300本,这样可以先求出二(3)班的本数. 二(3)班有书:(30060)2120(本),二(3)班比二(2)班多20240(本)书,二(2)班有书:1204080(本),二(1)班有书:30012080100(本).
方法二:如图,如果二(3)班拿出20本给二(2)班,则两个班捐书数目相等.那么二(3)班比二(2)班多20240(本),把这多的40本和二(1)班的其中40本抵消,那么二(1)班剩下的本数比二(3)班多60本,这样就可以先求出二(1)班的本数. 二(3)班比二(2)班多20240(本)书,二(1)班有书:4060100(本)书,二(2)班和二(3)班一共有书:300100200(本)二(2)班有书:(20040)280(本)书,二(3)班有书:8040120(本)书.
【例15】哥哥今年14岁,妹妹今年8岁,当兄妹俩岁数的和是42岁时,俩人各应该是多少岁?
【解析】由于“年龄差”不随年份的推移而变化,所以,兄妹的年龄差始终是1486(岁).当兄妹的岁数和是42岁时,由和差公式可以求解. 哥哥为(426)224(岁),妹妹为422418(岁).
答:那时哥哥24岁,妹妹18岁.
【巩固】兄弟俩现在年龄和是28岁,3年前哥哥比弟弟大2岁,兄弟俩现在各多少岁? 【解析】3年前哥哥比弟弟大2岁,现在哥哥仍比弟弟大2岁,他们的年龄差不变.
哥哥:(282)215(岁)弟弟:281513(岁)答:哥哥现在15岁,弟弟现在13岁.
【巩固】今年小玲6岁,她父亲34岁,当两人年龄和是58岁时,两人年龄各多少岁? 【解析】题中没有给出小玲和父亲的年龄之差,但是已知两人今年的年龄,那么两人的年龄差是34-6=28(岁),不论再过多少年,两人的年龄差是保持不变的,所以当两人年龄和为58岁时,他们的年龄差仍是28岁,根据和差问题就可解此题。解: 1.父亲的年龄:〔58+(34-6)〕÷2=〔58+28〕÷2=86÷2=43(岁)2.小玲的年龄:58-43=15(岁)答:当两人年龄和为58岁时,父亲的年龄是43岁,小玲的年龄是15岁。
【巩固】今年小强7岁,爸爸35岁,当两人年龄和是58岁时,两人年龄各多少岁?
【解析】题中没有给出小强和爸爸年龄之差,但是已知两人今年的年龄,那么今年两人的年龄差是35-7=28(岁).不论过多少年,两人的年龄差是保持不变的.所以,当两人年龄和为58岁时他们年龄差仍是28岁.爸爸的年龄:[58+(35-7)]÷2=[58+28]÷2=86÷2=43(岁)小强的年龄:58-43=15(岁)
答:当父子两人的年龄和是58岁时,小强15岁,他爸爸43岁。
【例16】小琴、小静、小莲三人年龄和是20岁,小琴比小静大1岁,小莲比小静小2岁.三人的年龄各是几岁?
【解析】以小静为标准,小琴比小静大1岁,小莲比小静小2岁,把小琴比小静大的1岁,补给小莲,那么小琴现在和小静一样大,而小莲比小静就只小1岁,如果再加上1岁,也和小静一样大.那么现在小静年龄的3倍就应该是.接下来就可以分别求出三人的年龄. 20121(岁)⑴ 小静年龄的3倍是:20(21)21(岁)⑵ 小静现在的年龄是:2137(岁)⑶ 小琴现在的年龄是:718(岁)⑷ 小莲现在的年龄是:725(岁)
【巩固】甲、乙两个笼子里共有小鸡20只,甲笼里新放4只,乙笼里取出1只,这时乙笼还比甲笼多1只,求甲、乙两笼原来各有鸡多少只? 【解析】这样想:已知甲、乙两个笼子里小鸡的和是20只,根据甲笼里放入4只,乙笼里取1只,还剩1只可知,甲、乙两个笼里小鸡只数相差:4+1+1=6(只)解: 1.乙笼比甲笼多多少只?4+1+1=6(只)2.甲笼原来有小鸡多少只?(20-6)÷2=14÷2=7(只)3.乙笼里原来有小鸡多少只? 20-7=13(只)或(20+6)÷2=13(只)答:甲笼里原有小鸡7只;乙笼里原有小鸡13只。
【例17】四(1)班投票选举班长,小明得到的选票比小华多14张,小华得到的选票比小玲多8张。如果这3人共得选票54张,那么他们各得选票多少张?
【解析】小玲得到选票最少,我们以小玲得到选票张数为标准,画出线段图如下:
可以先求出小玲获票张数,再求出另外两个人的获票张数。观察线段图,把小玲获票张数看作1份,把小华获票张数去掉8张,把小明获票张数去掉(8+14)张,都凑成1份,总张数减少为:54-8-(8+14)=24(张)。所以小玲获票张数:24÷3=8(张);小华获票张数:8+8=16(张); 小明获票张数:16+14=30(张)。
【例18】一位少年短跑选手,顺风跑90米用了10秒钟。在同样的风速下,逆风跑70米也用了10秒钟。问在无风的时候他跑80米要用多少秒?
【解析】如果我们以无风时少年跑步速度为标准,在同样的风速下,顺风跑步速度高出标准的米数,与逆风跑步速度低于标准的米数是相等的,相当与风速。所以无风速度就是顺风速度和逆风速度的平均数。
解法一:先求出无风时少年速度:(90÷10+70÷10)÷2=8(米)。
再求出无风的时候该少年跑80米需要的时间:80÷8=10(秒)。
解法二:以10秒跑步路程为标准,该少年无风时10秒跑步路程为:
(90+70)÷2=80(米)。
所以,在无风的时候该跑80米要用10秒。
【例19】如右图,4个一样大的长方形和1个小正方形拼成了1个大正方形。大正方形的面积是64平方分米,小正方形的面积是4平方分米,问长方形的宽是几分米?
【解析】对64和4进行拆分:64=8×8;4=2×2。所以,大正方形的边长为8,即长方形长与宽的和为8;小正方形的边长为2,即长方形长和宽的差为2。所以,长方形的宽为:(8-2)÷2=3(分米)。
【例20】姐姐做自然练习比妹妹做算术练习多用48分钟,比妹妹做英语练习多用42分钟,妹妹做算术、英语两门练习共用了44分钟,那么妹妹做英语练习用了多少分钟? 【解析】“姐姐做自然练习比妹妹做算术练习多用48分钟,比妹妹做英语练习多用42分钟”,由此可以推出妹妹做算术练习比做英语练习少用时间:48-42=6(分钟)。所以妹妹做英语练习的时间为:(44+6)÷2=25(分钟)。
【巩固】三个小组共有180人,一、二两个小组人数之和比第三小组多20人,第一小组比第二小组少2人,求第一小组的人数。
【解析】先将一、二两个小组作为一个整体,这样就可以利用基本和差问题公式得出第一、二两个小组的人数和,然后对第一、二两个组再作一次和差基本问题计算,就可以得出第一小组的人数。一、二两个小组人数之和=(180+20)/2=100人,第一小组的人数=(100-2)/2=49人。
【巩固】甲、乙两筐苹果,甲筐比乙筐多19千克,从甲筐取出多少千克放入乙筐,就可以使乙筐中的苹果比甲筐的多3千克?
【解析】从甲筐取出放入乙筐,总数不变。甲筐原来比乙筐多19千克,后来比乙筐少3千克,也即对19千克进行重分配,甲筐得到的比乙筐少3千克。于是,问题就变成最基本的和差问题:和19千克,差3千克。(19+3)/2=11千克,从甲筐取出11千克放入乙筐,就可以使乙筐中的苹果比甲筐的多3千克。
【巩固】一个三层书架共放书108本.上层比中层多放11本,下层比中层少放5本,上、中、下三层各放书多少本? 【解析】 中:(108-11+5)÷3=34(本),上:34+11=45(本),下:34-5=29(本)。评析:(1)此题用画线段图的方法会更直观,易懂。
(2)这道题原题的解法是先求中层的书,这样比较简单.为了更好的锻炼学生对这道题的理解,建议老师可以让学生自己练习先求上层的书的数量,或者先求下层书的数量。
第五篇:和差问题、和倍问题、差倍问题(实用)
第三、四讲:和差问题、和倍问题、差倍问题
教学目标:通过本次课的的学习,正确运用和差问题、和倍问题、差倍问题的有关公式,理清题意,解决实际问题。
教学重点:分清类型,正确运用不同类型的数量关系。
教学难点:理清题意,准确判断题目是“和差问题、和倍问题、差倍问题”中的哪一类,然后正确运用相关的数量关系
需要课时:4课时 教学过程:
一、和差问题:
已知两个数的和与差,求出这两个数各是多少的应用题,叫做和差应用题。基本数量关系是:
(和+差)÷2=大数(和-差)÷2=小数
解答和差应用题的关键是选择合适的数作为标准,设法把若干个不相等的数变为相等的数,某些复杂的应用题没有直接告诉我们两个数的和与差,可以通过转化求它们的和与差,再按照和差问题的解法来解答。
例1:有甲乙两堆煤,共重52吨,已知甲比乙多4吨,两堆煤各重多少吨?
分析:根据公式,我们要找出两个数的和与差,就能解决问题。由题意:堆煤共重52吨知:两数和是52;甲比乙多4吨知:两数差是4。甲的煤多,甲是大数,乙是小数。故解法如下:
甲:(52+4)÷2=28(吨)乙:28-4=24(吨)
例2:两只笼子里共有15只鸡,从甲笼提出3只后,甲笼比乙笼还多2只,两只笼子原来各有多少只鸡?
分析:从题意知:甲比乙多5只,所以,两数和是15,两数差是5.甲是大数。
甲:(15+5)÷2=10(只)乙: 15-10=5(只)
练习:
1、两堆石子共有800吨,第一堆比第二堆多200吨,两堆石子各有多少吨?
2、黄茜和胡敏两人今年的年龄 是23岁,4年后,黄茜比胡敏大3岁,问黄茜和胡敏今年各是多少岁?
3、把长84厘米的铁丝围成一个使长比宽多6厘米的长方形。长和宽各是多少厘米?
二、和倍问题
已知两个数的和,又知两个数的倍数关系,求这两个数分别是多少,这类问题称为和倍问题。
解决和倍问题的基本方法:将小数看成1份,大数是小数的n倍,大数就是n份,两个数一共是n+1份。基本数量关系:
小数=和÷(n+1)
大数=小数×倍数 或 和-小数=大数
例1 :甲班和乙班共有图书160本,甲班的图书是乙班的3倍,甲乙两班各有图书多少本?
分析:从题目中知,乙班的图书数较少,故乙是小数,占1份,甲占(3+1)份。
乙:160÷(3+1)=40(本)甲:160-40=120(本)
例2:果园里有梨树和桃树共165棵,桃树棵数比梨树棵数的2倍少6棵,梨树和桃树各多少棵?
分析:由题意,桃树增加6棵,桃树正好是梨树的2倍,这时总数就是:165+6=171,这样就转化成标准和倍问题,将梨树看成1份,一共是3份。梨树的棵数:171÷3=57,求桃树的棵数时要减去6棵。桃树:171-57-6=108 梨树:(165)÷(2+1)=57(棵)桃树:171-57-6=108(棵)练习:
1、小明和小强共有图书120本,小明的图书是小强的2倍,他们两人各有图书多少本?
2、果园里一共有桃树和杏树340棵,其中桃树比杏树的3倍多20棵,两种树各种了多少棵?
3、甲仓库存粮104吨,乙仓库存粮140吨,要使仓库的存粮是乙仓库的3倍,那么必须人乙仓库运出多少吨放入甲仓库?
4、一个长方形的周长是是30厘米,长是宽的2倍,求长方形的面积是多少?
三、差倍问题
已知两个数的差,并且知道两个数倍数关系,求这两个数,这样的问题称为差倍问题。
解决差倍问题的基本方法:设小是1份,如果大数是小数的n倍,根据数量 3
关系知道大数是n份,又知道大数与小数的差,即知道n-1份是几,就可以求出1份是多少。
基本数量关系:
小数=差÷(n-1)大数=小数×n 或 大数=差+小数
例1:一张桌子的价格是一把椅子的3倍,购买一张桌子比一把椅子贵60元。问桌椅各多少元?
分析:桌子的价格与椅子的价格的差是60,将椅子看成小数占1份,桌子占3份,份数差为3-1,根据数量关系:
椅子的价格:60÷(3-1)=30(元)桌子的价格:30+60=90(元)
例2:两筐重量相同的苹果,甲筐卖出7千克,乙筐卖出19千克后,甲筐剩余的苹果是乙筐的3倍,原来两筐各有苹果多少千克?
分析:两筐苹果的重量相同,故两筐卖出的数量差即是原来苹果的数量差。两筐苹果的差为19-7=12(千克),将乙筐看成1份,甲筐为3份,份数差为2.乙筐现有苹果:(19-7)÷(3-1)=6(千克)乙筐原来有:6+19=25(千克)甲筐原来有25千克。
练习:
1、甲桶酒是乙桶酒重量的5倍,如从甲桶中取出20千克到入乙桶,那么两桶酒重量相等。两桶酒原来各多少千克?
2、六、一班有花盆的数量是六、二班的3倍,如果六、一班再购买20个花盆后,两班花盆数相等,两班原有花盆多少个?
作业:
1、甲、乙两桶油共重100千克,从甲桶中取出5千克放入乙桶中,此时两桶油正好相等。求两桶油原来各有多少千克?
2、甲、乙两箱洗衣粉共有90袋,如果从甲箱中取出4袋放入乙箱中,则两箱中洗衣粉的袋数相等。求原来两箱洗衣粉各有多少袋?
3、刘晓每天早晨沿长和宽相差40米的操场跑步,每天跑6圈,共跑2400米,问这个操场的面积是多少平方米?
4、小强今年15岁,小亮今年9岁。几年前小强的年龄是小亮的3倍?
5、有两段一样长的绳子,第一根剪去21米,第二根剪去13米后是第一根剩下的3倍,两根绳子原来有多长?
6、老猫和小猫去钓雨,老猫钓的鱼是小猫的3倍,如果老猫给小猫3条后,小猫比老猫还少2条。两只猫各钓了多少条鱼?