海文名师总结考研数学概率论与数理统计初步题型五篇

时间:2019-05-13 18:14:31下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《海文名师总结考研数学概率论与数理统计初步题型》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《海文名师总结考研数学概率论与数理统计初步题型》。

第一篇:海文名师总结考研数学概率论与数理统计初步题型

海文名师总结考研数学概率论与数理统计初步题型

海文指导老师:杨岳

暑期课堂已经陆陆续续接近尾声,大部分同学已经开始了概率论和数理统计的复习,我现在对同学们近期的复习做一个简单的指导。概率论与数理统计初步主要考查考生对研究随机现象规律性的基本概念、基本理论和基本方法的理解,以及运用概率统计方法分析和解决实际问题的能力。

常有的题型有:填空题、选择题、计算题和证明题,试题的主要类型有:

(1)确定事件间的关系,进行事件的运算;

(2)利用事件的关系进行概率计算;

(3)利用概率的性质证明概率等式或计算概率;

(4)有关古典概型、几何概型的概率计算;

(5)利用加法公式、条件概率公式、乘法公式、全概率公式和贝叶斯公式计算概率;

(6)有关事件独立性的证明和计算概率;

(7)有关独重复试验及伯努利概率型的计算;

(8)利用随机变量的分布函数、概率分布和概率密度的定义、性质确定其中的未知常数或计算概率;

(9)由给定的试验求随机变量的分布;

(10)利用常见的概率分布(例如(0-1)分布、二项分布、泊松分布、几何分布、均匀分布、指数分布、正态分布等)计算概率;

(11)求随机变量函数的分布(12)确定二维随机变量的分布;

(13)利用二维均匀分布和正态分布计算概率;

(14)求二维随机变量的边缘分布、条件分布;

(15)判断随机变量的独立性和计算概率;

(16)求两个独立随机变量函数的分布;

(17)利用随机变量的数学期望、方差的定义、性质、公式,或利用常见随机变量的数学期望、方差求随机变量的数学期望、方差;

(18)求随机变量函数的数学期望;

(19)求两个随机变量的协方差、相关系数并判断相关性;

(20)求随机变量的矩和协方差矩阵;

(21)利用切比雪夫不等式推证概率不等式;

(22)利用中心极限定理进行概率的近似计算;

(23)利用t分布、χ2分布、F分布的定义、性质推证统计量的分布、性质;

(24)推证某些统计量(特别是正态总体统计量)的分布;

(25)计算统计量的概率;

(26)求总体分布中未知参数的矩估计量和极大似然估计量;

(27)判断估计量的无偏性、有效性和一致性;

(28)求单个或两个正态总体参数的置信区间;

(29)对单个或两个正态总体参数假设进行显著性检验;

(30)利用χ2检验法对总体分布假设进行检验。

这一部分主要考查概率论与数理统计的基本概念、基本性质和基本理论,考查基本方法的应用。对历年的考题进行分析,可以看出概率论与数理统计的试题,即使是填空题和选择题,只考单一知识点的试题很少,大多数试题是考查考生的理解能力和综合应用能力。要求考生能灵活地运用所学的知识,建立起正确的概率模型,综合运用极限、连续函数、导数、极值、积分、广义积分以及级数等知识去解决问题。

在解答这部分考题时,考生易犯的错误有:

(1)概念不清,弄不清事件之间的关系和事件的结构;

(2)对试验分析错误,概率模型搞错;

(3)计算概率的公式运用不当;

(4)不能熟练地运用独立性去证明和计算;

(5)不能熟练掌握和运用常用的概率分布及其数字特征;

(6)不能正确应用有关的定义、公式和性质进行综合分析、运算和证明。

第二篇:考研数学复习小结(概率论与数理统计初步、线性代数)

考研数学复习小结(概率论与数理统计初步、线性代数)

(2002年07月01日15:48:19 海文学校 阅读:)

浏览器不支持嵌入式框架,或被配置为不显示嵌入式框架。

概率论与数理统计初步主要考查考生对研究随机现象规律性的基本概念、基本理论和基本方法的理解,以及运用概率统计方法分析和解决实际问题的能力。

随机事件和概率考查的主要内容有:

(1)事件之间的关系与运算,以及利用它们进行概率计算;

(2)概率的定义及性质,利用概率的性质计算一些事件的概率;

(3)古典概型与几何概型;

(4)利用加法公式、条件概率公式、乘法公式、全概率公式和贝叶斯公式计算概率;

(5)事件独立性的概念,利用独立性计算事件的概率;

(6)独立重复试验,伯努利概型及有关事件概率的计算。

要求考生理解基本概念,会分析事件的结构,正确运用公式,掌握一些技巧,熟练地计算概率。

随机变量及概率分布考查的主要内容有:

(1)利用分布函数、概率分布或概率密度的定义和性质进行计算;

(2)掌握一些重要的随机变量的分布及性质,主要的有:(0-1)分布、二项分布、泊松分布、几何分布、超几何分布、均匀分布、指数分布和正态分布,会进行有关事件概率的计算;

(3)会求随机变量的函数的分布。

(4)求两个随机变量的简单函数的分布,特别是两个独立随机变量的和的分布。

要求考生熟练掌握有关分布函数、边缘分布和条件分布的计算,掌握有关判断独立性的方法并进行有关的计算,会求两个随机变量函数的分布。

随机变量的数字特征考查的主要内容有:

(1)数学期望、方差的定义、性质和计算;

(2)常用随机变量的数学期望和方差;

(3)计算一些随机变量函数的数学期望和方差;

(4)协方差、相关系数和矩的定义、性质和计算;

要求考生熟练掌握数学期望、方差的定义、性质和计算,掌握由给出的试验确定随机变量的分布,再计算有关的数字的特征的方法,会计算协方差、相关系数和矩,掌握判断两个随机变量不相关的方法。

大数定律和中心限定理考查的主要内容有:

(1)切比雪夫不等式;

(2)大数定律;

(3)中心极限定理。

要求考生会用切比雪夫不等式证明有关不等式,会利用中心极限理进行有关事件概率的近似计算。

数理统计的基本概念考查的主要内容有:(1)样本均值、样本方差和样本矩的概念、性质及计算;

(2)χ2分布、t分布和F分布的定义、性质及分位数;

(3)推导某些统计量的(特别是正态总体的某些统计量)的分布及计算有关的概率。

要求考生熟练掌握样本均值、样本方差的性质和计算,会根据χ2分布、t分布和 F分布的定义和性质推导有关正态总体某些统计的计量的分布。

参数估计考查的主要内容有:

(1)求参数的矩估计、极大似然估计;

(2)判断估计量的无偏性、有效性、一致性;

(3)求正态总体参数的置信区间。

要求考生熟练地求得参数的矩估计、极大似然估计并判断无偏性,会求正态总体参数的置信区间。

假设检验考查的显著的主要内容有:

(1)正态总体参数的显著性检验;

(2)总体分布假设的χ2检验。

要求考生会进行正态总体参数的显著性检验和总体分布假设的χ2检验。

常有的题型有:填空题、选择题、计算题和证明题,试题的主要类型有:

(1)确定事件间的关系,进行事件的运算;

(2)利用事件的关系进行概率计算;

(3)利用概率的性质证明概率等式或计算概率;

(4)有关古典概型、几何概型的概率计算;

(5)利用加法公式、条件概率公式、乘法公式、全概率公式和贝叶斯公式计算概率;

(6)有关事件独立性的证明和计算概率;

(7)有关独重复试验及伯努利概率型的计算;

(8)利用随机变量的分布函数、概率分布和概率密度的定义、性质确定其中的未知常数或计算概率;

(9)由给定的试验求随机变量的分布;

(10)利用常见的概率分布(例如(0-1)分布、二项分布、泊松分布、几何分布、均匀分布、指数分布、正态分布等)计算概率;

(11)求随机变量函数的分布

(12)确定二维随机变量的分布;

(13)利用二维均匀分布和正态分布计算概率;

(14)求二维随机变量的边缘分布、条件分布;

(15)判断随机变量的独立性和计算概率;

(16)求两个独立随机变量函数的分布;

(17)利用随机变量的数学期望、方差的定义、性质、公式,或利用常见随机变量的数学期望、方差求随机变量的数学期望、方差;

(18)求随机变量函数的数学期望;

(19)求两个随机变量的协方差、相关系数并判断相关性;

(20)求随机变量的矩和协方差矩阵;

(21)利用切比雪夫不等式推证概率不等式;

(22)利用中心极限定理进行概率的近似计算;

(23)利用t分布、χ2分布、F分布的定义、性质推证统计量的分布、性质;

(24)推证某些统计量(特别是正态总体统计量)的分布;

(25)计算统计量的概率;(26)求总体分布中未知参数的矩估计量和极大似然估计量;

(27)判断估计量的无偏性、有效性和一致性;

(28)求单个或两个正态总体参数的置信区间;

(29)对单个或两个正态总体参数假设进行显著性检验;

(30)利用χ2检验法对总体分布假设进行检验。

这一部分主要考查概率论与数理统计的基本概念、基本性质和基本理论,考查基本方法的应用。对历年的考题进行分析,可以看出概率论与数理统计的试题,即使是填空题和选择题,只考单一知识点的试题很少,大多数试题是考查考生的理解能力和综合应用能力。要求考生能灵活地运用所学的知识,建立起正确的概率模型,综合运用极限、连续函数、导数、极值、积分、广义积分以及级数等知识去解决问题。

在解答这部分考题时,考生易犯的错误有:

(1)概念不清,弄不清事件之间的关系和事件的结构;

(2)对试验分析错误,概率模型搞错;

(3)计算概率的公式运用不当;

(4)不能熟练地运用独立性去证明和计算;

(5)不能熟练掌握和运用常用的概率分布及其数字特征;

(6)不能正确应用有关的定义、公式和性质进行综合分析、运算和证明。

综合历年考生的答题情况,得知概率论与数理统计试题的得分率在0.3左右,区分度一般在0.40以上。这表明试题既有一定的难度,又有较高的区分度。

概念多、定理多、符号多、运算规律多、内容相互纵横交错,知识前后紧密联系是线性代数课程的特点,故考生应充分理解概念,掌握定理的条件、结论、应用,熟悉符号意义,掌握各种运算规律、计算方法,并及时进行总结,抓联系,使学知识能融会贯通,举一反三,根据考试大纲的要求,这里再具体指出如下:

行列式的重点是计算,利用性质熟练准确的计算出行列式的值。

矩阵中除可逆阵、伴随阵、分块阵、初等阵等重要概念外,主要也是运算,其运算分两个层次,一是矩阵的符号运算,二是具体矩阵的数值运算。例如在解矩阵方程中,首先进行矩阵的符号运算,将矩阵方程化简,然后再代入数值,算出具体的结果,矩阵的求逆(包括简单的分块阵)(或抽象的,或具体的,或用定义,或是用公式A-1= 1 A*,或 A用初等行变换),A和A*的关系,矩阵乘积的行列式,方阵的幂等也是常考的内容之一。

关于向量,证明(或判别)向量组的线性相关(无关),线性表出等问题的关键在于深刻理解线性相关(无关)的概念及几个相关定理的掌握,并要注意推证过程中逻辑的正确性及反证法的使用。

向量组的极大无关组,等价向量组,向量组及矩阵的秩的概念,以及它们相互关系也是重点内容之一。用初等行变换是求向量组的极大无关组及向量组和矩阵秩的有效方法。

在Rn中,基、坐标、基变换公式,坐标变换公式,过渡矩阵,线性无关向量组的标准正交化公式,应该概念清楚,计算熟练,当然在计算中列出关系式后,应先化简,后代入具体的数值进行计算。

行列式、矩阵、向量、方程组是线性代数的基本内容,它们不是孤立隔裂的,而是相互渗透,紧密联系的,例如∣A∣≠0〈===〉A是可逆阵〈= ==〉r(A)=n(满秩阵)〈===〉A的列(行)向量组线性无关〈===〉AX=0唯一零解〈===〉AX=b对任何b均有(唯一)解〈===〉A=P1 P2 …PN,其中PI(I=1,2,…,N)是初等阵〈===〉r(AB)=r(B)<===>A初等行变换

I〈===〉A的列(行)向量组是Rn的一个基〈===〉A可以是某两个基之间的过渡矩阵等等。这种相互之间的联系综合命题创造了条件,故对考生而言,应该认真总结,开拓思路,善于分析,富于联想使得对综合的,有较多弯道的试题也能顺利地到达彼岸。

关于特征值、特征向量。一是要会求特征值、特征向量,对具体给定的数值矩阵,一般用特征方程∣λE-A∣=0 及(λE-A)ξ=0即可,抽象的由给定矩阵的特征值求其相关矩阵的特征值(的取值范围),可用定义Aξ=λξ,同时还应注意特征值和特征向量的性质及其应用,二是有关相似矩阵和相似对角化的问题,一般矩阵相似对角化的条件。实对称矩阵的相似对角化及正交变换相似于对角阵,反过来,可由A 的特征值,特征向量来确不定期A的参数或确定A,如果A是实对称阵,利用不同特征值对应的特征向量相互正交,有时还可以由已知λ1的特征向量确定出λ2(λ2≠λ1)对应的特征向量,从而确定出A。三是相似对角化以后的应用,在线性代数中至少可用来计算行列式及An.将二次型表示成矩阵形式,用矩阵的方法研究二次型的问题主要有两个:一是化二次型为标准形,这主要是正交变换法(这和实对称阵正交相似对角阵是一个问题的两种提法),在没有其他要求的情况下,用配方法得到标准形可能更方便些;二是二次型的正定性问题,对具体的数值二次型,一般可用顺序主子式是否全部大于零来判别,而抽象的由给定矩阵的正定性,证明相关矩阵的正定性时,可利用标准形,规范形,特征值等到证明,这时应熟悉二次型正定有关的充分条件和必要条件。

第三篇:2018考研数学概率论与数理统计满分心得

凯程考研辅导班,中国最权威的考研辅导机构

2018考研数学概率论与数理统计满分心

考研数学中,除数学二外,数一和数三都考查概率统计的知识,而且分值占比很高。根这部分内容考题一般难度不大,只要认真复习,拿满分都是没有问题的。下面,就带着大家看看概率论和数理统计是如何复习拿满分的。

基本公式要掌握

首先必须会计算古典型概率,这个用高中数学的知识就可解决,如果在解古典概率方面有些薄弱,就应该系统地把高中数学中的概率知识复习一遍了,而且要将每类型的概率求解问题都做会了,虽然不一定会考到,但也要预防万一,而且为后面的复习做准备。

随机事件和概率是概率统计的

凯程考研辅导班,中国最权威的考研辅导机构

习资料把基本概念、公式、定理掌握好了,例题、习题多做些,历年真题里的相关题目认真做几遍,这样下来概率统计部分掌握的也就差不多了,相信各位考生一定会考出个好成绩。

页 共 2 页

第四篇:2014考研数学复习之“概率论与数理统计”

2014考研数学复习之“概率论与数理统计”

在考研数学中,除数二外,数一和数三都考查概率统计的知识,在整张试卷中占22%的分值,和线性代数所占比重是一样的,考生要想取得高分,学好概率统计也是必要的。纵观考研数学各科,概率这门学科与别的学科是不太一样的。概率要求对基本概念、基本性质的理解比较强,对计算的技巧要求反而较少。

概率论与数理统计可分为概率和数理统计两部分。在考研中,概率的重点考查对象在于随机变量及其分布和随机变量的数字特征。从历年试题看,概率论与数理统计这部分内容考查考生对基本概念、原理的深入理解以及分析解决问题的能力要求较高,需要考生做到能够灵活地运用所学的知识,建立起正确的概率模型,综合运用高等数学中的极限、连续、导数、极值、积分、广义积分以及级数等知识去解决概率问题。

建议大家参考2013年考研数学大纲规定(2014考研新大纲还没有发布),将概率论与数理统计的内容细细梳理一遍,将基本概念、基本理论和基本方法结合一定的基本题练习彻底吃透,这样才能在题目形式千变万化的情况下把握“万变不离其宗”的本质,做到灵活应变。同时,在学习中要明确重点,对于不太重要的内容,如古典概型与几何概型,只要掌握一些简单的概率计算即可,不需要投入太多精力。

数理统计这部分考查的重点则在于与抽样分布相关的统计量的分布及其数字特征。建议考生首先做到将基本概念都了解清楚。χ2分布、t分布和F分布的概念及性质要熟悉,考题中常会有涉及。参数估计的矩估计法和最大似 然估计法,验证估计量的无偏性是要重点掌握的。假设检验考查到的不多,但只要是考纲中规定的都不应忽视。显著性检验的基本思想、假设检验的基本步骤、假设检验可能产生的两类错误以及单个及两个正态总体的均值和方差的假设检验是考点。

总之,考研数学概率论与数理统计复习,没有任何技巧而言,只要把基本概念、基本方法掌握住的话,肯定会把这部分题答好。温馨提示:考研复习持续时间长,所以建议考生持之以恒、坚持到底尤其重要。

第五篇:2018考研数学概率论与数理统计各章节重点总结

2018考研数学概率论与数理统计各章节重点总结

来源:智阅网

概率论与数理统计这门课程从试卷本身的难度的话,在三门课程中应该算最低的,但是从每年得分的角度来说,这门课程是三门课中得分率最低的。

这主要是由两方面造成的。一方面是时间不充裕,概率解答题位于试卷的最后,学生即使会,也来不及解答;另一方面是概率本身学科的特点,导致很多学生觉得概率非常难。

一、概率论与数理统计学科的特点

(1)研究对象是随机现象

高数是研究确定的现象,而概率研究的是不确定的,是随机现象。对于不确定的,大家感觉比较头疼。

(2)题型比较固定,解法比较单一,计算技巧要求低一些

比如概率的解答题主要考查二维离散型随机变量、二维连续型随机变量、随机变量函数的分布和参数的矩估计、最大似然估计。考生只要掌握了相应的解题方法,计算准确,就可以拿到满分.(3)高数和概率相结合

求随机变量的分布和数字特征运用到高数的理论与方法,这也是考研所要求考生所具备的解决问题的综合能力。

在复习概率与数理统计的过程中,把握住每章节的考试重点,概率一定能取得好成绩。

二、通过各章节来具体分析考试重点

第一章 随机事件与概率

本章需要掌握概率统计的基本概念,公式。其核心内容是概率的基本计算,以及五大公式的熟练应用,加法公式、乘法公式、条件概率公式、全概率公式以及贝叶斯公式。

第二章 随机变量及其分布

本章重点掌握分布函数的性质;离散型随机变量的分布律与分布函数及连续型随机变量的密度函数与分布函数;常见离散型及连续型随机变量的分布;一维随机变量函数的分布。

第三章 多维随机变量的分布

在涉及二维离散型随机变量的题中,往往用到“先求取值、在求概率”的做点步骤。二维连续型随机变量的相关计算,比如边缘分布、条件分布是考试的重点和难点,考生在复习时要总结出求解边缘分布、条件分布的解题步骤。掌握用随机变量的独立性的判断的充要条件。最后是要会计算二维随机变量简单函数的分布,包括两个离散变量的函数、两个连续变量的函数、一个离散和一个连续变量的函数、以及特殊函数的分布。

第四章 随机变量的数字特征

本章的复习,首先要记住常见分布的数字特征,考试中一定会间接地用到这些结论。另外,本章可以与数理统计的考点结合,综合后出大题,应该引起考生足够的重视。

第五章 大数定律和中心极限定理

本章考查的重点是一个切比雪夫不等式,以及三个大数定律,两个中心极限定理的条件和结论,考试需要记住。

第六章 数理统计的基本概念

重点在于“三大分布、八个定理”以及计算统计量的数字特征。

第七章 参数估计

本章的重点是矩估计和最大似然估计,经常以解答题的形式进行考查。对于数一来说,有时还会要求验证估计量的无偏性,这是和数字特征相结合。区间估计和假设检验只有数一的同学要求,考题中较少涉及到。

上面讲解的概率论与数理统计各章节重点,是考研数学的高频考点,大家要认真学习这部分的内容,好好学习,认真对待,此外建议大家要将学到的知识应用与实践中,多练习巩固,这样才能真正的掌握知识。《2018考研数学15年真题解析与方法指导(数学一)》这本书对大家现阶段的复习帮助很大,要认真利用哦。

下载海文名师总结考研数学概率论与数理统计初步题型五篇word格式文档
下载海文名师总结考研数学概率论与数理统计初步题型五篇.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    概率论与数理统计考研复习题5

    概率论与数理统计考研复习题(5) 大数定理与中心极限定理 1. 设随机变量X的数学期望E(X)=, 方差D(X)=,则由切比雪夫不等式PX3_____________. 2.设X1,X2,,Xn是n个相互独立同分布的随机......

    2014福州大学考研数学,线性代数和概率论与数理统计五篇

    思远福大考研网 2014福州大学考研数学,线性代数和概率论与数理统计 发现时间已经越来越靠近2014考研了,接下来的时间短暂而已富有使命感,能否利用好这考研冲刺阶段,才是致胜的关......

    考研数学阶段复习小结之概率论与数理统计

    概率论与数理统计初步主要考查考生对研究随机现象规律性的基本概念、基本理论和基本方法的理解,以及运用概率统计方法分析和解决实际问题的能力。万学海文数学教研室总结各个......

    概率论与数理统计课程讨论总结.

    概率论与数理统计课程讨论总结概率论与数理统计是公认的一门“老师难教,学生难学”的大学数学课程,如何能让各个专业的学生轻松、愉快的学好这们课程摆在了每个老师的面前,......

    概率论与数理统计案例教学与数学实验初探(定稿)

    概率论与数理统计案例教学与数学实验初探 【摘 要】传统概率论与数理统计教学侧重于抽象的理论介绍,对数学知识的实际应用介绍不多,这导致学生学习停留在纸上谈兵,不能学以致用......

    南京师范大学概率论与数理统计冲刺考研复习谈

    文汇南师大考研网 南京师范大学概率论与数理统计冲刺考研复习谈 考研后,就一直想着将自己曾积累的东西整理后发给大家,因为走过这段路才懂得其中的艰辛与汗水。我也是靠学长的......

    概率论与数理统计课程的教学总结

    关于“概率论与数理统计”课程的教学总结 概率论与数理统计无疑是其中最为活跃的分支之一,它既有严密的数学基础,又与各学科联系紧密,在自然科学、社会科学、管理科学、技术科......

    过来人浅谈2013年厦大概率论与数理统计考研复习经验

    过来人浅谈2013年厦大概率论与数理统计考研复习经验经历了一年的学习,虽然不是高分通过,但总算是实现了自己的梦想,对于一个跨专业考数学专业的人来说,其中的艰辛可想而知。先说......