高中数学必修5不等式中均值不等式链的几种证法

时间:2019-05-13 17:38:56下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高中数学必修5不等式中均值不等式链的几种证法》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高中数学必修5不等式中均值不等式链的几种证法》。

第一篇:高中数学必修5不等式中均值不等式链的几种证法

关键词:基本不等式高中数学教学随笔必修5 >> 不等式

均值不等式链

aba2b

2ab基本不等式链:若a、b都是正数,则,当且仅当ab时等号成立。22ab

2aba2b222ab 注:算术平均数---2;几何平均数---ab;调和平均数---ab;平方平均数---2

ab

证明1:(代数法)

(1)a0,b0(a)20ab2abab

2ab;

(2)ab212abab2

2ab0ababababab;

ab

222b2)2aba2b2a2b2(ab)2a2

(3)ab2ab2(ab2ab

2422;

综上,2

abab

2a2b2

2,当且仅当ab时“”成立。

ab

证明2:(几何法)

G

A

B

如图,ACa,BCb,ABab,以AB为直径作圆O,则

图1:ODab,DCOD

2,DCababab

2;

图2:DCab,DEDC222ab

ODab

ab,DEDCabab;

aba2b2

图3:OCaba2b2

2,GC2,OGGC22; 综上,2aba2b2

ab22,当且仅当ab时“”成立。

ab

授之以鱼,不如授之以渔。

1界首一中2011-01 证明3:(几何法)

作梯形ABCD,使AD//BC,B90,ADBCCD,令ADa,BCb,(ba),E、F分别是AB、CD的中点,过E作EGCD于G,过G作GHAB于H,在EB上截取EN则E、F分别是AB、CD的中点,EF

ED平分ADCEGEAba,2ba,21ABab,2DGaADCGBCDG2abGHDGDA,GCBC,即GH,GCbabab

baa2b2

EN,NF22

2ababa2b2

显然,GHEGEFFN,∴ abab22

2ababa2b2

当“ab”时。abab22

证明4:(几何法)

(ba),作梯形ABCD,使AD//BC,B90,ADBCAB,令ADa,BCb,在AB上截取AEADa,AFBCb,则BEb,BFa

过E作EGAB交CD于G,过F作FOCD于O,过O作OHAB于H,在EH、GO上分别取点M、N,使梯形EGNM与梯形MNOH相似,1a2b2

则ADBF,AFBC,DFCFabCODOOFCD,2222

ADBCab22,ADBEBCAE2abAEa,BEbEG,abab

EGMNMNEGOHab 梯形EGNM与梯形MNOH相似MNOHOCODOH

2ababa2b2

显然,EGMNOHOF,∴ ab22

2ababa2b2

当“ab”时。abab22问题是思考的结果,是创造的开始。

第二篇:均值不等式及其应用

教师寄语:一切的方法都要落实到动手实践中

高三一轮复习数学学案

均值不等式及其应用

一.考纲要求及重难点

要求:1.了解均值不等式的证明过程.2.会用均值不等式解决简单的最大(小)值问题.重难点:1.主要考查应用不等式求最值和不等式的证明.2.对均值不等式的考查多以选择题和填空题的形式出现,难度为中低档题,若出现证明题难度也不会太大.二.考点梳理

ab1.均值定理:;

2(1)均值不等式成立的条件是_________.(2)等号成立的条件是:当且仅当_________时取等号.(3)其中_________称为正数a,b的算术平均值,_________称为正数a,b的几何平均值.2.利用均值定理求最值

M2

1).两个正数的和为定值时,它们的积有最大值,即若a,b∈R,且a+b=M,M为定值,则ab≤,4+

等号当且仅当a=b时成立.简记:和定积最大。

2).两个正数的积为定值时,它们的和有最小值,即若a,b∈R,且ab=P,P为定值,则a+b≥2P,+

等号当且仅当a=b时成立.简记:积定和最小。

3、几个重要的不等式

(1)ab2ab(a,b∈R)(2)22ba 2(a,b同号)ab

a2b2ab2ab2()(a,bR)(3)ab()(a,bR)(4)22

2三、学情自测

1、已知a0,b0,且ab2,则()

112222A、abB、abC、ab2D、ab3 222、给出下列不等式:①a12a212;③x221,其中正确的个数是 x1A、0B、1C、2D、31的最大值是___________。x4、长为24cm的铁丝做成长方形模型,则模型的最大面积为___________。

125.已知正数a,b,满足ab1,则的最小值为 ab3、设x0,则y33x

均值不等式及其应用第 1页(共4页)

四.典例分析

考向一:利用均值不等式求最值

212xy22x3xy4yz0,则当z取得最大值时,xyz的最大例

1、(2013山东)设正实数x,y,z满足

值为()

A.0

B.1 9C.4 D.

3x27x10变式训练1.若x1,求函数f(x)的最大值。x

12.(2013天津数学)设a + b = 2, b>0, 则当a = ______时,考向

二、利用均值不等式证明简单不等式

2、已知x0,y0,z0,求证:(变式训练

2、已知a,b,c都是实数,求证:abc

2221|a|取得最小值.2|a|byzxzxy)()()8 xxyyzz1(abc)2abbcac

3考向

三、均值不等式的实际应用

3、小王于年初用50万元购买一辆大货车,第一年因缴纳各种费用需支出6万元,从第二年起,每年都比

上一年增加支出2万元,假定该年每年的运输收入均为25万元.小王在该车运输累计收入超过总支出后,考虑将大货车作为二手车出售,若该车在第x年年底出售,其销售价格为25x万元(国家规定大货车的报废年限为10年).(1)大货车运输到第几年年底,该车运输累计收入超过总支出?

(2)在第几年年底将大货车出售,能使小王获得的年平均利润最大?)(利润=累计收入+销售收入-总支出)

变式训练:

如图:动物园要围成相同面积的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成。

(1)现有可围36米长钢筋网的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼面积最大?

(2)若使每间虎笼面积为24m,则每间虎笼的长、宽各设计为多少时,可使四间虎笼的钢筋网总长最小?

五、当堂检测

1、若a,bR且ab0,则下列不等式中,恒成立的是()

2A、ab2abB、ab、11ba、2 abab2、若函数f(x)x1(x2)在xa处取得最小值,则a()x

2A、1B、1C、3D、4ab3、已知log2log21,则39的最小值为___________。ab

4.若点A1,1在直线mxny20上,其中mn0,则11的最小值为__________.mn

六、课堂小结

七、课后巩固

511、已知x,则函数y4x2的最大值是()44x

51A、2B、3C、1D、2(ab)22、已知x0,y0,x,a,b,y成等差数列,x,c,d,y成等比数列,则的最小值是 cd

A、0B、1C、2D、43、已知b0,直线(b1)xay20与直线xby10互相垂直,则ab的最小值为()

A、1B、2C、D、4、已知x0,y0,xyxy8,则xy最小值是___________。

5、若对任意x0,22xa恒成立,则a的取值范围是___________。2x3x1

6.某工厂去年的某产品的年销售量为100万只,每只产品的销售价为10元,每只产品固定成本为8元,今年,工厂第一次投入100万元,并计划以后每年比上一年多投入100万元,预计销售量从今年开始每年比上一年增加10万只,第n次投入后,每只产品的固定成本为g(n)k0,k为常数,nN),若产品销售价保持不变,第n次投入后的年利润为f(n)万元.(1)求k的值,并求出f(n)的表达式;

(2)若今年是第1年,则第几年年利润最高?最高利润为多少万元?

第三篇:均值不等式说课稿

《均值不等式》说课稿

山东陵县一中 燕继龙李国星

尊敬的各位评委、老师们:

大家好!我今天说课的题目是 《均值不等式》,下面我从教材分析,教学目标,教学重点、难点,教学方法,学生学法,教学过程,板书设计,效果分析八个方面说说我对这堂课的设计。

一、教材分析:

均值不等式又称基本不等式,选自普通高中课程标准实验教科书(人教B版)必修5第三章第3节内容。是不等式这一章的核心,在高中数学中有着比较重要的地位。对于不等式的证明及利用均值不等式求最值等实际问题都起到工具性作用。通过本节的学习有利于学生对后面不等式的证明及前面函数的一些最值值域进一步研究,起到承前启后的作用。

二、教学目标:

1、知识与技能:

(1)掌握均值不等式以及其成立的条件;

(2)能运用均值不等式解决一些较为简单的问题。

2、过程与方法:

(1)探索并了解均值不等式的证明过程、体会均值不等式的证明方法;

(2)培养探究能力以及分析问题、解决问题的能力。

3、情感态度与价值观:

(1)通过探索均值不等式的证明过程,培养探索、钻研、合作精神;

(2)通过对均值不等式成立条件的分析,养成严谨的科学态度;

(3)认识到数学是从实际中来,通过数学思维认知世界。

三、教学重点和难点:

重点:通过对新课程标准的解读,教材内容的解析,我认为结果固然重要,但数学学习过程更重要,它有利于培养学生的数学思维和探究能力,所以均值不等式的推导是本节课的重点之一;再者,均值不等式有比较广泛的应用,需重点掌握,而用好均值不等式,关键是对不等式成立条件的准确理解,因此,均值不等式及其成立的条件也是教学重点。

难点:很多同学对均值不等式成立的条件的认识不深刻,在应用时候常常出现错误,所以,均值不等式成立的条件是本节课的难点。

四、教学方法:

为了达到目标、突出重点、突破难点、解决疑点,我本着以教师为主导的原则,再结合本节的实际特点,确定本节课的教学方法。

突出重点的方法:我将通过引导启发、学生展示来突出均值不等式的推导;通过多媒体展示、来突出均值不等式及其成立的条件。

突破难点的方法:我将采用重复法(在课堂的每一环节,以各种方式进行强调均值不等式和

来突破均值不等式成立的条件这个难点。

此外还将继续采用个人和小组积分法,调动学生积极参与的热情。

五、学生学法:

在学生的学习中,注重知识与能力,过程与方法,情感态度和价值观三个方面的共同发展。充分体现学生是主体,具体如下:

1、课前预习----学会;、明确重点、解决疑点;

2、分组讨论

3、积极参与----敢于展示、大胆质疑、争相回答;

4、自主探究----学生实践,巩固提高;

六、教学过程:

采取“三步骤四环节和谐高效课堂”教学模式,运用学案导学开展本节课的教学,首先进行

:课前预习

(一)成果反馈

1.对课前小组合作完成的现实生活中的问题:

“今有一台天平,两臂不等长,要用它称物体质量,将物体放在左、右托盘各称一次,称得的质量分别为a,b,问:能否用a,b的平均值表示物体的真实质量?若不能,这二者是什么关系?”

进行多媒体情景演示,抽小组派代表回答,从而引出均值不等式抽出两名同学上黑板完成2、32.均值定理:_____________________________________

ab

2。

预备定理:a2b22ab(a,bR),仿照预备定理的证明证明均值定理 3.已知ab>0,求证:

ab

ab2,并推导出式中等号成立的条件。

与此同时,其他同学分组合作探究和均值定理有关的以下问题,教师巡视并参与讨论,适时点拨。

① 适用范围a,b________,x0,x

1x2

对吗?

② 等号成立的条件,当且仅当__________时,________=_________ ③ 语言表述:两个___数的____平均数_____它们的_______平均数 ④ 把不等式_________________又称为均值或________不等式 ⑤ 数列观点:两个正数的______中项不小于它们的_____中项

。⑥ 几何解释(见右图):________________

⑦常见变形ab_______

________,即ab

___________。例:

4、(1)一个矩形的面积为100 m,问这个矩形的长、宽各为多少时,矩形的周长最短?最短周长是多少?(2)已知矩形的周长是36m,问这个矩形的长、宽各为多少时,矩形的面积最大?最大面积是多少?

由此题可以得出两条重要规律:

两个正数的积为常数时,它们的和有______值; 两个正数的和为常数时,它们的积有______值。

等待两名同学做完后,适时终止讨论,学生各就各位。首先针对黑板上这两道题发动学生上来捉错(用不同色粉笔),然后再由老师完善,以此加深学生对定理及应用条件的认识。其次,老师根据刚才巡视掌握的情况,结合多媒体进行有针对性的讲解(重点应强调均值定理的几何解释:半径不小于半弦,以及用三角形相似或射影定理的几何证明过程,使定理“形化”),进一步加深学生对定理的认识及应用能力,初步掌握用均值定理求函数最值时要注意“一正、二定、三相等”

第二步:课内探究

(二)精讲点拨 1.例:求函数f(x)

2xx

3x

(x0)的最大值,及此时x的值。

先和学生们一起探讨该问题的解题思路,先拆分再提出“-”号,为使用均值定理创造条件,后由学生们独立完成,教师通过巡视或提问发现问题,通过多媒体演示来解决问题,该例题主要让学生注意定理的应用条件及一些变形技巧。

2.多媒体展示辨析对错:

这几道辨析题先让学生们捉错,再由

多媒体给出答案,创设情境加深学生对用均值定理求函数最值时注意“一正、二定、三相等”的认识

(三)有效训练

1.(独立完成)下列函数的最小值为2的是()

A、yx

1x

B、ysinx

1sinx

(0x

)

C、y

1D、ytanx

本题意在巩固用均值定理求函数最值时要注意“一正、二定、三相等”,待学生完成后,随机抽取几名学生说一下答案,选D,应该不会有问题。

2.(小组合作探究)一扇形中心角为α,所在圆半径为R。若扇形周长为一常值C(C>0),当α为何值时,扇形面积最大,并求此最大值。

本题若直接运用均值不等式不会出现定值,需要拼凑。待学生讨论过后,先通答案,2时扇形面积最大值为

c

tanx

(0x

)

。若有必要,抽派小组代表到讲台上讲解,及时反馈矫正。

(四)本节小结

小结本节课主要内容,知识点,由学生总结,教师完善,不外乎: 1.两个重要不等式

ab2ab(a,bR,当且仅当ab时取“”)

2ab2

a,bR,当且仅当ab时取“”)

2.用均值定理求函数最值时要注意“一正、二定、三相等”。

(一)、双基达标(必做,独立完成):

1、课本第71页练习A、B;

2、已知x1,求yx6

x

1的最值;

(二)、拓展提高(供选做, 可小组合作完成):

23、若a,bR且a

b

1,求a最大值及此时a,b的值.4、a0,b0,且

5、求函数f(x)

1a

9b

1,求ab最小值.x3x1x

1(x1)的最小值。

通过作业使学生进一步巩固本节课所学内容,注重分层次设计题目,更加关注学生的差异。

七、板书设计:

由于本节采用多媒体教学,板书比较简单,且大部分是学生的展示。

八、效果分析:

本节课采取了我校推行的“三步骤四环节和谐高效课堂”教学模式,通过学案导学,多媒体展示,师生互动,生生互动。学生基本能掌握均值不等式以及其成立的条件;能运用均值不等式解决一些较为简单的问题。但用均值定理求函数最值时要注意“一正、二定、三相等”,说起来容易做起来难,学生还得通过反思和课后训练进一步体会。

我的说课到此结束,恳请各位评委和老师们批评指正,谢谢!

第四篇:常用均值不等式及证明证明

常用均值不等式及证明证明

这四种平均数满足HnGn

AnQn

、ana1、a2、R,当且仅当a1a2

an时取“=”号

仅是上述不等式的特殊情形,即D(-1)≤D(0)≤D(1)≤D(2)由以上简化,有一个简单结论,中学常用

均值不等式的变形:

(1)对实数a,b,有a

2b22ab(当且仅当a=b时取“=”号),a,b02ab

(4)对实数a,b,有

aa-bba-b

a2b2

2ab0

(5)对非负实数a,b,有

(8)对实数a,b,c,有

a2

b2c2abbcac

abcabc(10)对实数a,b,c,有

均值不等式的证明:

方法很多,数学归纳法(第一或反向归纳)、拉格朗日乘数法、琴生不等式法、排序

不等式法、柯西不等式法等等

用数学归纳法证明,需要一个辅助结论。

引理:设A≥0,B≥0,则ABAnnAn-1B

n

注:引理的正确性较明显,条件A≥0,B≥0可以弱化为A≥0,A+B≥0(用数学归纳法)。

当n=2时易证;

假设当n=k时命题成立,即

那么当n=k+1时,不妨设ak1是则设

a1,a2,,ak1中最大者,kak1a1a2ak1 sa1a2ak

用归纳假设

下面介绍个好理解的方法琴生不等式法

琴生不等式:上凸函数fx,x1,x2,,xn是函数fx在区间(a,b)内的任意n个点,设fxlnx,f

x为上凸增函数所以,在圆中用射影定理证明(半径不小于半弦)

第五篇:均值不等式证明

均值不等式证明

一、已知x,y为正实数,且x+y=1求证

xy+1/xy≥17/

41=x+y≥2√(xy)

得xy≤1/4

而xy+1/xy≥

2当且仅当xy=1/xy时取等

也就是xy=1时

画出xy+1/xy图像得

01时,单调增

而xy≤1/4

∴xy+1/xy≥(1/4)+1/(1/4)=4+1/4=17/4

得证

继续追问:

拜托,用单调性谁不会,让你用均值定理来证

补充回答:

我真不明白我上面的方法为什么不是用均值不等式证的法二:

证xy+1/xy≥17/4

即证4(xy)²-17xy+4≥0

即证(4xy-1)(xy-4)≥0

即证xy≥4,xy≤1/4

而x,y∈R+,x+y=

1显然xy≥4不可能成立

∵1=x+y≥2√(xy)

∴xy≤1/4,得证

法三:

∵同理0

xy+1/xy-17/4

=(4x²y²-4-17xy)/4xy

=(1-4xy)(4-xy)/4xy

≥0

∴xy+1/xy≥17/4

试问怎样叫“利用均值不等式证明”,是说只能用均值不等式不能穿插别的途径?!

二、已知a>b>c,求证:1/(a-b)+1/(b-c)+1/(c-a)>0

a-c=(a-b)+(b-c)≥2√(a-b)*(b-c)

于是c-a≤-2√(a-b)*(b-c)<0

即:1/(c-a)≥-1/【2√(a-b)*(b-c)】

那么

1/(a-b)+1/(b-c)+1/(c-a)

≥1/(a-b)+1/(b-c)-1/【2√(a-b)*(b-c)】

≥2/【√(a-b)*(b-c)】-1/【2√(a-b)*(b-c)】=(3/2)/【2√(a-b)*(b-c)】>0

三、1、调和平均数:Hn=n/(1/a1+1/a2+...+1/an)

2、几何平均数:Gn=(a1a2...an)^(1/n)

3、算术平均数:An=(a1+a2+...+an)/n4、平方平均数:Qn=√(a1^2+a2^2+...+an^2)/n这四种平均数满足Hn≤Gn≤An≤Qn的式子即为均值不等式。

概念:

1、调和平均数:Hn=n/(1/a1+1/a2+...+1/an)

2、几何平均数:Gn=(a1a2...an)^(1/n)

3、算术平均数:An=(a1+a2+...+an)/n4、平方平均数:Qn=√

这四种平均数满足Hn≤Gn≤An≤Qn

a1、a2、…、an∈R+,当且仅当a1=a2=…=an时劝=”号

均值不等式的一般形式:设函数D(r)=^(1/r)(当r不等于0时);

(a1a2...an)^(1/n)(当r=0时)(即D(0)=(a1a2...an)^(1/n))

则有:当r注意到Hn≤Gn≤An≤Qn仅是上述不等式的特殊情形,即D(-1)≤D(0)≤D(1)≤D(2)

由以上简化,有一个简单结论,中学常用2/(1/a+1/b)≤√ab≤(a+b)/2≤√

方法很多,数学归纳法(第一或反向归纳)、拉格朗日乘数法、琴生不等式法、排序不等式法、柯西不等式法等等

用数学归纳法证明,需要一个辅助结论。

引理:设A≥0,B≥0,则(A+B)^n≥A^n+nA^(n-1)B。

注:引理的正确性较明显,条件A≥0,B≥0可以弱化为A≥0,A+B≥0,有兴趣的同学可以想想如何证明(用数学归纳法)。

原题等价于:((a1+a2+…+an)/n)^n≥a1a2…an。

当n=2时易证;

假设当n=k时命题成立,即

((a1+a2+…+ak)/k)^k≥a1a2…ak。那么当n=k+1时,不妨设a(k+1)是a1,a2,…,a(k+1)中最大者,则

ka(k+1)≥a1+a2+…+ak。

设s=a1+a2+…+ak,{/(k+1)}^(k+1)

={s/k+/}^(k+1)

≥(s/k)^(k+1)+(k+1)(s/k)^k/k(k+1)用引理

=(s/k)^k*a(k+1)

≥a1a2…a(k+1)。用归纳假设

下面介绍个好理解的方法

琴生不等式法

琴生不等式:上凸函数f(x),x1,x2,...xn是函数f(x)在区间(a,b)内的任意n个点,则有:f≥1/n*

设f(x)=lnx,f(x)为上凸增函数

所以,ln≥1/n*=ln

即(x1+x2+...+xn)/n≥(x1*x2*...*xn)^(1/n)

在圆中用射影定理证明(半径不小于半弦)。

下载高中数学必修5不等式中均值不等式链的几种证法word格式文档
下载高中数学必修5不等式中均值不等式链的几种证法.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    均值不等式教案★

    3.2均值不等式 教案(3)(第三课时)教学目标:了解均值不等式在证明不等式中的简单应用教学重点:了解均值不等式在证明不等式中的简单应用教学过程例1、已知a、b、c∈R,求证:不等式的左......

    均值不等式应用

    均值不等式应用一.均值不等式22ab1. (1)若a,bR,则ab2ab(2)若a,bR,则abab时取“=”) 2222. (1)若a,bR*,则ab(2)若a,bR*,则ab2ab(当且仅当ab时取“=”) 2ab(当且仅当ab时取“=”(3)若a......

    均值不等式说课稿(汇编)

    说课题目:高中数学人教B版必修第三章第二节 -------均值不等式(1) 一、 本节内容的地位和作用 均值不等式又叫做基本不等式,选自人教B版(必修5)的第3章的2节的内容,是在上节不等式......

    均值不等式教案

    §3.2 均值不等式 【教学目标】 1.理解均值不等式 2.能利用均值不等式求最值或证明不等式 【教学重点】 掌握均值不等式 【教学难点】 利用均值不等式证明不等式或求函数的......

    不等式证明,均值不等式

    1、 设a,bR,求证:ab(ab)abab2abba2、 已知a,b,c是不全相等的正数,求证:a(b2c2)b(c2a2)c(a2b2)>6abc 3、 (abc)(1119) abbcca24、 设a,bR,且ab1,求证:(a)(b)5、 若ab1,求证:asinxbcosx1......

    均值不等式练习题

    均值不等式求最值及不等式证明2013/11/23题型一、均值不等式求最值例题:1、凑系数:当0x4时,求yx(82x)的最大值。2、凑项:已知x51,求函数f(x)4x2的最大值。 44x5x27x10(x≠1)的值......

    高中数学不等式

    数学基础知识与典型例题数学基础知识与典型例题(第六章不等式)答案例1.C例2. B例3. 675 例4. n3+1>n2+n例5.提示:把“”、“2”看成一个整体. 解:∵3=2(2)()又∵2≤2(2)≤6,......

    _高中数学必修5第三章不等式单元测试题

    高中数学必修5第三章不等式单元测试题一、选择题(本大题共10小题,每小题5分,共50分)1.不等式x2≥2x的解集是A.{x|x≥2}B.{x|x≤2}C.{x|0≤x≤2}D.{x|x≤0或x≥2}2.下列说法正确的......