第一篇:初中数学三角形证明(范文)
1.如图△ABC,∠AFD=
158°,求∠EDF的度数。
2.如图,∠C
=48°,∠E=25°,∠BDF=140°,求∠A与∠EFD的度数。
3.如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC
4.如图,在△ABC中,已知AD是△
ABC角平分线,DE是△ADC的高线,∠B=60,∠C=45,求∠ADB和∠ADE的度数.
5.如图△ABC的周长为18
cm,BE、CF
分别为AC、AB边上的中线,BE、CF相交于点O,AO的延长线交BC于D,且AF=3 cm,AE=2 cm,求BD的长.解题思路:
(1)求角度问题要考虑:角平分线、三角形内角和定理、两内角之和等于第三角的外角
(2)先列等式,然后根据题目要求去掉无关信息,最后采用“消元法”的思路转换解决,求出未知
(3)对于某些题要结合外围图形和条件,比如四边形、三角形全等、直线关系(平行、相交)来解答。
00第八讲三角形证明
(一)6.已知:AB=4,AC=2,D是BC中点,AD是整数,求ADEC DAB7.已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,F 求证:∠1=∠2E A8.已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠C AB A9.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:EAE=AD+BEBDC10如图所示,已知∠1=∠2,EF⊥AD于P,交BC延长线于M,求证:2∠M=(∠ACB-∠B)解题思路:(1)三角形的证明一般思路是证全等和相似(八年级)(2)分析题目先看求什么?然后考虑求未知必须先求什么?需证明那些量相等,或哪个三角形相等然后找出已知条件所能得出的结论,然后看它们能不能证出所要的关系(3)如果不能证出数量关系要考虑添加辅助线来“凑出”条件,然后在证明
11.如图,A,F,E,B四点共线,ACCE,BDDF,AEBF,A
17.如图,△ABC中,AD是∠CAB的平分线,且AB=AC+CD,求ACBD。求证:ACFBDE。较难
12.如图,在ABC中,BE是∠ABC的平分线,ADBE,垂足为D。求证:21C
13.已知如图,∠BAC=90°,AB=AC,BD⊥DE,CE⊥DE,求证:DE=BD+CE.14.在△ABC中,ACB90,ACBC,直线MN经过点C,且ADMN于D,BEMN于E求证:ADC≌CEB
15.如图,已知AC∥BD,EA、EB分别平分∠CAB和∠DBA,CD过点E,则AB与AC+BD相等吗?请说明理由
16.已知∠ABC=3∠C,∠1=∠2,BE⊥AE,求证:AC-AB=2BE
证:∠C=2∠BCD
BF
18.如图,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的平
A
E
分线,BD的延长线垂直于过C点的直线于E,直线CE交 D
BA的延长线于F.BC
求证:BD=2CE.Q
A
E
19.已知BE,CF是△ABC的高,且BP=AC,CQ=AB,试确定 P
AP与AQ的数量关系和位置关系B
C
20.△ABC中,∠A=90°,AB=AC,D为BC中点,E、F分别在 AC、AB上,且DE⊥DF,试判断DE、DF的数量关系,并说明 理由.
(附加题)如图①,E、F分别为线段AC上的两个动点,且DE⊥ AC于E,BF⊥AC于F,若AB=
CD,AF=CE,BD交AC于点 M.
(1)求证:MB=MD,ME=MF
(2)当E、F两点移动到如图②的位置时,其余条件不变,上 述结论能否成立?若成立请给予证明;若不成立请说明理由.
第二篇:初中数学证明三角形全等找角
初中数学证明三角形全等找角、边相等的方法
【摘要】“全等三角形的证明”是初中平面几何的重要内容之一,是研究图形性质的基础,而且在近几年的中考中时有出现,新课标的要求是“探索并掌握两个三角形全等的条件”,因此掌握三角形全等的证明及运用方法对初中生来说至关重要。证明三角形全等找角、边相等是最关键的步骤。如何找对应角、对应边相等,做如下总结。
【关键词】全等三角形相等角相等边
我们在初中课本上学过的三角形全等的证明方法有“SAS”、“ASA”、“AAS”、“SSS”,对于直角三角形还有“HL”。在做题的过程中我们时常发现,全等的条件往往隐藏在复杂的图形中,要找的条件就是相等的角、相等的边,初中阶段找相等的角、相等的边有以下几种情况。
一、相等的角
1、利用平行直线性质
两直线平行的性质定理:1.两直线平行,同位角相等
2.两直线平行,内错角相等
例、如图一所示,直线AD、BE相交于点C,AB∥DE,AB=DE
求证:△ABC≌△DBC
此题知道AB∥DE,根据平行线的性质可得
∠A=∠D ,∠B=∠E(两直线平行,内错角相等)
由ASA可证全等。图一
2、巧用公共角
要点:在证两三角形全等时首先看两个三角形是不是有公共交点,如果有公共交点,在看他们是否存在公共角。
例、如图二所示,D在AB上,E在AC上,AB=AC, ∠B=∠C.求证:△ABE≌△ADC
此题∠A是公共角,利用ASA可证全等。
3、利用等边对等角图二 要点:注意相等的两条边一定要在同一个三角形内才能利
用等边对等角
例.、如图三在△ABC中,AB=AC,AD是三角形的中线
求证:△ABD≌△ACD
此题已知AB=AC,由等边对等角可得
∠B=∠C.4、利用对顶角相等图三 例、已知:如图四,四边形ABCD中, AC、BD交于O点,AO=OC , BA⊥AC , DC⊥AC.垂足分别为A , C.
求证:AB=CD图四 此题利用对顶角相当可得∠AOB=∠DOC.利用AAS
可得△AOB≌△COD,再根据全等三角形对应边相等得到
AB=CD5、利用等量代换关系找出角相等
(1)∠A+公共角=∠B+公共角
例1.已知:如图五,AE=AC,AD=AB,∠EAC=∠DAB,求证:△EAD≌△CAB.
由图形可知:
∠DAE=∠EAC+∠DAC A ∠BAC=∠DAB+∠DAC
因此可得∠DAE=∠BAC图五
利用SAS可证△EAD≌△CAB
例
2、已知:如图六,AB=AC,AD=AE,∠BAC=∠DAE.求证:BD=CE
由图形可知:
∠DAB=∠BAC-∠DAC
∠EAC=∠DAE-∠DAC
因此可得∠DAB=∠EAC
利用SAS可证△BAD≌△CAE图六
(2)同角(等角)的补角相等;同角(等角)的余角相等
已知:如图,∠1=∠2,BC=EF,AC=DE,E、C在直线BF上.
求证:∠A=∠D
由图形可知:图七 B
由等角的补角相等可得∠DEC=∠ACE
利用SAS可得△ABC≌△DEF
(3)同角(等角)的余角相等 D
在直角三角形中常用到同角(等角)的余角相等得到相等的角。例:如图八△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过C作
B图八 ECF⊥AE, 垂足为F,过B作BD⊥BC交CF的延长线于
D.求证:AE=CD;
由图形中可以看出:
∠D+∠BCD=90°;∠CAE+∠BCD=90°
由同角的余角相等得到∠D=∠CAE,利用AAS可得△BCD≌△CAE6、结合旋转和对称图形的性质。
例1.如图九,把一张矩形的纸ABCD沿对角线BD折叠,使点C落在点E处,BE与AD•交于点F.图九
求证:△ABF≌△EDF;
根据对称的性质我们可以得到∠A=∠E=90°,利用AAS可以证明△ABF≌△EDF。
二、相等的边
1、利用等角对等边 ADAC
3CB
(注意:必须在同一个三角形中才能考虑)
例、如图十,已知∠1=∠2,∠3=∠4,求证:AB=CD
已知∠3=∠4,根据等角对等边可得OB=OC
利用AAS证明出△ABO≌△DCO。
2、利用公共边相等图十 A
(若果要证明的两个全等三角形有两个相同的对应点,那么可么马上得出它们具有公共边)
D例、如图十一,已知AB=AC,DB=DC,求证:∠BAD=∠CAD CB由图形可知AD是△ABD和△ACD的公共边,利用SSS可得 AB△ABD
≌△ACD
F3、利用等量代换
图十一 F
AB+公共边=DE+公共边
例,如图十二:AB=CD,AE=DF,CE=FB。求证:∠B=∠C
E图中:BE=BF+EF;CF=CE+EF.因此可以得到BE=CF
利用SSS可证△ABE≌△DCF因此得到∠B=∠C CD4、利用线段中点或三角形中线定理,或者等边三角形的性质
例、如图十三:∠B=∠C,ME⊥AB,MF⊥AC,垂足
图十二
分别为E、F,M是BC的中点。求证:ME=MF
M是BC的中点,则可以得到BM=CM;利用AAS可得△BME≌△CMF
C例题、如图十四,△ABE和△ACF是等边三角形,求证:CE=BF图十三 F △ABE和△ACF是等边三角形,则AE=AB,AC=AF
∠EAC=∠BAE+∠BAC;∠BAF=∠CAF+∠BAC.则∠EAC=∠BAF
那么△AEC≌△ABF,则可得CE=BF
C
图十四
5、利用三角形角平分线定理
(三角形角平分线上的点到角两边的距离相等)
注意、必须是角平分线上的点
例题、如图十五,在ΔABC中,AD平分∠BAC,DE垂直AB,DF垂直AC,垂足分别为E、F。求证:AE=AF
AD平分∠BAC, DE垂直AB,DF垂直AC,则根据角平分线
性质可得到DE=DF,那么Rt△ADE≌Rt△ADF(HL)
则可得到AE=AF
图十五 例题、已知:如图十六,BD为∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD
于M,•PN⊥CD于N,判断PM与PN的关系.
A由题意知△ABD≌△CBD(SAS)可得BD也是∠AD的角平分线,PM⊥AD,PN⊥CD,由角平分线的性质
可得PM=PN
全等三角形的证明是初中数学几何证明中最重要的一部分,是证明线段相等和角相等最常用的方法。结合全等三角形的判定,全等的条件一般隐藏在已知当中,以上是证明全等隐藏条件的方法总结。
第三篇:初一数学三角形证明
已知:CE是三角形ABC外角ACD的角平分线,CE交BA于E,求证:角BAC大于角B
1.已知在三角形ABC中,BE,CF分别是角平分线,D是EF中点,若D到三角形三边BC,AB,AC的距离分别为x,y,z,求证:x=y+z
证明;过E点分别作AB,BC上的高交AB,BC于M,N点.过F点分别作AC,BC上的高交于P,Q点.根据角平分线上的点到角的2边距离相等可以知道FQ=FP,EM=EN.过D点做BC上的高交BC于O点.过D点作AB上的高交AB于H点,过D点作AB上的高交AC于J点.则X=DO,Y=HY,Z=DJ.因为D 是中点,角ANE=角AHD=90度.所以HD平行ME,ME=2HD同理可证FP=2DJ。
又因为FQ=FP,EM=EN.FQ=2DJ,EN=2HD。
又因为角FQC,DOC,ENC都是90度,所以四边形FQNE是直角梯形,而D是中点,所以2DO=FQ+EN
又因为
FQ=2DJ,EN=2HD。所以DO=HD+JD。
因为X=DO,Y=HY,Z=DJ.所以x=y+z。
2.在正五边形ABCDE中,M、N分别是DE、EA上的点,BM与CN相交于点O,若∠BON=108°,请问结论BM=CN是否成立?若成立,请给予证明;若不成立,请说明理由。
当∠BON=108°时。BM=CN还成立
证明;如图5连结BD、CE.在△BCI)和△CDE中
∵BC=CD, ∠BCD=∠CDE=108°,CD=DE
∴ΔBCD≌ ΔCDE
∴BD=CE , ∠BDC=∠CED, ∠DBC=∠CEN
∵∠CDE=∠DEC=108°, ∴∠BDM=∠CEN
∵∠OBC+∠ECD=108°, ∠OCB+∠OCD=108°
∴∠MBC=∠NCD
又∵∠DBC=∠ECD=36°, ∴∠DBM=∠ECN
∴ΔBDM≌ ΔCNE∴BM=CN
3.三角形ABC中,AB=AC,角A=58°,AB的垂直平分线交AC与N,则角NBC=()
3°
因为AB=AC,∠A=58°,所以∠B=61°,∠C=61°。
因为AB的垂直平分线交AC于N,设交AB于点D,一个角相等,两个边相等。所以,Rt△ADN全等于Rt△BDN
所以 ∠NBD=58°,所以∠NBC=61°-58°=3°
4.在正方形ABCD中,P,Q分别为BC,CD边上的点。且角PAQ=45°,求证:PQ=PB+DQ
延长CB到M,使BM=DQ,连接MA
∵MB=DQ AB=AD ∠ABM=∠D=RT∠
∴三角形AMB≌三角形AQD
∴AM=AQ∠MAB=∠DAQ
∴∠MAP=∠MAB+∠PAB=45度=∠PAQ
∵∠MAP=∠PAQ
AM=AQAP为公共边
∴三角形AMP≌三角形AQP
∴MP=PQ
∴MB+PB=PQ
∴PQ=PB+DQ
5.正方形ABCD中,点M,N分别在AB,BC上,且BM=BN,BP⊥MC于点P,求证DP⊥NP
∵直角△BMP∽△CBP
∴PB/PC=MB/BC
∵MB=BN
正方形BC=DC
∴PB/PC=BN/CD
∵∠PBC=∠PCD
∴△PBN∽△PCD
∴∠BPN=∠CPD
∵BP⊥MC
∴∠BPN+∠NPC=90°
∴∠CPD+∠NPC=90°∴DP⊥NP
例1:(基础题)如图,AC//DF , GH是截线.∠CBF=40°, ∠BHF=80°.求∠HBF, ∠BFP, ∠BED.∠BEF
例2:(基础题)
①在△ABC中,已知∠B = 40°,∠C = 80°,则∠A =(度)
②:、。如图,△ABC中,∠A = 60°,∠C = 50°,则外角∠CBD =。③已知,在△ABC中,∠A + ∠B = ∠C,那么△ABC的形状为()
A、直角三角形B、钝角三角形C、锐角三角形D、以上都不对
④下列长度的三条线段能组成三角形的是()
A.3cm,4cm,8cmB.5cm,6cm,11cmC.5cm,6cm,10cm
D.3cm,8cm,12cm
⑤如果一个三角形的三边长分别为x,2,3,那么x的取值范围是。⑥小华要从长度分别为5cm、6cm、11cm、16cm的四根小木棒中选出三根摆成一个三角形,那么他选的三根木棒的长度分别是
_.______.⑦已知等腰三角形的一边长为6,另一边长为10,则它的周长为
⑧在△ABC中,AB = AC,BC=10cm,∠A = 80°,则∠B =,∠C =。BD=______,CD=________
⑨如图,AB = AC,BC ⊥ AD,若BC = 6,则BD =。
⑩画一画如图,在△ABC中:
(1).画出∠C的平分线CD
(2).画出BC边上的中线AE
(3).画出△ABC的边AC上的高BF
例3:(提高)
①△ABC中,∠C=90°,∠B-2∠A=30°,则∠A=,∠B=
③在等腰三角形中,一个角是另一个角的2倍,求三个角?
_______________________
④:在等腰三角形中,周长为40cm,一个边另一个边2倍,求三个边?
_________________
例4 如图,D是△ABC的∠C的外角平分线与BA的延长线的交点,求证:∠BAC>∠B
例5:(15,)
例6.ABC为等边三角形,D是AC中点,E是BC延长线上一点,且CE =BC 求证: BD = DE
一、选择题:
1.等腰三角形中,一个角为50°,则这个等腰三角形的顶角的度数为()
A.150°B.80°C.50°或80°D.70°
2. 在△ABC中,∠A=50°,∠B,∠C的角平分线相交于点O,则∠BOC的度数是()
A.65°B.115°C.130°D.100°
3.如图,如果∠1=∠2=∠3,则AM为△的角平分线,AN为△的角平分线。
二、填空题:
1.。
2.3.4.已知△ABC中,则∠A + ∠B + ∠C =(度)
5.。若AD是△ABC的高,则∠ADB =(度)。
6.若AE是△ABC的中线,BC = 4,则BE ==
7.若AF是△ABC中∠A的平分线,∠A = 70°,则∠CAF = ∠=(度)。
8.△ABC中,BC = 12cm,BC边上的高AD = 6cm,则△ABC的面积
为。
9.直角三角形的一锐角为60°,则另一锐角为。
10.等腰三角形的一个角为45°,则顶角为。
11.在△ABC中,∠A:∠B:∠C = 1:2:3,∠C =。
12.如图,∠BAC=90°,AD⊥BC,则图中共有个直角三角形;
13.△ABC中,BO、CO分别平分∠ABC、∠ACB若∠A=70°,则∠BOC=;若∠BOC=120°,∠A=。
三、解答题:
14、如图4,∠1+∠2+∠3+∠4=度;
15、如图;ABCD是一个四边形木框,为了使它保持稳定的形状,需在AC或BD
上钉上一根木条,现量得AB=80㎝,BC=60㎝,CD=40㎝,AD=50㎝,试问所需的木条长度至少要多长?
16有一天小明对同学说:“我的步子大,一步能走三米(即两脚着地时的间距有三米”。有的同学将信将疑,而小颖说:“小明,你在吹牛”。你觉得小颖的话有道理吗?
17. 图1-4-27,已知在△ABC中,AB=AC,∠A=40°,∠ABC的平分线BD交AC于D.求:∠ADB和∠CDB的度数..18。已知等腰三角形的周长是25,一腰上的中线把三角形分成两个,两个三角形的周长的差是4。
求等腰三角形各边的长。
19.已知:如图,点D、E在△ABC的边BC上,AD=AE,BD=EC,求证:AB=AC
.20。.如图,已知在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD与CE相交于M点。求证:BM=CM。
21.、如图,P、Q是△ABC边上的两点,且BP=PQ=QC=AP=AQ,求∠BAC的度数。
.22。如图,在△ABC中,AB=AC,点D、E分别
在AC、AB上,且BC=BD=DE=EA,求∠A的度数。
23.、如图,BE、CD相交于点A,CF为∠BCD的平分线,EF为∠BED的平分线。试探求∠F与∠B、∠D之间的关系,并说明理由。
例
1、填空:。
(6)正二十边形的每个内角都等于。
(7)一个多边形的内角和为1800°,则它的边数为。
(8)n多边形的每一个外角是36°,则n是。
(9)多边形的每一个内角都等于150°,则从此多边形一个顶点出发引出的对角线有条。
(10)如果把一个多边形截去一个三角形,剩下的多边形的内角和是2160°,那么原来的多边形的边数是。
(11)一多边形除一内角外,其余各内角之和为2570°,则这个内角等于。
例
5、给定△ABC的三个顶点和它内部的七个点,已知这十个点中的任意三点都不在一条直线上,把原三角形分成以这些点为顶点的小三角形,并且每个小三角形的内部都不包含这十个点中的任一点,求证:这些小三角形的个数是15。
1.如图,△ABC为等边三角形,D、F分别是BC、AB上的点,且CD=BF,以AD为边作等边△ADE。当D在线段BC上何处时,四边形CDEF为平行四边形,且∠DEF=30°?证明你的结论。
解:
当B在BC的中点时四边形CDEF为平行四边形,且∠DEF=30°证明;在△ADC和△BFC中BF=DC,BC=AC,∠B=∠ACD∴△ADC△≌BFC∴AD=FC,∠DAC=∠BCF=30°∵△AED是等边三角形∴ED=FC,∵∠EAB=∠ BAD=60°∴AD垂直平分ED∴∠BDE=∠DCF=30°
∴ED‖FC∴CDEF是平行四边形且∠DEF=30°
第四篇:初二数学全等三角形证明
初二数学全等三角形证明
班别_______姓名_______学号_______2007-5-1
51.如图,AB=CD,AD、BC相交于点O,(1)要使△ABO≌△DCO,应添加的条件为.(添加一个条件即可)
(2)添加条件后,证明△
ABO≌△DCO
2.已知:如图,AB//DE,且AB=DE.(l)请你只添加一个条件,使△ABC≌△DEF,你添加的条件是.(2)添加条件后,证明△ABC≌△DEF.3、如图,点E在AB上,AC=AD,请你添加一个条件,使图中存在全等三角形,并给予证明。
所添条件为,你得到的一对全等三角形是
证明:ABOCD(第12题)
4、如图,在△ABC中,D为BC边的中点,过D点分别作DE∥AB交AC于点E,DF∥AC交AB于点F.(1)证明:△BDF≌△DCE ;AFE
BC D
(第4 题图)
5.如图9,已知∠1 = ∠2,AB = AC.求证:BD = CDBDA
图 9
6.如图,已知∠1=∠2,∠C=∠D,求证:AC=BD.
A
B7、如图,在ABCD中,BEAC于点E,DFAC于点F.
求证:AECF;AD
BC8、如图,已知点M、N分别是平行四边形ABCD的边AB、、DC的中点,求证: ∠DAN=∠BCM.9.如图,AC和BD相交于点E,AB∥CD,BE=DE。求证:AB=CD
A
B E
第9题图
10、已知:如图10,在△ABC中,AB=AC,点D,E在边BC上,且BD=CE.
求证:AD=AE.
_B
_C
_ M
_N
_A
_D
D
C
图10
C12、如图(4),在△ABD和△ACE中,有下列四个等式:○
1AB=AC○2AD=AE○31=∠2○4BD=CE.请你以其中三个等式作为题设,余下的作为结论,写出一个真命题(要求写出已知,求证及证明过程)
第五篇:初中数学:三角形中垂线性质证明及练习题(附答案)
三角形中垂线性质及相关练习题(附答案)
三角形的三条中垂线一定交于一点,称之为三角形的外心,之所以称之为三角形的外心,是因为它是三角形外接圆的圆心。
首先我们证明这个问题。
已知:如图8-21所示,PD、NE、MF是△ABC的3条边上的中垂线。求证:PD、NE、MF交于一点O。
思路:先作两条边AB、AC上的中垂线MF、NE相交于O点,过O作OD⊥BC于D,其反向延长线与AB交于P。然后再证明D是BC的中点。
证明:作AB、BC边上的中垂线MF、NE相交于O点,过O作OD⊥BC于D,其反向延长线与AB交于P。
∵MF⊥AB于F,AF=FB;
∴OA=OB;
∵NE⊥AC于E,AE=EC;
∴OA=OC;
∴OB=OC;
∵OD⊥BC于D;
∴ POD是BC边上的中垂线。
∴ NE、MF、PD交于一点O;即,三角形的三条中垂线交于一点。
结论:该证法采用直接证法,简单明了,其中运用了中垂线的性质定理和判定定理。
第1页(共4页)
相关练习题:
一、判断题
1、三角形三条边的垂直平分线必交于一点
2、以三角形两边的垂直平分线的交点为圆心,以该点到三角形三个顶点中的任意一点的距离为半径作圆,必经过另外两个顶点
3、平面上只存在一点到已知三角形三个顶点距离相等
4、三角形关于任一边上的垂直平分线成轴对称
二、填空题
5、如左下图,点P为△ABC三边中垂线交点,则PA__________PB__________PC.6、如右上图,在锐角三角形ABC中,∠A=50°,AC、BC的垂直平分线交于点O,则∠1_______∠2,∠3______∠4,∠5______∠6,∠2+∠3=________度,∠1+∠4=______度,∠5+∠6=_______度,∠BOC=_______度.7、如左下图,D为BC边上一点,且BC=BD+AD,则AD__________DC,点D在__________的垂直平分线上.8、如右上图,在△ABC中,DE、FG分别是边AB、AC的垂直平分线,则∠B__________∠1,∠C__________∠2;若∠BAC=126°,则∠EAG=__________度
.9、如左下图,AD是△ABC中BC边上的高,E是AD上异于A,D的点,若BE=CE,则△__________≌△__________(HL);从而BD=DC,则△________≌△_________(SAS);△ABC是__________三角形.10、如右上图,∠BAC=120°,AB=AC,AC的垂直平分线交BC于D,则∠ADB=_________度.三、作图题
11、(1)分别作出点P,使得PA=PB=PC
(2)观察各图中的点P与△ABC的位置关系,并总结规律:
当△ABC为锐角三角形时,点P在△ABC的__________;
当△ABC为直角三角形时,点P在△ABC的__________;
当△ABC为钝角三角形时,点P在△ABC的__________;
反之也成立,且在平面内到三角形各顶点距离相等的点只有一个.四、类比联想
12、既然任意一个三角形的三边的垂直平分线交于一点,那三角形的三边上的中线是否也交于一点;三个角的平分线是否也交于一点;试通过折纸或用直尺、圆规画图验证这种猜想.答案:
一、1.√2.√3.√4.×
二、1.==2.===505080100
3.=AC4.==72° 5.BEDCEDBADCAD等腰6.60°
三、1.略(2)内部斜边的中点外部
四、类比联想:略