第一篇:初中数学概率与频率的区别
概率与频率的区别:
概率是一种现象的固有属性,比如一枚均匀的硬币,随意抛掷的话正面出现的概率就是1/2。
这跟你的实验是没有关系的。
而频率,就是一组实验中关心的某个结果出现的次数比上所有实验次数的比值,它和实验密切相关。
一般来说,随着实验次数的增多,频率会接近于概率。
比如你抛掷均匀的硬币10000次,出现正面的频率就会非常接近于概率0.5(不一定正好是0.5).※ 当实验次数趋向于无穷时,频率的极限就是概率。
频率的稳定值是概率,频率随试验次数的不同是变化的,是一个统计规律,但它都在概率附近摆动,一个事件的概率是不变的在简单随机试验中,记一个事件为A。
简单随机试验做n次,如果事件A发生了k次。
则称在n次试验中,事件A发生的频数为k,发生的频率为k/n。
概率是事件A发生可能性的大小,这是概率的描述性定义。
如果存在一个实数p,当试验次数n很大时,频率稳定在p附近摆动,称频率的 这个稳定值p 为概率。这是概率的统计性定义。
注意:可以用列表法求概率的两个特点:
一次试验中,可能出现的结果为有限多个
一次试验中,各种结果发生的可能性相等。
当一次试验要涉及3个或多个因素时,用树状图法较简单
第二篇:频率与概率练习(范文模版)
频率与概率练习题(3)
1.在“传箴言”活动中,某党支部对全体党员在一个月内所发箴言条数情况进行了统计,并制成了如下两幅不完整的统计图.
(1)求该支部党员一个月内所发箴言的平均条数是多少?并将该条形统计图补充完整;
(2)如果发了三条箴言的党员中有两位男党员,发了四条箴言的党员有两位女党员,在 发了三条箴言和四条箴言的党员中分别选出一位参加区委组织的“传箴言”活动总结会,请你用列表或树状图的方法,求出所选两位党员恰好是一男一女的概率.
2.端午节吃粽子是中华民族的传统习俗,一超市为了吸引消费者,增加销售量,特此设计了一个游戏,其规则是:分别转动如图所示的两个可以自由转动的转盘各一次,每次指针落在每一字母区域的机会均等(若指针恰好落在分界线上则重转),当两个转盘的指针所指字母都相同时,消费者就可以获得一次八折优惠价购买粽子的机会.
(1)用树状图或列表的方法(只选其中一种)表示出游戏可能出现的所有结果;
(2)若一名消费者只能参加一次游戏,则他能获得八折优惠价购买粽子的概率是多少?
3.我县实施新课程改革后,学习的自主字习、合作交流能力有很大提高,张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调査,并将调査结果分成四类,A:特别好;B:好;C:一般;D:较差;并将调査结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,张老师一共调査了
名同学,其中C类女生有 名,D类男生有 名;(2)将上面的条形统计图补充完整;
(3)为了共同进步,张老师
想从被调査的A类和D类学生中分别选取一位同学迸行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.
4.为实施“农村留守儿童关爱计划”,某校结全校各班留守儿童的人数情况进行了统计,发现各班留守儿童人数只有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅不完整的统计图:
(1)求该校平均每班有多少名留守儿童?并将该条形统计图补充完整;
(2)某爱心人士决定从只有2名留守儿童的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名留守儿童来自同一个班级的概率.
第三篇:6.1频率与概率说课稿
6.1
频率与概率
我说课的内容是北京师范大学出版社出版的义务教育课程标准实验教科书<<数学>>九年级上册第六章第一节频率与概率,下面我就从教材分析、教学方法、学法指导、教学过程这四个方面说明我对本节课的教学设计.第一方面、教材分析
(一)本节课所处的地位及前后联系
频率与概率是学生在初步接触概率的基础上进一步探索频率与概率的关系,既是对前面知识的发展和应用,又是今后进一步研究相关知识的基础,在教材中起着承上启下的作用.(二)教学目标
对于频率与概率这一节课的知识掌握并不难,但是学生积极的情感态度的培养、促进良好数学观的养成需要一个长期的过程,教材为学生提供了足够的探索和交流的空间,以利于改变学生的学习方式,体现了知识形成的过程,使学生在经历知识形成的过程中,探索和理解所研究的内容,根据<<课程标准>>的要求、教材内容及所任班级学生学习的特点,我制定了如下的教学目标: 知识技能:1 通过试验,理解当试验次数较大时试验频率稳定于理论概率。
能通过试验估计某一事件发生的概率。
数学思考:在试验中体会频率的稳定性,形成对概率的全面理解,发展学生初步的辩证思维能力。解决问题:1 在试验中认识到概率的思维方式与确定性思维的差异,具备随机观念。
学会与人合作,并能与他人交流思维的过程和结果。情感态度:1 通过具体情境使学生养成乐于接触社会环境中的数学信息,愿意谈论某些数学话题,用数学的思维思考生活中的实际问题的习惯。在活动中进一步发展合作交流的意识和能力。
(三)重点、难点
本节课主要是通过学生的动手试验发现知识、总结频率与概率之间的区别与联系,根据教学目标以及对整个教材的理解我认为课堂教学不仅应把数学知识作为教学重点,而且能力的培养也应作为重点,所以我确定本节课的 重点是:
在试验中体会频率的稳定性,理解当试验次数很大时,试验频率稳定于理论概率。难点是:
对概率的理解。第二方面、教学方法
根据建构主义的观点:“知识不是被动接受的,而是认知主体积极建构的。”所以单纯的讲已经不能让学生所接受,而且整个教材的设置也给学生留有较大的发现问题、解决问题的空间,学生凭借独立自主的探索,对知识的理解和掌握会更加深刻,所以本节课我采用的教学方法是自主探究和合作学习:
1自主探究的教学方法,使知识得到应用,分析问题和解决问题的能力得到培养,探究本身蕴含着要用新的办法和新的途径等科学的探究因素,有利于科学方法和创新精神的培养,探索是学生自主通过劳动自行解决问题获取新知识,可以培养学生积极的情感、坚忍不拔的意志、顽强奋斗的精神,并且使学生养成独立自主解决问题的习惯。
2合作学习能够全面提高学生的学业成绩,改善班级内的同学关系及学生的心理气氛,使学生形成良好的心理品质。
教具:多媒体
第三方面、学法指导 在进行试验过程中,使学生体验学习数学知识及解决数学问题需要经过自己的实践和创造,让学生的思维试验的过程中得到发展和完善。改变学生的学习方式,指导学生在试验的过程中掌握方法,养成探索的习惯,使其具有独立解决问题的能力。
第四方面、教学过程
我将本节课的教学内容划分为五个活动。活动1分析获奖概率。
在分析获奖概率中,使学生能够寻找出频率与概率在生活中的原型。
首先提出问题:“每名消费者有机会任意掷一枚均匀的硬币两次,所得结果作为一次获奖依据,商家想使这次活动投入的经费尽可能较少。如果你是商场本次活动的策划者你一定不会把哪种情况设为一等奖?”由学生分组讨论,发表见解。教师倾听。从而引出课题。(板书课题)
以具体情境为背景,让学生都参与到数学活动中来,吸引学生的注意力,调动学生学习的积极性。
本次活动教师重点关注:学生对此问题分析的着眼点及不同看法,并不要求学生有严密的分析过程。
活动2进行试验,统计频数,计算频率,填写表格。
问题:每人做30次试验,记录数据,根据你的试验数据,你发现了什么?学生做试验、记录数据,并观察数据,回答问题。教师查看学生的试验过程,贵不遵守规则的学生给予更正和指导。
本次活动的目的是让学生亲身经历试验过程,收集试验数据,在活动中培养学生参与数学试验的兴趣,学习数学试验的方法。
本次活动中,教师重点关注:①学生的参与意识;②学生在试验过程中,态度是否认真,动作是否合乎随机性的要求;③学生是否会计算频数和频率。
活动3汇总数据,填写表格,画频率变化折线统计图。这是整堂课的重点活动,目的是让学生在“提出问题——动手操作——观察——解释讨论——得出结论——表达陈述”这一过程中了解并感受试验频率与理论概率的关系。本次活动设置了三个问题,问题1:30次试验得到的频率值差别较大,那如何估算概率呢?问题提出后,学生发表见解,教师对学生的见解进行剖析,并给予鼓励。通过对30次试验数据的分析,感受这三种情况发生可能性大小的差异,由此进一步估算其中一种情况发生的概率,使问题的提出更具合理性。
问题2:用什么方法增加试验次数,可以节省时间?问题回答后,学生汇总全班同学的试验数据,计算频率,填入表格。教师深入小组进行方法和合作技巧的指导。通过汇总数据,观察频率变化趋势,体会频率的稳定性,得出试验频率稳定于理论概率这一规律。
问题3:根据以上数据,绘制频率变化折线统计图,您能发现什么规律?学生以小组为单位作图,并交流从统计图中发现的规律。教师引导学生发现频率的稳定性,感受当试验次数较大时,试验频率稳定于理论概率。本次活动通过类比的方法,明晰结论,让学生学会估计随机事件发生概率的方法。在合作的过程中,培养学生的合作意识,感受合作的重要性。
本次活动教师重点关注:①学生是否能类比科学家掷硬币试验,增加试验次数;②学生是否能完成折线统计图,并从图中发现规律,感受到试验频率与理论概率的关系。③学生在合作过程中是否能想方设法分工合作,提高效率。
活动4观察计算机模拟试验,得出结论。
问题:观察计算机模拟10000000次试验结果,对比分析得到的概率,频率和概率有什么关系?
利用电脑进行演示,学生回答。通过观察计算机模拟100000000次试验的结果,进一步让学生体会当试验次数较大时,试验频率稳定于理论概率这一规律,加深对概率和频率关系的理解,明确概率是大量试验基础上,对整体趋势的描绘。
本次活动教师重点关注:①学生对继续增大试验次数必要性的理解。②学生是否会用试验的方法估算概率。
活动5小结并布置作业
我认为这一活动是学生与学生、学生与教材及教师产生交互作用的重要环节,而没有了对话,就没有了交流,没有了交流,就没有了教育,所以让学生以小组为单位互相谈体会、收获或者是交流解决本节课的知识上有哪些独特的见解,然后在全班交流,教师最后进行点评。作业时对本节课所学知识再认识、再升华的阶段,使学生学有用的数学,会用数学进行交流。
本次活动教师重点关注:①学生的参与意识,合作精神;②学生解决问题方法的合理性与实用性。
总之,在整个教学过程中,我力争使数学教学真正激发出教与学两方面的创造力,做到教的有效,学的愉快,考的满意这十二个字。
第四篇:《频率与概率》教学反思
《频率与概率》教学反思
《频率与概率》教学反思
《频率与概率》是一节试验动手的多媒体新授课,整个教学过程中遵循“回-导-学-展-讲-练-结”高效课堂教学模式,以学生活动为主,利用合作试验得到的试验数据和相关的多媒体教学手段来完成教学。本节课设计主要体现如下的教育理念:首先,学生的主动地位得以体现,注重了学生创新能力的培养,促进学生全面发展。课堂上学生积极参与了自主探究学习活动,学生的动手实践能力得到了提高。其次,体现了教师是学习的组织者、引导者和合作者。再次,教学中信心的多媒体技术的使用,有利于学生理解和掌握频率与概率的关系。
本节教学中开篇用索契冬奥会视频引入本节新课,激发学生学习的兴趣;在研究频率与概率关系中,使用计算机模拟抛掷银币的试验,可以动态的让学生感知随着试验中次数增加,频率值一直在发生动态的改变;通过合作试验的Excel统计图表折线图的使用,可以更加清晰的展现频率的波动和概率的稳定;在知识总结中,利用微课视频总结回顾知识体系。
本节课需要改进的地方就是,在体会频率与概率关系过程中,在抛掷硬币实验以外,如果能设计另外一个操作实验,让学生尽可能多的在实际中操作中感受频率的变化,体会随机事件发生的不确定性和稳定性,可能预期的教学效果将会更好。
第五篇:高二数学教案:频率与概率教案
本节通过一个课堂实验活动,让学生逐步计算一个随机事件发生的实验频率,并观察其规律性,从而归纳出实验频率趋近于理论概率这一规律性,同时进一步介绍一种计算概率的方法列表法.实验频率稳定于理沦概率是本节乃至本章的教学重点及难点之一,第二个重点则为能运用树状图或列表法计算简单事件发生的概率.因此在教学过程中应注意:(1)注重学生的合作和交流活动,在活动中促进知识的学习,并进一步发展学生的合作交流意识和能力.这是社会迅猛发展的要求.同时.在本节中.要归纳出实验频率稳定于理论概率这一规律,必须借助于大量重复实验,而课堂时间是有限的,靠一个学生完成实验次数自然不可能.因此必须综合多个学生甚至全班学生的实验数据,这就需要全班学生合作交流来完成.(2)注重引导学生积极参加实验活动,在实验中体会频率的稳定性,感受实验频率与理论概率之间的关系,并形成对概率的全面理解.发展学生的初步辩证思维能力,突破实验频率稳定于理论概率这一难点,进一步体会概率是描述随机现象的数学模型.(3)关注学生对知识技能的理解和应用,借助列表和树状图计算简单事件发生的概率.教学目标(一)教学知识点通过实验.理解当实验次数较大时实验频率稳定于理论概率,并据此估计某一事件发生的概率.(二)能力训练要求经历实验、统计等活动过程,在活动中进一步发展学生合作交流的意识和能力.(三)情感与价值观要求1.积极参与数学活动.通过实验提高学生学习数学的兴趣.2.发展学生的辩证思维能力.教学重点 1.通过实验.理解当实验次数较大时。实验频率稳定于理论概率.并据此估计某一事件发生的概率.2.在活动中发展学生的合作交流意识和能力.教学难点辩证地理解当实验次数较大时,实验频率稳定于理沦概率.教学方法实验交流合作法.教具准备每组准备两组相同的牌,每组牌都有两张;多媒体演示:教学过程Ⅰ.创设问题情境,引入新课[师]我们在七年级时,曾用掷硬币的方法决定小明和小丽谁去看周末的电影:任意掷一枚均匀的硬币.如果正面朝上,小丽去;如果反面朝上,小明去.这样决定对双方公平吗?[生]公平!因为我们做过这样的试验,历史上的数学家也做过掷硬币的实验,经过实验发现当次数很大时,任意掷一枚硬币.会出现两种可能的结果:正面朝上、反面朝上.这两种结果出现的可能性相同.都是[师]很好!我们再来看一个问题:任意掷一枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).6朝上的概率是多少?[生]任意掷一枚均匀的小立方体,所有可能出现的结果有6种:1朝上,2朝上。3朝上,4朝上,5朝上,6朝上,每种结果出现的概率都相等,其中6朝上的结果只有一种,因此P(6朝上)=.[师]上面两个游戏涉及的是一步实验.如果是连续掷两次均匀的硬币。会出现几种等可能的结果.出现一正一反的概率为多少呢?如果将上面均匀的小立方体也连续掷两次,会出现几种等可能的结果,两次总数都是偶数的概率为多少呢?从这一节开始我们将进一步学习概率的有关知识.我们用实验的方法估计出了任意掷一枚硬币正面朝上和反面朝上的概率.同样的我们也可以通过实验活动.估计较复杂事件的概率.Ⅱ.分组实验,进一步理解当实验次数较大时,实验频率稳定于理论概率.1.活动一:活动课题通过摸牌活动,探索出实验次数很大时,实验的频率渐趋稳定这一规律.活动方式分组实验,全班合作交流.活动步骤准备两组相同的牌,每组两张。两张牌的牌面数字分别是1和2.从每组牌中各摸出一张,称为一次实验.(1)估计一次实验中。两张牌的牌面数字和可能有哪些值?(2)以同桌为单位,每人做30次实验,根据实验结果填写下面的表格:牌面数字和 2 3 4频数频率(3)根据上表,制作相应的频数分布直方图.(4)根据频数分布直方图.估计哪种情况的频率最大?(5)计算两张牌的牌面数字和等于3的频率是多少?(6)六个同学组成一组,分别汇总其中两人、三人、四人、五人、六人的实验数据,相应得到实验60次、90次、120次、150次、180次时两张牌的牌面数字之和等于3的频率,填写下表.并绘制相应的折线统计图.实验次数 60 90 120 150 180两张牌面数字和等于3的频数两张牌面数字和等于3的频率(在具体实验活动的展开过程中.要力图体现各个步骤的渐次递进.(1)在一次实验中,两张牌的牌面数字和可能为2,3,4:(2)学生根据自己的实验结果如实填写实验数据;(3)制作相应的频数分布直方图,一方面为了复习巩固八年级下册有关频数、频率的知识,同时也便于学生更为直观地获得(4)的结论;(4)一般而言,学生通过实验以及上面(2)(3)的图表容易猜想两张牌的牌面数字和为3的频率最大.理论上.两张牌的牌面数字和为2,3,4的概率依次为,应该说,经过30次实验,学生基本能够猜想两张牌的牌面数字和为3的频率最大.当然,这里一定要保证实验的次数,如果实验次数太少,结论可能会有较大出入;(5)有了(4)中的结沦.自然过渡到研究其频率的大小.当然,两张牌的牌面数字和等于3的频率因各组实验结果而异.正是有了学生结论的差异性,才顺理成章地展开问题(6),汇总组内每人的实验数据;(6)目的在于通过逐步汇总学生的实验数据,得到实验60次、90次、120次、150次、180次时的频率.并绘制相应的折线统计图,从而动态地研究频率随着实验次数的变化而变化的情况)2.议一议[师]在上面的实验中,你发现了什么?如果继续增加实验次数呢?与其他小组交流所绘制的图表和发现的结论.[生]在与各组交流图表的过程中,我发现:在各组的折线统计图中,随着实验次数的增加,频率的波动较小了.[生]随着实验次数的增加,实验结果的差异较小。实验的数据即两张牌的牌面数字和等于3的频率比较稳定.[生]一个人的实验数据相差可能较大,而多人汇总后的实验数据即两张牌的牌面数字和等于3的频率相差较小.[师]也就是说,同学们从实验中都能体会到实验次数较大时,实验频率比较稳定.请问同学们估计一下,当实验次数很大时,两张牌的牌面数字和等于3的频率大约是多少?[生]大约是.[师]很好!准能将实验次数更进一步增加呢?越大越好.[生]可以把全班各组数据集中起来,这样实验次数就会大大增加.[师]太棒了!众人拾柴火焰高,我们集小全班的实验数据,交流合作,可以使实验次数达到一千多次.下面我们汇总全班的实验次数及两张牌的牌面数字和为3的频数,求出两张牌的牌面数字和等于3的频率.(可让各组一一汇报,然后清同学们自己算出)[生]约为.[师]与你们的估计相近吗? [生]相近.3.做做[师]你能用我们学过的知识计算出两张牌的牌面数字和为3的概率吗?[生]每组牌中,每张牌被摸到的可能性是相同的,因此.一次实验中.两张牌的牌面数字的和等可能的情况有:1+1=2;1+2=3;2+1=3;2+2=4.共有四种情况.而和为3的情况有2种,因此,P(两张牌的牌面数字和等于3)= =.[生]也可以用树状图来表示,即两张牌的牌面数字的和有四种等可能的情况,而两张牌的牌面数字和为3的情况有2次,因此.两张牌的牌面数字的和为3的概率为 =.4.想一想[师]我们在前面估算出了当实验次数很大时,两张牌的牌面数字和等于3的频率约为.接着又用树状图计算出了两张牌的牌面数字和等于3的概率也为.比较两者之间的关系,你可以发现什么呢?同学们可相互交流意见.[生]可以发现实验频率稳定于理论概率这一结论.[生]也就是说,当实验次数很大时,两张牌的牌面数字和等于3的频率稳定在相应的概率附近.[师]很好!由于实验次数很大时,两张牌的牌面数字和等于3的频率稳定在相应的概率附近,因此我们可以通过多次实验,用一个事件发生的频率来估计这一事件发生的概率.当实验次数很大时,两张牌的牌面数字和等于3的频率稳定在相心的概率附近是否意味着。实验次数越大。就越为靠近?应该说.作为一个整体趋势,上述结论是正确的,但也可能会出现这样的情形:增加了几次实验,实验数据与理论概率的差距反而扩大了.同学们可从绘制的折线统计图中发现.Ⅲ.随堂练习活动二:活动课题利用学生原有的实验数据统计两张牌的牌面数字和为2的频率,进步体会当实验次数很大时,频率的稳定性及其与概率之间的关系.活动方式小组活动,全班讨论交流.活动步骤(1)六个同学组成一个小组,根据原来的实验分别汇总其中两人、二人、四人、五人、六人的数据,相应得到实验60次、90次、120次、150次、180次时两张牌的牌面数字和等于2的频率.(2)根据上面的数据绘制相应的统计图表,如折线统计图.(3)根据统计图表估计两张牌的牌面数字和等于2的概率.(活动完成后,讨论、总结)[生]由我们组绘制的折线统计图可以发现随着实验次数的增加,实验的频率在 处波动.而且波动越来越小.[生]由此可估计两张牌的牌面数字和等于2的概率为.[师]你能用树状图计算出它的理论概率吗?[生]可以,如下图:因此,P(两张牌的牌面数字和为2)=.Ⅳ.课时小结本节课通过实验、统计等活动,进一步理解当实验次数很大时,实验频率稳定于理论概率这一重要的概率思想.Ⅴ.课后作业习题6.1Ⅵ.活动与探究 下列说法正确的是()A.某事件发生的概率为,这就是说:在两次重复实验中,必有一次发生B.一个袋子里有100个球,小明摸了8次,每次都只摸到黑球,没摸到白球,结论:袋子里只有黑色的球C.两枚一元的硬币同时抛下,可能出现的情形有:①两枚均为正;②两枚均为反;③一正一反,所以出现一正一反的概率是D.全年级有400名同学,一定会有2人同一天过生日[过程]当实验次数很大时,实验频率稳定于理论概率并不意味着,实验次数越大,就越为靠近,应该说,作为一个整体趋势,上述结论是正确的,更不能某某事件的概率为,在两次重复试验中.就一定有一次发生、因此A不正确,B也不正确而对于C,两枚硬币同时抛下,等可能的情况由树状图可知有四种:因此,出现一正一反的概率为 即,对于D,根据抽屉原理可知是正确的.[结果]应选D.板书设计6.1.1 频率与概率活动一:活动目的[活动方式活动步骤:(1)(2)(3)(4)(5)(6)活动结果:当实验次数很大时,实验频率稳定于理论概率.注:对上述结果的正确理解.应该说作为一种整体趋势是正确的.活动二:活动目的活动方式:分组、全班交流讨论.