高中数学证明题

时间:2019-05-13 11:08:57下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高中数学证明题》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高中数学证明题》。

第一篇:高中数学证明题

高中数学证明题

高中数学证明题……

因为pA/pA'=pB/pB'

所以A'B'//AB

同理C'B'//CB

两条相交直线分别平行一个面

两条直线确定的面也平行这个面

算上上次那道题,都是最基础的立体几何

劝你还是自己多琢磨琢磨

对以后做立体大题有好处

解:连接CE,由于对称性,知CE与椭圆的交点G与B关于x轴对称,连接AG,我们证明BC与AG的交点就是F,这样BC当然经过F

已知椭圆右焦点坐标为F(1,0)

设过E斜率为K的直线方程为:y=kx+b

E点坐标满足方程,有:0=2k+bb=-2ky=kx-2k

把直线方程代入椭圆方程得:

x^2/2+(kx-2k)^2=

1x^2+2(kx-2k)^2=

2x^2+2k^2x^2-8k^2x+8k^2-2=0

(2k^2+1)x^2-8k^2x+8k^2-2=0

设AB两点坐标为(x1,y1)(x2,y2),则C、G点的坐标为(x1,-y1)G(x2,-y2)

x1,x2是上方程两根,由韦达定理知

x1+x2=8k^2/(2k^2+1)=4-4/(2k^2+1)

x1x2=(8k^2-2)/(2k^2+1)=4-6/(2k^2+1)

y1=kx1-2k且y2=kx2-2k

y1+y2=k(x1+x2)-4k=4k-4k/(2k^2+1)-4k=-4k/(2k^2+1)

直线BC、AG的方程为:

y=(y2+y1)(x-x1)/(x2-x1)-y1和y=(y1+y2)(x-x1)/(x1-x2)+y

1联立上两直线方程求交点坐标:

(y2+y1)(x-x1)/(x2-x1)-y1=(y1+y2)(x-x1)/(x1-x2)+y1

(y2+y1)(x-x1)/(x2-x1)+(y1+y2)(x-x1)/(x2-x1)=2y1

(y2+y1)(x-x1)/(x2-x1)=y1

x-x1=y1*(x2-x1)/(y1+y2)

x=y1*(x2-x1)/(y1+y2)+x1

x=(x1y2+x2y1)/(y1+y2)=/(y1+y2)=

补充回答:

思路是这样,再用前面x1+x2及y1=kx1-2ky2=kx2-2k代简。如果没的错,x应为1,y=0

二、直四棱柱ABCD-A1B1C1D1中的底面ABCD为菱形,∠ADC=120,AA1=AB=1,点O1,O分别是上下底面菱形对角线交点,求点O到平面CB1D1的距离。。我找不到那条线,,O点到该面的距离为A点到该面的距离的一半,所以先求A点到该面的距离。找B1D1中点E,则A到该面的距离为三角形ACE中CE边上的高,依据几何关系,AC=√3,CE=(√7)/2(可在三角形CB1D1中算出),AE=CE。三角形ACE中,AC上的高为1,三角形的面积为,(√3)/2,所以CE边上的高为(2√21)/7,则O到平面CB1D1的距离为(√21)/7

三、用综合法或分析法证明:已知n是大于1的自然数,求证:log以n为底(n+1)>log以n+1为底+1(n+2)

因为n>1,所以lgn>0,lg(n+1)>0,lg(n+2)>0;

欲证明原不等式成立,只需证lg(n+1)/lgn>lg(n+2)/lg(n+1);

即证:^2>lgn.lg(n+2)...........(*)

因为根据均值不等式lgn.lg(n+1)<^2<^2

所以(*)式成立,以上各步均可逆;所以原不等式成立。

第二篇:高中数学几何证明题

新课标立体几何常考证明题汇总

1、已知四边形ABCD是空间四边形,E,F,G,H分别是边AB,BC,CD,DA的中点

(1)求证:EFGH是平行四边形

(2)若

BD=AC=2,EG=2。求异面直线AC、BD所成的角和EG、BD所成的角。

C D H证明:在ABD中,∵E,H分别是AB,AD的中点∴EH//BD,EH同理,FG//BD,FG

(2)90°30 °

考点:证平行(利用三角形中位线),异面直线所成的角 1BD 21BD∴EH//FG,EHFG∴四边形EFGH是平行四边形。

22、如图,已知空间四边形ABCD中,BCAC,ADBD,E是AB的中点。求证:(1)AB平面CDE;

(2)平面CDE平面ABC。E BCAC证明:(1)CEAB AEBE

同理,ADBDDEAB AEBEB C 又∵CEDEE∴AB平面CDE

(2)由(1)有AB平面CDE

又∵AB平面ABC,∴平面CDE平面ABC

考点:线面垂直,面面垂直的判定

D3、如图,在正方体ABCDA1B1C1D1中,E是AA1的中点,求证: AC1//平面BDE。

证明:连接AC交BD于O,连接EO,∵E为AA1的中点,O为AC的中点 ∴EO为三角形A1AC的中位线 ∴EO//AC1 又EO在平面BDE内,A1C在平面BDE外

∴AC1//平面BDE。考点:线面平行的判定

4、已知ABC中ACB90,SA面ABC,ADSC,求证:AD面SBC. 证明:∵ACB90°BCAC

又SA面ABCSABC

BC面SACBCAD

A

D

1B

C

D

C

S

A

C

B

又SCAD,SCBCCAD面SBC考点:线面垂直的判定

5、已知正方体ABCDA1B1C1D1,O是底ABCD对角线的交点.DAD

A

BBC

1面AB1D1.求证:(1)C1O∥面AB1D1;(2)AC1

证明:(1)连结A1C1,设

AC11B1D1O1,连结AO1

∵ ABCDA1B1C1D1是正方体A1ACC1是平行四边形

∴A1C1∥AC且 AC11AC又O1,O分别是AC11,AC的中点,∴O1C1∥AO且O1C1AO

C

AOC1O1是平行四边形

C1O∥AO1,AO1

面AB1D1,C1O面AB1D1∴C1O∥面AB1D1

(2)CC1面A1B1C1D1CC!1B1D又

∵AC11B1D1

同理可证

ACAD11,B1D1面A1C1C即A1CB 1D1,又

D1B1AD1D1

面AB1D1AC1

考点:线面平行的判定(利用平行四边形),线面垂直的判定

6、正方体ABCDA'B'C'D'中,求证:(1)AC平面B'D'DB;(2)BD'平面ACB'.考点:线面垂直的判定

7、正方体ABCD—A1B1C1D1中.(1)求证:平面A1BD∥平面B1D1C;(2)若E、F分别是AA1,CC1的中点,求证:平面EB1D1∥平面FBD. 证明:(1)由B1B∥DD1,得四边形BB1D1D是平行四边形,∴B1D1∥BD,又BD 平面B1D1C,B1D1平面B1D1C,∴BD∥平面B1D1C. 同理A1D∥平面B1D1C.

而A1D∩BD=D,∴平面A1BD∥平面B1CD.

A

(2)由BD∥B1D1,得BD∥平面EB1D1.取BB1中点G,∴AE∥B1G.

从而得B1E∥AG,同理GF∥AD.∴AG∥DF.∴B1E∥DF.∴DF∥平面EB1D1.∴平面EB1D1∥平面FBD.

考点:线面平行的判定(利用平行四边形)

8、如图P是ABC所在平面外一点,PAPB,CB平面PAB,M是PC的中点,N是AB上的点,AN3NB

P

(1)求证:MNAB;(2)当APB90,AB2BC4时,求MN的长。证明:(1)取PA的中点Q,连结MQ,NQ,∵M是PB的中点,M∴MQ//BC,∵ CB平面PAB,∴MQ平面PAB∴QN是MN在平面PAB内的射影,取 AB的中点D,连结 PD,∵PAPB,∴CAPDAB,又AN3NB,∴BNND

N ∴QN//PD,∴QNAB,由三垂线定理得MNAB B

1

(2)∵APB90,PAPB,∴PDAB2,∴QN1,∵MQ平面PAB.∴MQNQ,且

MQBC

1,∴MN

2考点:三垂线定理

10、如图,在正方体ABCDA1B1C1D1中,E、F、G分别是AB、AD、C1D1的中点.求证:平面D1EF∥平面BDG.证明:∵E、F分别是AB、AD的中点,EF∥BD 又EF平面BDG,BD平面BDGEF∥平面BDG ∵D

1G

EB四边形D1GBE为平行四边形,D1E∥GB

又D1E平面BDG,GB平面BDGD1E∥平面BDG

EFD1EE,平面D1EF∥平面BDG

考点:线面平行的判定(利用三角形中位线)

11、如图,在正方体ABCDA1B1C1D1中,E是AA1的中点.(1)求证:AC1//平面BDE;(2)求证:平面A1AC平面BDE.证明:(1)设ACBDO,∵E、O分别是AA1、AC的中点,A1C∥EO

平面BDE,EO平面BDE,A1C∥平面BDE 又AC

1(2)∵AA1平面ABCD,BD平面ABCD,AA1BD 又BDAC,ACAA1A,BD平面A1AC,BD平面BDE,平面BDE平面A1AC

考点:线面平行的判定(利用三角形中位线),面面垂直的判定

12、已知ABCD是矩形,PA平面ABCD,AB2,PAAD4,E为BC的中点.

(1)求证:DE平面PAE;(2)求直线DP与平面PAE所成的角. 证明:在ADE中,ADAEDE,AEDE ∵PA平面ABCD,DE平面ABCD,PADE 又PAAEA,DE平面PAE(2)DPE为DP与平面PAE所成的角

在Rt

PAD,PDRt

DCE中,DE在RtDEP中,PD2DE,DPE30 考点:线面垂直的判定,构造直角三角形

13、如图,在四棱锥PABCD中,底面ABCD是DAB60且边长为a的菱形,侧面PAD是等边三角形,且平面PAD垂直于底面ABCD.

(1)若G为AD的中点,求证:BG平面PAD;(2)求证:ADPB;

(3)求二面角ABCP的大小. 证明:(1)ABD为等边三角形且G为AD的中点,BGAD 又平面PAD平面ABCD,BG平面PAD

(2)PAD是等边三角形且G为AD的中点,ADPG 且ADBG,PGBGG,AD平面PBG,22

2PB平面PBG,ADPB

(3)由ADPB,AD∥BC,BCPB 又BGAD,AD∥BC,BGBC PBG为二面角ABCP的平面角

在RtPBG中,PGBG,PBG4

5考点:线面垂直的判定,构造直角三角形,面面垂直的性质定理,二面角的求法(定义法)

平面MBD.

14、如图1,在正方体ABCDA1B1C1D1中,M为CC1 的中点,AC交BD于点O,求证:AO

1证明:连结MO,A1M,∵DB⊥A1A,DB⊥AC,A1AACA,平面A1ACC1 ∴DB⊥A1O.∴DB⊥平面A1ACC1,而AO1

设正方体棱长为a,则AO1

3a,MO2a2. 2

4.在Rt△ACA1M211M中,9222

2OO

M∵AO,∴AMOA1Ma.11

∵OM∩DB=O,∴ A1O⊥平面MBD.

考点:线面垂直的判定,运用勾股定理寻求线线垂直 15、如图2,在三棱锥A-BCD中,BC=AC,AD=BD,作BE⊥CD,E为垂足,作AH⊥BE于H.求证:AH⊥平面BCD.证明:取AB的中点F,连结CF,DF.∵ACBC,∴CFAB.

∵ADBD,∴DFAB.

又CFDFF,∴AB平面CDF.∵CD平面CDF,∴CDAB.又CDBE,BEABB,∴CD平面ABE,CDAH.

∵AHCD,AHBE,CDBEE,∴ AH平面BCD. 考点:线面垂直的判定

16、证明:在正方体ABCD-A1B1C1D1中,A1C⊥平面BC1D

A

C

证明:连结AC

⊥AC∵BD∴ AC为A1C在平面AC上的射影

BDA1C

A1C平面BC1D

同理可证A1CBC1

考点:线面垂直的判定,三垂线定理

17、如图,过S引三条长度相等但不共面的线段SA、SB、SC,且∠ASB=∠ASC=60°,∠BSC=90°,求证:平面ABC⊥平面BSC.

证明∵SB=SA=SC,∠ASB=∠ASC=60°∴AB=SA=AC取BC的中点O,连AO、SO,则AO⊥BC,SO⊥BC,∴∠AOS为二面角的平面角,设SA=SB=SC=a,又∠BSC=90°,∴BC=2a,SO=2a,11

AO2=AC2-OC2=a2-2a2=2a2,∴SA2=AO2+OS2,∴∠AOS=90°,从而平面ABC⊥平面BSC.

考点:面面垂直的判定(证二面角是直二面角)

第三篇:高中数学立体几何常考证明题汇总

新课标立体几何常考证明题

1、已知四边形ABCD是空间四边形,E,F,G,H分别是边AB,BC,CD,DA的中点

(1)求证:EFGH是平行四边形

(2)若

BD=AC=2,EG=2。求异面直线AC、BD所成的角和EG、BD所成的角。

C D H证明:在ABD中,∵E,H分别是AB,AD的中点∴EH//BD,EH同理,FG//BD,FG

(2)90°30 °

考点:证平行(利用三角形中位线),异面直线所成的角 1BD 21BD∴EH//FG,EHFG∴四边形EFGH是平行四边形。

22、如图,已知空间四边形ABCD中,BCAC,ADBD,E是AB的中点。求证:(1)AB平面CDE;

(2)平面CDE平面ABC。E BCAC证明:(1)CEAB AEBE

同理,ADBDDEAB AEBEB C 又∵CEDEE∴AB平面CDE

(2)由(1)有AB平面CDE

又∵AB平面ABC,∴平面CDE平面ABC

考点:线面垂直,面面垂直的判定

D3、如图,在正方体ABCDA1B1C1D1中,E是AA1的中点,求证: AC1//平面BDE。

证明:连接AC交BD于O,连接EO,∵E为AA1的中点,O为AC的中点 ∴EO为三角形A1AC的中位线 ∴EO//AC1 又EO在平面BDE内,A1C在平面BDE外

∴AC1//平面BDE。考点:线面平行的判定

4、已知ABC中ACB90,SA面ABC,ADSC,求证:AD面SBC. 证明:∵ACB90°BCAC

又SA面ABCSABC

BC面SACBCAD

A

D

1B

C

D

C

S

A

C

B

又SCAD,SCBCCAD面SBC考点:线面垂直的判定

9、如图P是ABC所在平面外一点,PAPB,CB平面PAB,M是PC的中点,N是AB上的点,AN3NB(1)求证:MNAB;(2)当APB90,AB2BC4时,求MN的长。证明:(1)取PA的中点Q,连结MQ,NQ,∵M是PB的中点,M

P

∴MQ//BC,∵ CB平面PAB,∴MQ平面PAB∴QN是MN在平面PAB内的射影,取 AB的中点D,连结 PD,∵PAPB,∴C

A

PDAB,又AN3NB,∴BNND

N ∴QN//PD,∴QNAB,由三垂线定理得MNAB B

1

(2)∵APB90,PAPB,∴PDAB2,∴QN1,∵MQ平面PAB.∴MQNQ,且

MQBC

1,∴MN

2考点:三垂线定理

12、已知ABCD是矩形,PA平面ABCD,AB2,PAAD4,E为BC的中点.

(1)求证:DE平面PAE;(2)求直线DP与平面PAE所成的角. 证明:在ADE中,ADAEDE,AEDE ∵PA平面ABCD,DE平面ABCD,PADE

又PAAEA,DE平面PAE(2)DPE为DP与平面PAE所成的角

在Rt

PAD,PDRt

DCE中,DE在RtDEP中,PD2DE,DPE300 考点:线面垂直的判定,构造直角三角形

15、如图2,在三棱锥A-BCD中,BC=AC,AD=BD,作BE⊥CD,E为垂足,作AH⊥BE于H.求证:AH⊥平面BCD.证明:取AB的中点F,连结CF,DF.∵ACBC,∴CFAB.

∵ADBD,∴DFAB.

又CFDFF,∴AB平面CDF.∵CD平面CDF,∴CDAB.又CDBE,BEABB,∴CD平面ABE,CDAH.

∵AHCD,AHBE,CDBEE,∴ AH平面BCD. 考点:线面垂直的判定

第四篇:高中数学立体几何常考证明题汇总 - 副本

立体几何常考证明题汇总答案

1、已知四边形ABCD是空间四边形,E,F,G,H分别是边AB,BC,CD,DA的中点(1)求证:EFGH是平行四边形

(2)若

BD=AC=2,EG=2。求异面直线AC、BD所成的角和EG、BD所成的角。考点:证平行(利用三角形中位线),异面直线所成的角

2、如图,已知空间四边形ABCD中,BCAC,ADBD,E是AB的中点。求证:(1)AB平面CDE;

(2)平面CDE平面ABC。证明:(1)

E

C

H D

BCAC

CEAB

AEBE

B

同理,ADBD

DEAB

AEBE

C

又∵CEDEE∴AB平面CDE(2)由(1)有AB平面CDE

又∵AB平面ABC,∴平面CDE平面ABC

B

考点:线面垂直,面面垂直的判定

3、如图,在正方体ABCDA1B1C1D1中,E是AA1的中点,A

D

D

1C

求证: AC1//平面BDE。

证明:连接AC交BD于O,连接EO,∵E为AA1的中点,O为AC的中点

C

D

S

∴EO为三角形A1AC的中位线 ∴EO//AC1 又EO在平面BDE内,AC1在平面BDE外 ∴AC1//平面BDE。考点:线面平行的判定

4、已知ABC中ACB90,SA面ABC,ADSC,求证:AD面SBC. 考点:线面垂直的判定

5、已知正方体ABCDA1B1C1D1,O是底ABCD对角线的交点.

A

C

B

D1A

1D

A

BBC1

面AB1D1.求证:(1)C1O∥面AB1D1;(2)AC1

C

考点:线面平行的判定(利用平行四边形),线面垂直的判定

6、正方体ABCDA'B'C'D'中,求证:(1)AC平面B'D'DB;(2)BD'平面ACB'.考点:线面垂直的判定

7、正方体ABCD—A1B1C1D1中.(1)求证:平面A1BD∥平面B1D1C;(2)若E、F分别是AA1,CC1的中点,求证:平面EB1D1∥平面FBD. 证明:(1)由B1B∥DD1,得四边形BB1D1D是平行四边形,∴B1D1∥BD,又BD 平面B1D1C,B1D1平面B1D1C,∴BD∥平面B1D1C. 同理A1D∥平面B1D1C.

而A1D∩BD=D,∴平面A1BD∥平面B1CD.

A

(2)由BD∥B1D1,得BD∥平面EB1D1.取BB1中点G,∴AE∥B1G.

从而得B1E∥AG,同理GF∥AD.∴AG∥DF.∴B1E∥DF.∴DF∥平面EB1D1.∴平面EB1D1∥平面FBD.

考点:线面平行的判定(利用平行四边形)

8、四面体ABCD中,ACBD,E,F分别为AD,BC的中点,且EF

AC,2BDC90,求证:BD平面ACD

证明:取CD的中点G,连结EG,FG,∵E,F分别为AD,BC的中点,∴EG

1//AC 2

//1BD,又ACBD,∴FG1AC,∴在EFG中,EG2FG21AC2EF2 FG

222

∴EGFG,∴BDAC,又BDC90,即BDCD,ACCDC∴BD平面ACD

考点:线面垂直的判定,三角形中位线,构造直角三角形

9、如图P是ABC所在平面外一点,PAPB,CB平面PAB,M是PC的中点,N是AB上的点,AN3NB

P

(1)求证:MNAB;(2)当APB90,AB2BC4时,求MN的长。证明:(1)取PA的中点Q,连结MQ,NQ,∵M是PB的中点,M∴MQ//BC,∵ CB平面PAB,∴MQ平面PAB∴QN是MN在平面PAB内的射影,取 AB的中点D,连结 PD,∵PAPB,∴CAPDAB,又AN3NB,∴BNND

N ∴QN//PD,∴QNAB,由三垂线定理得MNAB B

1

(2)∵APB90,PAPB,∴PDAB2,∴QN1,∵MQ平面PAB.∴MQNQ,且

MQBC

1,∴MN

2考点:三垂线定理

10、如图,在正方体ABCDA1B1C1D1中,E、F、G分别是AB、AD、C1D1的中点.求证:平面D1EF∥平面BDG.证明:∵E、F分别是AB、AD的中点,EF∥BD 又EF平面BDG,BD平面BDGEF∥平面BDG ∵D

1G

EB四边形D1GBE为平行四边形,D1E∥GB

又D1E平面BDG,GB平面BDGD1E∥平面BDG

EFD1EE,平面D1EF∥平面BDG

考点:线面平行的判定(利用三角形中位线)

11、如图,在正方体ABCDA1B1C1D1中,E是AA1的中点.(1)求证:AC1//平面BDE;(2)求证:平面A1AC平面BDE.证明:(1)设ACBDO,∵E、O分别是AA1、AC的中点,AC1∥EO

平面BDE,EO平面BDE,AC又AC∥平面BDE 1

1(2)∵AA1平面ABCD,BD平面ABCD,AA1BD 又BDAC,ACAA1A,BD平面A1AC,BD平面BDE,平面BDE平面A1AC

考点:线面平行的判定(利用三角形中位线),面面垂直的判定

12、已知ABCD是矩形,PA平面ABCD,AB2,PAAD4,E为BC的中点.

(1)求证:DE平面PAE;(2)求直线DP与平面PAE所成的角. 证明:在ADE中,ADAEDE,AEDE ∵PA平面ABCD,DE平面ABCD,PADE 又PAAEA,DE平面PAE(2)DPE为DP与平面PAE所成的角

在Rt

PAD,PDRt

DCE中,DE在RtDEP中,PD2DE,DPE30 考点:线面垂直的判定,构造直角三角形

13、如图,在四棱锥PABCD中,底面ABCD是DAB60且边长为a的菱形,侧面PAD是等边三角形,且平面PAD垂直于底面ABCD.

(1)若G为AD的中点,求证:BG平面PAD;(2)求证:ADPB;

(3)求二面角ABCP的大小. 证明:(1)ABD为等边三角形且G为AD的中点,BGAD 又平面PAD平面ABCD,BG平面PAD

(2)PAD是等边三角形且G为AD的中点,ADPG 且ADBG,PGBGG,AD平面PBG,22

2PB平面PBG,ADPB

(3)由ADPB,AD∥BC,BCPB 又BGAD,AD∥BC,BGBC PBG为二面角ABCP的平面角

在RtPBG中,PGBG,PBG4

5考点:线面垂直的判定,构造直角三角形,面面垂直的性质定理,二面角的求法(定义法)

平面MBD.

14、如图1,在正方体ABCDA1B1C1D1中,M为CC1 的中点,AC交BD于点O,求证:AO

1证明:连结MO,A1M,∵DB⊥A1A,DB⊥AC,A1AACA,平面A1ACC1 ∴DB⊥AO∴DB⊥平面A1ACC1,而AO1.1

设正方体棱长为a,则AO1

3a,MO2a2. 2

4.在Rt△ACA1M211M中,9222

2OOM∵AO,∴AMOA1Ma.11

∵OM∩DB=O,∴ AO1⊥平面MBD.

考点:线面垂直的判定,运用勾股定理寻求线线垂直 15、如图2,在三棱锥A-BCD中,BC=AC,AD=BD,作BE⊥CD,E为垂足,作AH⊥BE于H.求证:AH⊥平面BCD.证明:取AB的中点F,连结CF,DF.∵ACBC,∴CFAB.

∵ADBD,∴DFAB.

又CFDFF,∴AB平面CDF.∵CD平面CDF,∴CDAB.又CDBE,BEABB,∴CD平面ABE,CDAH.

∵AHCD,AHBE,CDBEE,∴ AH平面BCD.

考点:线面垂直的判定

A16、证明:在正方体ABCD-A1B1C1D1中,A1C⊥平面BC1DC证明:连结AC

⊥AC∵BD∴ AC为A1C在平面AC上的射影

BDA1C

A1C平面BC1D

同理可证A1CBC1

考点:线面垂直的判定,三垂线定理

17、如图,过S引三条长度相等但不共面的线段SA、SB、SC,且∠ASB=∠ASC=60°,∠BSC=90°,求证:平面ABC⊥平面BSC.

证明∵SB=SA=SC,∠ASB=∠ASC=60°∴AB=SA=AC取BC的中点O,连AO、SO,则AO⊥BC,SO⊥BC,∴∠AOS为二面角的平面角,设SA=SB=SC=a,又∠BSC=90°,∴BC=a,SO=2a,11

AO2=AC2-OC2=a2-2a2=2a2,∴SA2=AO2+OS2,∴∠AOS=90°,从而平面ABC⊥

平面BSC.

考点:面面垂直的判定(证二面角是直二面角)

第五篇:高中数学几何证明题[小编推荐]

高中数学几何证明题

一、如图,AB∩α=p,CD∩α=p,点A,D与点B,C分别在平面α的两侧,且AC∩α=Q,BD∩α=R,求证:p,Q,R三点在同一条直线上

∵AB∩α=p

CD∩α=p

∴AB∩CD=p

即AB与CD在同一个面β上(假设为该平面为β)

由此得:β与α相交即有一条交线

而A、B、C、D四点均属于平面α

∴AC属于平面α,DB属于平面α

而AC∩α=Q,BD∩α=R

则有Q、R均属于平面β,同时Q、R又是平面α上的两点

由上述得:p、Q、R共线

二、如图,四棱锥p-ABCD的底面ABCD是矩形,点E,F分别是AB,pC的中点,求证:EF‖平面pAD

找DC中点G连接EGFG

那么因为底面是个矩形所以EG平行等于AD

F点和G点的连线就是三角形的中位线所以FG平行Dp

在因为Dp属于平面pADDA也属于平面pAD

且Dp交DA于D

在因为EG属于平面EFGFG也属于平面EFG

所以平面EFG平行于平面pAD

又因为EF属于平面EFG所以EF平行于pAD

三、怎样才能一步步学会证明几何题呢??

我实在是不懂啊!证明几何题的步骤是怎样呢>?有什么方法吗?

其实证明几何题关键是要把一些定理公式的用法搞清楚。学数学最重要的是多做题,其实数学题就是反复的那几中类型的,做的题多了,就自然的会了,还要注意多总结,做好数学笔记,告诉你数学笔记是很重要的。然后就是要有耐心,可能一开始你感觉没有效果,但是漫漫效果会出来的,相信自己一定可以的。我是以我的高考经验来说的,我得数学以前一直是我的弱项,但我最后高考得了131,虽然不是很高,但是对我来说很不错的了。希望你高考可以取得好的成绩。

在正方形ABCD-A'B'C'D'中,证明:平面ACC'A'⊥平面A'BD

各位帮忙写下这题的证明过程啊

因为CC'垂直于面ABCD所以CC'垂直于AC又AC垂直于BDAC交CC'于C所以DB垂直于面AA'C'C即两面垂直

四、AB为圆O所在平面为a,pA⊥a于A,C为圆O上一点,求证:平面pAC⊥平面pBC

AB是圆O的直径吧解:圆O所在平面是a,AB是圆O的直径,pA⊥a于A,C为圆O上一点所以pA⊥BCAC⊥BCpA与AC交于点A所以BC⊥平面pACBC属于平面pBC所以平面pAC⊥平面pBC。

下载高中数学证明题word格式文档
下载高中数学证明题.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    高中数学立体几何常考证明题汇总1

    2、如图,已知空间四边形ABCD中,BCAC,ADBD,E是AB的中点。 求证:(1)AB平面CDE;(2)平面CDE平面ABC。证明:(1)EBCACCEABAEBEBADBD同理,DEABAEBE又∵CEDEE∴AB平面CDE (2)由(1)有AB平面CDECD又∵A......

    高中数学不完全归纳法证明题[优秀范文五篇]

    數學歸納法的迷思數學歸納法可說是高中數學裡最令同學納悶的一部份了,數學歸納法學的不錯的同學,大概都能謹遵老師交待要寫出以下2步驟:1、 步驟1:證明n=1時,敘述成立。(不一定......

    学生版 高中数学立体几何常考证明题汇总

    立体几何常考证明题汇总1、已知四边形ABCD是空间四边形,E,F,G,H分别是边AB,BC,CD,DA的中点(1) 求证:EFGH是平行四边形(2) 若BD=AC=2,EG=2。求异面直线AC、BD所成的角和EG、BD所成的......

    0709 高中数学立体几何常考证明题汇总 题目

    立体几何常考证明题 0709考点:证平行(利用三角形中位线),异面直线所成的角1、已知四边形ABCD是空间四边形,E,F,G,H分别是边AB,BC,CD,DA的中点 (1) 求证:EFGH是平行四边形(2) 若BD=AC=2......

    (学生用)高中数学立体几何常考证明题汇总.

    新课标立体几何常考证明题汇总 1、已知四边形 ABCD 是空间四边形, , , , E F G H 分别是边 , , , AB BC CD DA 的中点 (1 求证:EFGH 是平行四边形 (2 若 BD=AC=2, EG=2。求......

    证明题(★)

    一、听力部分 1—5 ACACB6—10 ABCBC11—15 ACABC16—20 CABAA 二、单选 21—25 ABBCC26—30 DBACC31—35 DCCDB 三、完形填空 36—40 BACCD41—45 AABAB 四、阅读理解 46-5......

    证明题

    一.解答题(共10小题) 1.已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.2.如图,已知∠1+∠C=180°,∠B=∠C,试说明:AD∥BC.3.已知:如图,若∠B=35°,∠CDF=145°,问AB与CE是否平行,请说明理由.分值:显示解析4......

    证明题格式

    证明题格式把已知的作为条件 因为 (已知的内容) 因为条件得出的结论 所以 (因为已知知道的东西) 顺顺顺 最后就会得出 题目所要求的 东西了 谢谢 数学我的强项 1 当 xx 时,......