初中数学命题与证明

时间:2019-05-13 08:38:26下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《初中数学命题与证明》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《初中数学命题与证明》。

第一篇:初中数学命题与证明

命题与证明

一、选择题

1、(2012年上海黄浦二模)下列命题中,假命题是()

A.一组邻边相等的平行四边形是菱形;

B.一组邻边相等的矩形是正方形;

C.一组对边相等且有一个角是直角的四边形是矩形;

D.一组对边平行且另一组对边不平行的四边形是梯形.答案:C2、(2012温州市泰顺九校模拟)下列命题,正确的是()

A.如果|a|=|b|,那么a=b

B.等腰梯形的对角线互相垂直

C.顺次连结四边形各边中点所得到的四边形是平行四边形

D.相等的圆周角所对的弧相等

答案:C

3(2012年中考数学新编及改编题试卷)下列语句中,属于命题的是()..

(A)作线段的垂直平分线(B)等角的补角相等吗

(C)平行四边形是轴对称图形(D)用三条线段去拼成一个三角形

答案:C4、(2012年上海市黄浦二模)下列命题中,假命题是(▲)

A.一组邻边相等的平行四边形是菱形;

B.一组邻边相等的矩形是正方形;

C.一组对边相等且有一个角是直角的四边形是矩形;

D.一组对边平行且另一组对边不平行的四边形是梯形.答案:C5、(2012年上海金山区中考模拟)在下列命题中,真命题是……………………………………………………………………………………………()

(A)两条对角线相等的四边形是矩形

(B)两条对角线互相垂直的四边形是菱形

(C)两条对角线互相平分的四边形是平行四边形

(D)两条对角线互相垂直且相等的四边形是正方形

答案:C

二、填空题

1、三、解答题

1.(2012年江苏海安县质量与反馈)已知:如图,在△ABC中,BC=AC,以BC为直径的⊙O与边AB相交于点D,DE⊥AC,垂足为点E.

⑴求证:点D是AB的中点;

⑵证明DE是⊙O的切线.

答案:22.(1)略;(2)略.

2.(2012年江苏通州兴仁中学一模)如图,在□ABCD中,E为BC的中点,连接DE.延长DE交AB的延长线于点F.求证:AB=BF.

E C

答案:由□ABCD得AB∥CD,∴∠CDF=∠F,∠CBF=∠C.

又∵E为BC的中点,∴△DEC≌△FEB.

∴DC=FB.

由□ABCD得AB=CD,∵DC=FB,AB=CD,∴AB=BF.

3、(盐城地区2011~2012学年度适应性训练)(本题满分10分)如图,AB是⊙O的直径,点A、C、D在⊙O上,过D作PF∥AC交⊙O于F、交AB于E,且∠BPF=∠ADC.(1)判断直线BP和⊙O的位置关系,并说明你的理由;

(2)当⊙O5,AC=2,BE=1时,求BP的长.(1)直线BP和⊙O相切.……1分

理由:连接BC,∵AB是⊙O直径,∴∠ACB=90°.……2分

∵PF∥AC,∴BC⊥PF, 则∠PBH+∠BPF=90°.……3分

P

∵∠BPF=∠ADC,∠ADC=∠ABC,得AB⊥BP,……4分

所以直线BP和⊙O相切.……5分

(2)由已知,得∠ACB=90°,∵AC=2,AB=25,∴BC=4.……6分

∵∠BPF=∠ADC,∠ADC=∠ABC,∴∠BPF=∠ABC,由(1),得∠ABP=∠ACB=90°,∴△ACB∽△EBP,……8分

∴ACBC解得BP=2.即BP的长为2.……10分 BEBP

4.(盐城市第一初级中学2011~2012学年期中考试)(本题满分10分)如图,在△ABC中,∠B=60°,⊙O是△ABC外接圆,过点A作⊙O的切线,交CO的延长线于P点,CP交⊙O于D;

(1)求证:AP=AC;

(2)若AC=3,求PC的长.

答案(1)证明过程略;(5分)

(2)3

35(徐州市2012年模拟)(6分)如图,在平行四边形ABCD中,E,F为BC上两点,且BECF,AFDE.

求证:(1)△ABF≌△DCE;

(2)四边形ABCD是矩形. A D

B C E F

(第21题)答案:解:(1)BECF,BFBEEF,CECFEF,······························· 1分 BFCE.

四边形ABCD是平行四边形,ABDC. ······························ 2分 在△ABF和△DCE中,ABDC,BFCE,AFDE,△ABF≌△DCE. ··························· 3分

△ABF≌△DCE,(2)解法一:

BC. ······························ 4分 四边形ABCD是平行四边形,AB∥CD.

BC180.

BC90. ···························· 5分

·························· 6分 四边形ABCD是矩形.

解法二:连接AC,DB.

△ABF≌△DCE,AFBDEC.

AFCDEB. ··························· 4分 在△AFC和△DEB中,AFDE,AFCDEB,CFBE,△AFC≌△DEB.

ACDB. ······························ 5分 四边形ABCD是平行四边形,·························· 6分 四边形ABCD是矩形.

6.(盐城地区2011~2012学年度适应性训练)(本题满分12分)如图,△AEF中,∠

EAF=45°,AG⊥EF于点G,现将△AEG沿AE折叠得到△AEB,将△AFG沿AF折叠得到△AFD,延长BE和DF相交于点C.

(1)求证:四边形ABCD是正方形;

(2)连接BD分别交AE、AF于点M、N,将△ABM绕点A逆时针旋转,使AB与AD重合,得到△ADH,试判断线段MN、ND、DH之间的数量关系,并说明理由.(3)若EG=4,GF=6,BM2,求AG、MN的长.

AHBENFDC(1)由∠BAD=∠ABC=∠ADC=90°,得矩形ABCD,……2分

由AB=AD,得四边形ABCD是正方形.……3分

222(2)MN=ND+DH.……4分

理由:连接NH,由△ABM≌△ADH,得AM=AH,BM=DH,∠ADH=∠ABD=45°, ∴∠NDH=90°,……6分

再证△AMN≌△AHN,得MN=NH,……7分

222∴MN=ND+DH.……8分

(3)设AG=x,则EC=x-4,CF=x-6,22由Rt△ECF,得(x-4)+(x-6)=100,x1=12,x2=-2(舍去)∴AG=12.……10分

由AG=AB=AD=12,得BD=122,∴MD=92,222设NH=y,由Rt△NHD,得y=(92-y)2),y=52,即MN=52.……12分

7.(盐城地区2011~2012学年度适应性训练)(本题满分8分)如图,已知E、F分别是□

ABCD的边BC、AD上的点,且BE=DF.

(1)求证:四边形AECF是平行四边形;

(2)若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长.

AFD

BEC

证:(1)由□ABCD,得AD=BC,AD∥BC.……2分

由BE=DF,得AF=CE, ∴AF=CE,AF∥CE.……3分

∴四边形AECF是平行四边形;

(2)由菱形AECF,得AE=EC,∴∠EAC=∠ACE.由∠BAC=90°,得∠BAE=∠B,∴AE=EB.∴BE=AE=EC,BE=5.……4分 ……5分 ……7分 ……8分

第二篇:初二数学讲义命题与证明

初二数学讲义(5)证明(3)

一、选择题(每题3分)

1.下列语句:①若直线a∥b,b∥c,则a∥c;②生活在水里的动物是鱼;③作两条相交直线;④AB=3,CD=3,问AB与CD相等吗?④连结A,B两点; ⑤内错角不相等,两直线不平行。是命题的有()A.1个B.2个C.3个D.4个 2.命题“垂直于同一条直线的两条直线互相平行”的题设是()

A.垂直B.两条直线C.同一条直线D.两条直线垂直于同一条直线

3.下列各组所述几何图形中,一定全等的是()A.一个角是45°的两个等腰三角形

B.腰长相等的两个等腰直角三角形C.两个等边三角形D.各有一个角是40°,腰 长都为5㎝的两个等腰三角形

4.若三角形的三个外角的度数之比为2:3:4,则与之对应的三个内角的度数之比为„()

A.4:3:2B.3:2:4C.5:3:1D.3:1:

55.如图,如果AB∥CD,那么角α,β,γ之间的关系式为()

A.α+β+γ=360°B.α-β+γ=180°C.α+β+γ=180°D.α+β-γ=180°

6.已知,如图,在△ABC中,AB=AC,P是BC上任意一点,连结AP,则AC2AP2()A.CPBPB.CPBCC.BPBCD.以上都不对

二、填空题(每题3分)

7.如图,若AB∥CD,EF与AB、CD分别相交于点E、F,EP与EFD的平分线相交于点P,且EFD60,EPFP,则BEP

8.若一个三角形的外角平分线与三角形的一边平行,则这个三角形是三角形.9.用反证法证明“三角形三个内角中至少有两个锐角”时应首先假设.10.如图,已知AB∥CD,BE平分∠ABC,∠CDE=150°,则∠C=__________.11.把命题“在同一个三角形中,等角对等边”改写成“如

果„„那么„„”的形式:.12.如图,四边形ABCD中,AB=AC=AD,若CAD=76°,则CBD度.

三、解答题:

13.如图,在RtABC中,∠

ACB=90,AC=BC,D是斜边AB上的一点, AE⊥CD于E,BF⊥CD交

CD的延长线于F.求证:

ACE≌CBF.14.如图,点B在AC上,△ABE与△DBC是等

边三角形,M、N分别是AD、BC的中点,求证:△BMN是等边三角形.E

ABC

15.如图,在△ABC中,∠C=90°,点D、P分别在边AC、AB上,且BD=AD,PE⊥BD,PF⊥AD,垂足分别为点E、F.求证:PE+PF=BC.

A

EB

16.已知如图,在△ABC中,CH是外角∠ACD的角平分线,BH是∠ABC的平分线,∠BAC=58°.①求∠BHC.②求∠CAH

17.在△ABC中,AD平分∠BAC,DE=DC,AC=EF.求证:EF∥AB.A

F

CBED

18.如图,AB∥CD,∠A=90°,AB=2,BC=3,CD=1,E是AD中点.求证:CE⊥BE.

19.已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点E、F,EP=3,求EF的值,20.操作:在△ABC中,AC=BC,∠C=90°,将一块等腰三角形板的直角顶点放在斜边AB的中点P处,将三角板绕点P旋转,三角板的两直角边分别交射线AC、CB于D、E两点.图①,②,③是旋转三角板得到的图形中的3种情况.三角板绕点P旋转,观察线段PD和PE之间有什么数量关系?请

选择图②、图③中的一个加以证明.A

DC

AP

P

EB C①②

21.用反证法证明:设a,b,c是不全相等的任意实数,若x=a2-bc,y=b2-ca,z=c2-ab.求证:x,y,z中至少有一个大于零

E

B

D

第三篇:初一数学命题、定理与证明练习

智立方教育初一数学“命题、定理与证明”练习

1、判断下列语句是不是命题

(1)延长线段AB(不是)

(2)两条直线相交,只有一交点(是)

(3)画线段AB的中点(不是)

(4)若|x|=2,则x=2(是)

(5)角平分线是一条射线(是)

2、选择题

(1)下列语句不是命题的是(C)

A、两点之间,线段最短B、不平行的两条直线有一个交点

C、x与y的和等于0吗?D、对顶角不相等。

(2)下列命题中真命题是(C)

A、两个锐角之和为钝角B、两个锐角之和为锐角

C、钝角大于它的补角D、锐角小于它的余角

(3)命题:①对顶角相等;②垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等。其中假命题有(B)

A、1个B、2个C、3个D、4个

3、分别指出下列各命题的题设和结论。

(1)如果a∥b,b∥c,那么a∥c

(2)同旁内角互补,两直线平行。

(1)题设:a∥b,b∥c结论:a∥c

(2)题设:两条直线被第三条直线所截的同旁内角互补。

结论:这两条直线平行。

4、分别把下列命题写成“如果„„,那么„„”的形式。

(1)两点确定一条直线;

(2)等角的补角相等;

(3)内错角相等。E

C(1)如果有两个定点,那么过这两点有且只有一条直线 D(2)如果两个角分别是两个等角的补角,那么这两个角相等。

(3)如果两个角是内错角,那么这两个角相等。

5、已知:如图AB⊥BC,BC⊥CD且∠1=∠2,求证:BE∥CF

证明:∵AB⊥BC,BC⊥CD(已知)

∴∠ABC=∠BCD=90°(垂直定义)

∵∠1=∠2(已知)

∴∠EBC=∠BCF(等式性质)∴BE∥CF(内错角相等,两直线平行)

6、已知:如图,AC⊥BC,垂足为C,∠BCD是∠B的余角。求证:∠ACD=∠B。

证明:∵AC⊥BC(已知)

A D∴∠ACB=90°(垂直定义)

∴∠BCD是∠DCA的余角

∵∠BCD是∠B的余角(已知)∴∠ACD=∠B(余角定义,同角的余角相等);

7、已知,如图,BCE、AFE是直线,AB∥CD,∠1=∠2,∠3=∠4。求证:AD∥BE。

D

证明:∵AB∥CD(已知)∴∠4=∠BAE(两直线平行同位角相等)∵∠3=∠4(已知)

∴∠3=∠BAE(等量代换)∵∠1=∠2(已知)C E

∴∠1+∠CAF=∠2+∠CAF(等式性质)即∠BAE=∠CAD∴∠3=∠CAD(等量代换)

∴AD∥BE(内错角相等,两直线平行)

8、已知,如图,AB∥CD,∠EAB+∠FDC=180°。F

求证:AE∥FD。

B

证明:∵AB∥CD

D

∴∠AGD+∠FDC=180°(两直线平行,同旁内角互补)∵∠EAB+∠FDC=180°(已知)∴∠AGD=∠EAB(同角的补角相等)∴AE∥FD(内错角相等,两直线平行)

9、已知:如图,DC∥AB,∠1+∠A=90°。

求证:AD⊥DB。证明:∵DC∥AB(已知)

B

∴∠A+∠ADC=180°(两直线平行,同旁内角互补)即∠A+∠ADB+∠1=180°∵∠1+∠A=90°(已知)∴∠ADB=90°(等式性质)∴AD⊥DB(垂直定义)

10、如图,已知AC∥DE,∠1=∠2。求证:AB∥CD。

证明:∵AC∥DE(已知)

∴∠2=∠ACD(两直线平行,内错角相等)∵∠1=∠2(已知)

∴∠1=∠ACD(等量代换)

∴AB∥CD(内错角相等,两直线平行)

11、已知,如图,AB∥CD,∠1=∠B,∠2=∠D。求证:BE⊥DE。

B

C

EB

D、证明:作EF∥AB∵AB∥CD B

∴∠B=∠3(两直线平行,内错角相等)∵∠1=∠B(已知)

∴∠1=∠3(等量代换)

D∵AB∥EF,AB∥(已作,已知)

∴EF∥CD(平行于同一直线的两直线平行)∴∠4=∠D(两直线平行,内错角相等)∵∠2=∠D(已知)∴∠2=∠4(等量代换)

∵∠1+∠2+∠3+∠4=180°(平角定义)∴∠3+∠4=90°(等量代换、等式性质)即∠BED=90°

∴BE⊥ED(垂直定义)

12、求证:两条平行直线被第三条直线所截,内错角的平分线互相平行。已知:AB∥CD,EG、FR分别是∠BEF、∠EFC的平分线。求证:EG∥FR。

B 证明:∵AB∥CD(已知)

1∴∠BEF=∠EFC(两直线平行,内错角相等)G

∵EG、FR分别是∠BEF、∠EFC的平分线(已知)F

∴2∠1=∠BEF,2∠2=∠EFC(角平分线定义)∴2∠1=2∠2(等量代换)∴∠1=∠2(等式性质)

∴EG∥FR(内错角相等,两直线平行)

13、如图,点E在DF上,点B在AC上,∠1=∠2,∠C=∠D. 试说明:∠A=∠F.

考点:平行线的判定与性质. 专题:证明题.

分析:先根据对顶角相等结合∠1=∠2推出∠3=∠4,然后根据内错角相等,两直线平行证明BD∥CE,再根据两直线平行,同位角相等得到∠5=∠C,从而推出∠5=∠D,再根据内错角相等,两直线平行证明AC∥DF,然后根据两直线平行,内错角相等即可得证.

解答:∴∠3=∠4,∴BD∥CE,∴∠5=∠C,∵∠C=∠D,∴∠5=∠D,∴AC∥DF,∴∠A=∠F.

证明:如图,∵∠1=∠3,∠2=∠4,∠1=∠2,

第四篇:§24.3命题与证明

.cn

§24.3 命题与证明

1.定义、命题与定理

试一试

观察图24.3.1中的图形,找出其中的平行四边形.

24.3.1要解决这个问题,首先要弄清楚怎样的图形才能称为平行四边形.你还记得 以前学过的知识吗?

“有两组对边分别平行的四边形叫做平行四边形”这句话说明了平行四边形 的含义以及区别于其他图形的特征.一般地,能明确指出概念含义或特征的句子,称为定义(definition).还可以举出如下的一些定义:

(1)有一个角是直角的三角形,叫做直角三角形.

(2)有六条边的多边形,叫做六边形.

(3)在同一平面内,两条不相交的直线叫做平行线.

定义必须是严密的.一般避免使用含糊不清的术语,比如“一些”、“大概”、“差不多”等不能在定义中出现.正确的定义能把被定义的事物或名词与其他的 事物或名词区别开来.

思 考

试判断下列句子是否正确.

(1)如果两个角是对顶角,那么这两个角相等;

(2)三角形的内角和是180°;

(3)同位角相等;

(4)平行四边形的对角线相等;

(5)菱形的对角线相互垂直.

根据已有的知识可以判断出句子(1)、(2)、(5)是正确的,句子(3)、(4)是错误的.像这样可以判断它是正确的或是错误的句子叫做命题(proposition).正确的命题称为真命题,错误的命题称为假命题.

在数学中,许多命题是由题设(或条件)和结论两部分组成的.题设是已知事项,结论是由已知事项推出的事项.这种命题常可写成“如果„„那么„„”的形式.其中,用“如果”开始的部分是题设,用“那么”开始的部分是结论.例-1-

如,在命题(1)中,“两个角是对顶角”是题设,“这两个角相等”是结论.例1 把命题“在一个三角形中,等角对等边”改写成“如果„„那么„„”的形式,并分别指出命题的题设与结论.

解这个命题可以写成:“如果在一个三角形中有两个角相等,那么这两个角所对的边也相等.” 这里的题设是“在一个三角形中有两个角相等”,结论是“这两个角所对的边也相等”.数学中有些命题的正确性是人们在长期实践中总结出来的,并把它们作为判断其他命题真假的原始依据,这样的真命题叫做公理(axiom).例如,我们通过探索,已经知道下列命题是正确的:

(1)一条直线截两条平行直线所得的同位角相等;

(2)两条直线被第三条直线所截,如果同位角相等,那么这两条直线

平行;

(3)如果两个三角形的两边及其夹角(或两角及其夹边,或三边)分

别对应相等,那么这两个三角形全等;

(4)全等三角形的对应边、对应角分别相等.

我们把这些作为不需要证明的基本事实,即作为公理.

此外,我们把等式、不等式的有关性质以及等量代换(即在等式或不等式中,一个量用它的等量替代)都作为逻辑推理的依据.

有些命题可以从公理或其他真命题出发,用逻辑推理的方法判断它们是正确的,并且可以进一步作为判断其他命题真假的依据,这样的真命题叫做定理(theorem).

例如,运用公理“两角及其夹边分别对应相等的两个三角形全等”,可以得到定理:“两角及其一角的对边分别对应相等的两个三角形全等.”

定理的作用不仅在于它揭示了客观事物的本质属性,而且可以作为进一步确认其他命题真假的根据.

练习

1.找出右图中的锐角,并试着对“锐角”写出一个确切的定义

.2.把下列命题改写成“如果„„那么„„”的形式,并指出它的题设和结论.(1)全等三角形的对应边相等;

(2)平行四边形的地边相等.3.指出下列命题中的真命题和假命题.(1)同位角相等,两直线平行;

(2)多边形的内角和等于180°;

(3)如果两个三角形有三个角分别相等,那么这两个三角形全等.2.证明

思 考

一位同学在钻研数学题时发现:

2+1=3,2×3+1=7,2×3×5+1=31,2×3×5×7+1=211.

于是,他根据上面的结果并利用素数表得出结论: 从素数2开始,排在前 面的任意多个素数的乘积加1一定也是素数.他的结论正确吗?

如图24.3.2所示,一个同学在画图时发现: 三角形三条边的垂直平分线的 交点都在三角形的内部.于是他得出结论: 任何一个三角形三条边的垂直平分线的交点都在三角形的内部.他的结论正确吗?

24.3.2我们曾经通过计算四边形、五边形、六边形、七边形、八边形等的内角和,得到一个结论: n边形的内角和等于(n-2)×180°.这个结果可靠吗?是否有一个多边形的内角和不满足这一规律?

上面几个例子说明: 通过特殊的事例得到的结论可能正确,也可能不正确.因此,通过这种方式得到的结论,还需进一步加以证实.

根据题设、定义以及公理、定理等,经过逻辑推理,来判断一个命题是否正确,这样的推理过程叫做证明(proof).

前面的学习已经告诉我们: 一条直线截两条平行线所得的内错角相等.下面我们运用前面所提到的基本事实,即公理来证明这个结论.

例1 证明: 一条直线截两条平行直线所得的内错角

相等.

已知: 如图24.3.3,直线l1∥l2,直线l3分别和l1、l

2相交于点A、B.

求证: ∠1=∠3.

证明 因为l1∥l2(已知),所以∠1=∠2(两直线平行,同位角相等).

24.3.3 又∠2=∠3(对顶角相等),所以∠1=∠3(等量代换).

如果要证明或判断一个命题是假命题,那么我们只要举出一个符合命题题设而不符合结论的例子就可以了,这称为“举反例”.例如,要证明“一个锐角与一个钝角的和等于一个平角”是假命题,只需举一个反例,例如锐角等于30°,钝角等于120°,但它们的和就不等于180°,从而说明这个命题是假命题.

练习

1.根据下列命题,画出图形并写出“已知”、“求证”(不必证明);

(1)两条边及其中一边上的中线分别对应相等的两个三角形全等;

(2)在一个三角形中,如果一边上的中线等于这边的一半,那么这个三角

形是直角三角形.2.判断“同位角相等”是真命题还是假命是,并说明理由.在以往的学习中,我们已经知道下面的例题所表述的结论

是正确的,现在通过推理的方式给予证明.

例2 内错角相等,两直线平行.

已知:如图24.3.4,直线l3分别交l1、l2于点A、点B,∠

1=∠2.

求证: l1∥l2.

24.3.4证明 因为∠1=∠2(已知),∠1=∠3(对顶角相等),所以∠2=∠3(等量代换),所以l1∥l2(同位角相等,两直线平行).

例3 已知:如图24.3.5,AB和CD相交于点O,∠A=

∠B.

求证: ∠C=∠D.

证明 因为∠A=∠B(已知),所以AC∥BD(内错角相等,两直线平行). 图

24.3.5 所以∠C=∠D(两直线平行,内错角相等).

试一试请在下面题目证明中的括号内填入适当的理由.已知:如图24.3.6,AD=BC,CE∥DF,CE=DF.求证: ∠E=∠F.证明: 因为CE∥DF(),所以∠1=∠2().在△AFD和△BEC中,因为 图

24.3.6DF=CE(),∠1=∠2(),AD=BC(),所以△AFD≌△BEC(),所以∠E=∠F().

练习

1.已知:如图,直线AB、CD被EF、GH所截,∠1=∠2,求证:∠3=∠4.(第1题)

(第2题)

2.已知:如图,AB=AC, ∠BAO=∠CAO.求证:OB=OC.习题24.31.判断下列命题是真命题还是假命题,若是假命题,则举一个反例加以说明.(1)两个锐角的和等于直角;

(2)两条直线被第三条直线所截,同位角相等;

(3)有两条边和一个角分别对应相等的两个三角形全等.2.把下列命题改成“如果„„那么„„”的形式.(1)三角形全等,对应边相等;

(2)菱形的对角线相互垂直;

(3)三个内角都等于60°的三角形是等边三角形.3.证明:平等四边形的两组对边分别相等.(提示:连结AC)

(第3题)(第4题)

4.如图,OA=OB,PA=PB,试证明:OP平分∠AOB.5.证明:矩形的两条对角线长相等.(第5题)(第6题)

6.如图,已知:DC=AB,AD=BC,点E、F在AC上,AE=CF.试找出图中所有的全等三角形,并用有关全等三角形的基本事实加以证明.

第五篇:初中数学复习9上2 易错 命题与证明

新课标初中数学复习资料*湘教版

第2章 命题与证明(9上)

本章易错题整理

编辑:张高义2010.08

一、选择题

1、下列说法中,正确的是()

A.正确的命题称为定理,这个命题的逆命题是逆定理。

B.一个命题,当它的逆命题为真时,称这个逆命题为逆定理。

C.一个定理也是一个命题,这个命题的逆定理就是这个定理的逆定理。

D.当一个定理的逆命题为真时,称这个逆命题为该定理的逆定理。

二、填空题

1、已知等腰三角形的一个外角等于150°,则它的顶角等于()。

2、已知一个三角形的一个外角为136°,与之不相邻的一个内角的度数为58°,那么另外两个内角的度数为()。

三、判断题。在真命题后记“√”,在假命题后记“×”。

1、在空间中,不相交的两条直线叫做平行线。()

2、邻补角的角平分线互相垂直。()

3、两条直线被第三条直线所截,内错角相等。()

4、一个角的补角总是大于这个角。()

5、过直线外一点只有一条直线与已知直线相交。()

6、锐角小于90度。()

7、若a>b,则a2>b2。()

8、若a2≠b2,则a≠b。()

9、若a≠b,则a2≠b2。()

10、坐标平面内的点与有序实数对一一对应。()

11、对于任意实数a、b,一定有a+b>a-b。()

12、有两边和一角分别对应相等的两个三角形全等()

四、证明题

1、已知点O是△ABC内的一点,求证:∠BOC>∠A。

2、求五角星五个顶角∠A+∠B+∠C+∠D+∠E的和。

3、求证:等腰三角形两腰上的高相等。

4、证明:菱形的两条对角线交点到一组邻边的距离相等。

5、证明:有一条对角线平分一个内角的平行四边形是菱形。

6、证明:顺次连接菱形的四边中点得到的四边形是矩形。

7、证明:等腰梯形的对角线交点与同一底的两个端点的距离相等。

8、证明:等腰梯形的两条对角线的交点在它的对称轴上。

第2章 命题与证明(9上)

本章易错题整理答案

一、选择题

1、D

二、填空题1、30°或120°2、44°、78°

三、判断题。

1、×

2、√

3、×

4、×

5、×

6、√

7、×

8、√

9、×

10、√

11、×

12、×

四、证明题

下载初中数学命题与证明word格式文档
下载初中数学命题与证明.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    命题与证明导学案

    命题与证明(2)学习目标:1、会区分定理,公理和命题。 2、了解证明的含义,体验证明的必要性。 重点:证明的含义和表述格式。 难点:按照规定格式表述证明的过程。 一、独学(课本77~78页......

    命题与证明教学设计

    八年级数学教学设计肥东县王城中学王合课题:14.2证明(2)教材与学生现实的分析1、本节内容是《命题与证明》的第三课时,学生通过前面两节课的学习后,已经熟悉了,定义、公理、定理、......

    命题与证明平行四边形 教案

    《命题与证明》1、 定义(一般地,能清楚地规定某一名称或术语意义的句子叫做该名称或术语的定义)2、 命题(一般地,判断一件事情的句子叫做命题)命题是一个“判断句”,判断“是”或“......

    初二数学教案:命题与证明

    初二数学教案:命题与证明 第二十四章 证明与命题(一)复习 一、教学目标: 1、了解定义、命题、定理的含义,会区分命题的条件(题设)和结论。 2、会在简单情况下判断一个命题的......

    13.2 命题与证明2

    13.2 命题与证明 第2课时 证明 教学目标 1.了解证明的含义。 2.体验、理解证明的必要性。 3.了解证明的表达格式,会按规定格式证明简单命题。 教学重点、难点 重点:本节教学的重......

    初中数学_三角形内外角平分线有关命题的证明及应用

    三角形内外角平分线有关命题的证明及应用湖北省襄阳市襄州区黄集镇初级中学 张昌林在中考和一些竞赛题目中常有与三角形内外角平分线有关的题目,若平时不注意总结是很难一下......

    数学八年级下《命题与证明》复习测试题(答案)

    命题与证明一、选择题1.下列语句中,属于命题的是.(A)直线AB和CD垂直(B)过线段AB的中点C画AB的垂线(C)同旁内角不互补,两直线不平行(D)连结A,B两点2.下列命题中,属于假命题的是( )(A)若a⊥c,b⊥c,......

    华师大版数学上册命题定理与证明家庭作业

    华师大版数学上册命题定理与证明家庭作业 在数学中,一般把判断某一件事情的陈述句叫做命题。查字典数学网小编为大家准备了这篇命题定理与证明家庭作业,接下来我们一起来练习......