外拿破仑三角形的证明

时间:2019-05-13 17:03:28下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《外拿破仑三角形的证明》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《外拿破仑三角形的证明》。

第一篇:外拿破仑三角形的证明

外拿破仑三角形的证明

设△ABC,它向外作的正三角形中心分别为D、E、F

设BC=根号3a,AC=根号3b,AB=根号3c

则AD=BD=c,AE=CE=b,BF=CF=a

易证∠DAE=60+∠BAC

cos∠DAE=cos(60+∠BAC)=cos60*cos∠BAC-sin60*sin∠BAC

cos∠BAC=(b^2+c^2-a^2)/2bc,sin∠BAC=根号3a/2R(R为△ABC外接圆的半径)cos∠DAE=(b^2+c^2-a^2)/4bc-3a/4R

由余弦定理得

DE^2=AD^2+AE^2-2cos∠DAE*AD*AE

=b^2+c^2-(b^2+c^2-a^2)/2+3abc/2R

=(a^2+b^2+c^2)/2+3abc/2R

同理可得DF^2=EF^2=(a^2+b^2+c^2)/2+3abc/2R

…………

第二篇:三角形的证明

全等三角形的证法

1:(SSS或“边边边”)证明三条边相等的两个三角形全等

在两个三角形中,若三条边相等,则这两个三角形全等。

几何语言:在三角形中因为ab=AB, ac=AC, bc=BC所以三角形abc全等于三角形ABC

2.(SAS或“边角边”)证明有两条边及其夹角对应相等的两个三角形全等

在两个三角形中,若有两条边及其夹角对应相等,则这两个三角形全等。

几何语言:在三角形中因为ab=AB,bc=BC, ∠b=∠B,则三角形abc全等于三角形ABC

3.(ASA或“角边角”)证明有两角及其夹边对应相等的两个三角形全等

在两个三角形中,若有两角及其夹边对应相等的两个三角形全等.几何语言:在三角形中∠a=∠A,∠b=∠B,ab=AB, 则三角形abc全等于三角形ABC

4.(AAS或“角角边”)证明有两角及一角的对边对应相等的两个三角形全等

在两个三角形中,若两角及一角的对边对应相等的两个三角形全等

几何语言:在三角形中∠a=∠A,∠b=∠Bac=AC则三角形abc全等于三角形ABC

5.(HL或“斜边,直角边”)证明斜边及一直角边对应相等的两个直角三角形全等 在两个直角三角形中,若斜边及一直角边对应相等的两个直角三角形全等

几何语言:在三角形中因为ab=AB 直角c=直角C 则三角形abc全等于三角形ABC

所以,SSS,SAS,ASA,AAS,HL均为判定三角形全等的定理。

注意:在全等的判定中,没有AAA和SSA,这两种情况都不能唯一确定三角形的形.提醒:在证明的 图中 可能出现,两直线平行,内错角相等

两直线平行,同旁内角相等

两直线平行,对顶角相等

通常在混合题,混合图,等等

第三篇:全等三角形证明

全等三角形的证明

1.翻折

如图(1),BOC≌EOD,BOC可以看成是由EOD沿直线AO翻折180得到的;

旋转

如图(2),COD≌BOA,COD可以看成是由BOA绕着点O旋转180得到的;

平移

如图(3),DEF≌ACB,DEF可以看成是由ACB沿CB方向平行移动而得到的。

2.判定三角形全等的方法:

(1)边角边公理、角边角公理、边边边公理、斜边直角边(直角三角形中)公理

(2)推论:角角边定理

3.注意问题:

(1)在判定两个三角形全等时,至少有一边对应相等;

(2)不能证明两个三角形全等的是,a: 三个角对应相等,即AAA;b :有两边和其中一角对应相等,即SSA。

一、全等三角形知识的应用

(1)证明线段(或角)相等

例1:如图,已知AD=AE,AB=AC.求证:BF=FC

(2)证明线段平行

例2:已知:如图,DE⊥AC,BF⊥AC,垂足分别为E、F,DE=BF,AE=CF.求证:AB∥CD

(3)证明线段的倍半关系,可利用加倍法或折半法将问题转化为证明两条线段相等

例3:如图,在△ ABC中,AB=AC,延长AB到D,使BD=AB,取AB的中点E,连接CD和CE.求证:CD=2CE

例4 如图,△ABC中,∠C=2∠B,∠1=∠2。求证:AB=AC+CD.

例5:已知:如图,A、D、B三点在同一条直线上,CD⊥AB,ΔADC、ΔBDO为等腰Rt三角形,AO、BC的大小关系和位置关系分别如何?证明你的结论。

例6.如图,已知C为线段AB上的一点,ACM和CBN都是等边三角形,AN和CM相交于F点,BM和CN交于E点。求证:CEF是等边三角形。

N

M

FE

C

A B

第四篇:全等三角形证明

全等三角形证明

1、已知CD∥AB,DF∥EB,DF=EB,问AF=CE吗?说明理由。

CA2、已知∠E=∠F,∠1=∠2,AB=CD,问AE=DF吗?说明理由。

F3、已知,点C是AB的中点,CD∥BE,且CD=BE,问∠D=∠E吗?说明理由。

4、已知AB=CD,BE=DF,AE=CF,问AB∥CD吗?

A B

C

第五篇:全等三角形练习题(证明)

全等三角形练习题(8)

一、认认真真选,沉着应战!

1.下列命题中正确的是()

A.全等三角形的高相等B.全等三角形的中线相等

C.全等三角形的角平分线相等D.全等三角形对应角的平分线相等 2. 下列各条件中,不能做出惟一三角形的是()

A.已知两边和夹角B.已知两角和夹边

C.已知两边和其中一边的对角D.已知三边

4.下列各组条件中,能判定△ABC≌△DEF的是()

A.AB=DE,BC=EF,∠A=∠D

B.∠A=∠D,∠C=∠F,AC=EF

C.AB=DE,BC=EF,△ABC的周长= △DEF的周长

D.∠A=∠D,∠B=∠E,∠C=∠F

5.如图,在△ABC中,∠A:∠B:∠C=3:5:10,又△MNC≌△ABC,则∠BCM:∠BCN等于()

A.1:2B.1:3C.2:3D.1:

46.如图,∠AOB和一条定长线段A,在∠AOB内找一点P,使P到OA、OB的距离都等于A,做法如下:(1)作OB的垂线NH,使NH=A,H为垂足.(2)过N作NM∥OB.(3)作∠AOB的平分线OP,与NM交于P.(4)点P即为所求.

其中(3)的依据是()

A.平行线之间的距离处处相等

B.到角的两边距离相等的点在角的平分线上

C.角的平分线上的点到角的两边的距离相等

D.到线段的两个端点距离相等的点在线段的垂直平分线上

7. 如图,△ABC的三边AB、BC、CA长分别是20、30、40,其三条 角平分线将△ABC分为三个三角形,则S△ABO︰S△BCO︰S△CAO等于()

A.1︰1︰1B.1︰2︰3C.2︰3︰4D.3︰4︰

58.如图,从下列四个条件:①BC=B′C,②AC=A′C,③∠A′CB=∠B′CB,④AB=A′B′中,任取三个为条件,ANCA

C F 余下的一个为结论,则最多可以构成正确的结论的个数是()

A.1个B.2个C.3个D.4个

9.要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上 取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在同 一条直线上,如图,可以得到EDCABC,所以ED=AB,因

E

此测得ED的长就是AB的长,判定EDCABC的理由是()A.SASB.ASAC.SSSD.HL

10.如图所示,△ABE和△ADC是△ABC分别沿着AB,AC边 翻折180°形成的,若∠1∶∠2∶∠3=28∶5∶3,则∠α的度数为()

A.80°B.100°C.60°D.45°.

二、仔仔细细填,记录自信!

11.如图,在△ABC中,AD=DE,AB=BE,∠A=80°,则∠CED=_____.

12.已知△DEF≌△ABC,AB=AC,且△ABC的周长为23cm,BC=4 cm,则△DEF的边中必有一条边等于______.

13. 在△ABC中,∠C=90°,BC=4CM,∠BAC的平分线交BC于D,且BD︰DC=5︰3,则D到AB的距离为_____________.

14. 如图,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出_____个.

BE

BCDE

分别是锐角三角形ABC和锐角三角形ABC中BC,BC边上的高,且15. 如图,AD,ADB,ABAAD

D若使△ABC≌△ABC,请你补充条件___________.(填写一个你认为适A.

当的条件即可)

C

'

'

B D D

17. 如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三边所对的角的关

'

C

'

系是__________.

19. 如右图,已知在ABC中,A90,ABAC,CD平

分ACB,DEBC于E,若BC15cm,则△DEB 的周长为cm.

E

C

20.在数学活动课上,小明提出这样一个问题:∠B=∠C=900,E是

BC的中点,DE平分∠ADC,∠CED=350,如图,则∠EAB是多少 度?大家一起热烈地讨论交流,小英第一个得出正确答案,是______.

三、平心静气做,展示智慧!

21.如图,公园有一条“Z”字形道路ABCD,其中

AB∥CD,在E,M,F处各有一个小石凳,且BECF,M为BC的中点,请问三个小石凳是否在一条直线上?说出你推断的理由.

22.如图,给出五个等量关系:①ADBC ②ACBD ③CEDE ④DC⑤DABCBA.请你以其中两个为条件,另三个中的一个为结论,推出一个正确 的结论(只需写出一种情况),并加以证明.

已知:

求证:

证明:

23.如图,在∠AOB的两边OA,OB上分别取OM=ON,OD=OE,DN和EM相交于点C. 求证:点C在∠AOB的平分线上.

A

B

B

如图,已知△ABC和△DEC都是等边三角形,∠ACB=∠DCE=60°,B、C、E在同一直线上,连结BD和AE.求证:BD=AE.2.已知:如图点C是AB的中点,CD∥BE,且CD=BE.求证:∠D=∠E.3.已知:E、F是AB上的两点,AE=BF,又AC∥DB,且AC=DB.求证:CF=DE。

4.如图,D、E、F、B在一条直线上,AB=CD,∠B=∠D,BF=DE。求证:⑴AE=CF;⑵AE∥CF;⑶∠AFE=∠CEF。

1、已知:如图,∠1=∠2,∠B=∠D。求证:△AFC≌△DEB4、已知:AD为△ABC中BC边上的中线,CE∥AB交AD的延长线于E。

求证:(1)AB=CE; 5、已知:AB=AC,BD=CD

求证:(1)∠B=∠C

(2)DE=DF

6.已知:AD为△ABC中BC边上的中线,CE∥AB交AD的延长线于E。7.已知:如图,AB=CD,DA⊥CA,AC⊥BC。

求证:△ADC≌△CBA

求证:(1)AB=CE;

参考答案

一、1—5:DCDCD6—10:BCBBA

二、11.100° 12.4cm或9.5cm 13.1.5cm 14.4 15.略

16.1AD5 17. 互补或相等 18. 180 19.15 20.350

三、21.在一条直线上.连结EM并延长交CD于F' 证CFCF'. 22.情况一:已知:ADBC,ACBD

求证:CEDE(或DC或DABCBA)

证明:在△ABD和△BAC中 ∵ADBC,ACBD

ABBA

∴△ABD≌△BAC

∴CABDBA∴AEBE

∴ACAEBDBE

即CEED

情况二:已知:DC,DABCBA

求证:ADBC(或ACBD或CEDE)证明:在△ABD和△BAC中DC,DABCBA∵ABA B

∴△ABD≌△BAC

∴ADB C

23.提示:OM=ON,OE=OD,∠MOE=∠NOD,∴△MOE≌△NOD,∴∠OME=∠OND,又DM=EN,∠DCM=∠ECN,∴△MDC≌△NEC,∴MC=NC,易得△OMC≌△ONC(SSS)∴∠MOC=∠NOC,∴点C在∠AOB的平分线上.

四、24.(1)解:△ABC与△AEG面积相等

过点C作CM⊥AB于M,过点G作GN⊥EA交EA延长线于N,则

AMCANG90

四边形ABDE和四边形ACFG都是正方形

BAECAG90,ABAE,ACAGBACEAG180



EAGGAN180BACGAN△ACM≌△AGN

D

CMGNS△ABC

ABCM,S△AEG

12AEGN

S△ABCS△AEG

(2)解:由(1)知外圈的所有三角形的面积之和等于内圈的所有三角形的面积之和

这条小路的面积为(a2b)平方米.

下载外拿破仑三角形的证明word格式文档
下载外拿破仑三角形的证明.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    初一数学三角形证明

    已知:CE是三角形ABC外角ACD的角平分线,CE交BA于E,求证:角BAC大于角B1.已知在三角形ABC中,BE,CF分别是角平分线,D是EF中点,若D到三角形三边BC,AB,AC的距离分别为x,y,z,求证:x=y+z证明;......

    第八课 三角形全等证明

    第八讲 三角形全等的条件(2)5.如图,CD⊥AB,BE⊥AC,垂足分别为D、E,BE交CD于F,且AD=DF, 三角形全等条件(3):有两角和它们的夹边对应相等的两个三角形全等.C求证:AC= BF。 如图,在ABC与DEF中......

    初一全等三角形证明

    全等三角形1.三角形全等的判定一(SSS)1.如图,AB=AD,CB=CD.△ABC与△ADC全等吗?为什么?2.如图,C是AB的中点,AD=CE,CD=BE.求证△ACD≌△CBE.3.如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF. 求证∠A=∠D.4.已知......

    初中数学三角形证明(范文)

    1.如图△ABC,∠AFD=158°,求∠EDF的度数。2.如图,∠C=48°,∠E=25°,∠BDF=140°,求∠A与∠EFD的度数。3.如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC4.如图,在△ABC中,已知AD是△A......

    三角形的证明单元测试

    三角形的证明单元测试(北师版) 3.1 1. 如图,在△ABC 中,已知∠BAC=90°,AB=AD=AC,AD 与 BC 相交于点 E,∠CAD=30°,则∠BCD 的度数为( ) 1 2 3 5 ) ) ) ) 2.如图, 在......

    三角形的证明说课稿[模版]

    三角形的证明说课稿 本单元在教材中的地位: 本单元内容属于图形与几何。以前,研究图形主要采用了实物操作、折纸、画图、度量及轴对称等直观方法,主要发展学生的合情推理能力。......

    全等三角形的证明

    3eud教育网http://50多万教学资源,完全免费,无须注册,天天更新! 全等三角形的证明 1、 已知:(如图)AD∥BC,AD=CB,求证:△ADC≌△CBA。B C 2、已知:如图AD∥BC,AD=CB,AE=CF。求证:△AFD≌△......

    外管证明新政

    将“外出经营活动税收管理”事项变更为 “跨区域涉税事项报验管理”的通知 尊敬的纳税人: 根据《国家税务总局关于创新跨区域涉税事项报验管理制度的通知》(税总发〔2017〕103......