第一篇:数与代数的教学策略
数与代数的教学策略
数与代数的内容在小学数学课程中占有比较重要地位,我们在这方面积累了丰富的教学经验,这些教学经验是零散的个别人的教学心得,没有构成体系,也没 有变成每个教师共同的教学资源。另一方面,对“数与代数”教学内容和教学方法的研究也还不够系统,分类不够合理。为此,我们将把这些教学经验系统化,对有的教学内容中,缺少的适用的教学方法进行创新,对已有的教学方法进行再验证,从而构建出较为系统的数与代数的教学策略。一学期来围绕课题计划在实际教学中 开展了以下几方面的内容的研究。
一、概念教学的研究。概念教学是相当重要的,但是我们常常看到学生在学习和运用概念的过程中,经常会出现这样或那样的错误,对概念的理解似是而非,没有抓住本质等。这是由于小学生掌握数学概念的特点所决定的。小学生认识事物带有很大的具体形象性,善于进行形象思维,而不善于抽象思维;常常被一些非本质的表面现象所吸引;擅长于形象记忆,特别是低年级的学生,他们爱用机械背诵的方法来记忆,因此记忆的概念不能灵活运用。
针对小学生的年龄特点和对概念掌握的物点来看,在概念教学中采用一定的教学策略。
1、联系实际,引入概念。
概念是比较抽象的理性知识,因此在引入新的数学概念时要根据学生的实际,考虑其接受能力,从具体到抽象,从简单到复杂地引入概念。
从学生的生活经验引入概念。在生活中有许多地方用到了数学,通过实物、教具、学具让学生观察、演示或操作来阐明概念,可以收到良好的效果。如让学生只用一把直尺画一个圆,这对学生来说是一个考验。用圆规学生都能画圆,用一根线固定于一点也能画一个圆,那么为什么要求学生用一把直尺来画圆呢?这就是渗透圆的定义,虽然在小学阶段很多数学概念是描述性的,但也要尽可能的让学生的后继学习更有利于知识建构。通过这样的操作,会在学生头脑中留下这样的表象:圆就是所有到定点距离等于定长的点的轨迹。哪怕学生无法用语言来表述,但是头脑中有了这样的表象对后继知识的学习是相当有利的。
2、从创设情景中引入概念。
在引入概念之前,老师要积极创设一种情境,使学生感到问题是真实的、具体的、有趣的、有意义的、富有挑战性的,以激起学生强烈的求知欲,唤起学生的积极思维。
3、抓住本质,讲清概念。
要使学生理解和掌握概念,关键在于揭示概念的本质特征,也就是反映事物的根本属性及其主要表现,是该事物区别于其他事物或该概念区别于其他概念的根 本之处。有些老师常埋怨学生知识学得死,不会灵活运用,究其原因就是学生没有很好地把握概念的本质。如有些学生对平行四边形的认识必须是端端正正,成水平型的,当变换位置后就和他们理解平行四边形的概念相抵触了,分析造成这种情况的原因和教师提供事例的方式有关,呈现给学生的都是这样固定不变的平行四边形,就使学生不易区别平行四边形的本质属性与非本质属性,而把非本质的属性也纳入到概念的内涵中去。
因此教师要在讲清概念时要十分准确地讲清概念的含义。有些性质、法则和公式中包含着的某些基础概念,办中一个词,但它所表示的含义也是极其明确的,在教学中要特别注意
把这些含义准确而清晰地表达出来。抓住关键讲解概念,就能使学生明确新概念的本质属性及它的意义。如在教学分数意义时就要强调“平均分”。
4、分析比较,区别异同。
有些概念表面看起来有类似之处,实际上似是而非,能过对比本质属性,使学生弄清它们之间的联系和区别,可以加深对概念的理解。如质数与质因数、互质数、数位与位数、整除与除尽等概念十分相似和相近,教学时要通过各种情况的反复比较,指明它们之间的联系与区别,帮助学生掌握概念实质。又如在教学小数的性质——“在小数的末尾添上零或者去掉零,小数的大小不变,”这里“小数的末尾”就不能说成是“小数点后面”,也不能说成是“小数部分”。“末尾”这个概念是“最后”的意思。
在运用对比法教学时,采有变式也是一种很好的方法,能过变式教学可以使学生排除概念中非本质特征,学生能抓住本质特征,才能增强运用概念的灵活性。如在出示几何图形时位置要变化,不要让其“经典式出场”。
当然在使用比较的方法进行教学时,必须在这个概念已经建立得比较清楚、牢固的基础上,再引入其他相关概念进行比较。否则,不仅不会加深学生对概念的理解,反而容易产生混淆现象。
二、小学计算教学的教学策略
提高计算教学练习过程中的趣味性
练习课——以练习为主要内容来巩固知识、培养技能的课。在计算教学中,练习课起着熟练计算,形成技能的重要作用。也因为如此,我们的计算练习课容易陷入题海大战的误区,一节课往往是教师廖廖数语,学生埋头苦算,到最后可能是学生形成了一定的速度与技能,但他们对这些计算题的厌恶也从此生根发芽,学习后进生更是畏之如虎。所以教师不能简单、粗糙地处理一堂计算练习题。能挖掘计算的趣味性,培养学生对计算的信心与兴趣的计算练习题,才是一堂好的计算练习课。
1、题形多样
简而言之就是练习形式要多种多样,不要一味口算、竖式计算、递等式等老面孔。适当加入形式多变的练习形式,让学生换换口味,保持新鲜感。比如常用的计算接龙形式稍作变化:如组内轮流接,比一比哪一组最快;或者加一个故事情节:如抢救大熊猫,看谁最能干等等,就可以增加许多趣味性,激发学生的兴趣。
2、开展竞赛
学生喜欢竞赛这种形式是每个教师的共识,练习课上是这种练习形式大显身手的好机会。我就在计算教学中开展过“24快算”、“正负大比拼”等计算竞赛,学生那种热情真让我体会到了什么叫爱学习,我想厌学是否都是我们在不经意间采用不适当的教学方法所种下的后果?
竞赛不仅可以在学生之间开展,更可以在师生之间开展,它不仅能丰富教学,联络师生感情,而且能树立教师的良好形象。我爱用这个方法向学生介绍一些巧算方法。比如学习百以内数的退位减法后,我就安排了一次师生小竞赛:比一比类似81-18,63-36这类题谁算得
快。学生兴致可高了,屡败屡战,屡战屡败,最后 说:“你是大人,一定有窍门,不公平!”我就顺势问:“我要说窍门了,你要不要听?”
3.猜数游戏
以上两种方法在数学计算课上很常用,关键在于教师不要懒得用,要多用、善用,以增强数学计算课的趣味性,调动学生学习计算的积极性。它们的开展是较容易的。那么猜数游戏就更需要教师的努力与智慧了。
我常在练习课上和学生玩猜数游戏,如:你任写一个数,接着把它实施这样的一组变化()×5()+6()×4()+9()×5(),然后告诉我答案,我就能猜出你写的那个数。学生不信,就不停地重复写数字算结果,让老师猜,他们的兴趣可高了。到他们相信老师有这本事后,我又不失时机地挑一个学生面授机宜,不一会儿他们又积极地考起了这位现学现卖的同学。不知不觉中,他们对乘数是一位数的乘法就很熟练了。对学生来说,这类题很有趣,很乐意练习,对教师常常很佩服;其实对教师来说,稍稍利用一点简便计算与代数的知识,编制这样的习题并不难,那又何乐而不为呢?而且这类猜数游戏不仅可以 在整数计算中运用,学了小数、分数也可以编制运用,适用性很广。还可以给游戏加一些实际运用如猜年龄,猜身高等等以增加吸引力。
4、趣味计算
数学计算中有些有趣的现象,有些至今不能解释其中的原因。在计算练习课上也可以通过适当的组织形式向学生介绍。使学生不仅获得练习计算的机会,形成熟练的计算技能,更培养了他们对计算的好奇心与热爱。例如在学生学会了多位数的减法后,我向学生介绍了卡布列克常数:把1、2、3,组成最大的三位数与最小的三位数,再相减;将得到的答案中的三个数字重复实施这个变化,你将会有重大发现。先是学生组内合作寻找起了结果—495。是巧合吗?再自己换一组数字独立验证一下。四位数是否也有这样的神奇现象呢?五位数呢?学生在惊讶中急不可待地计算,希望寻找答案,效果远胜让他算上二三十道减法计算题,而他却还不知疲倦地想再试试。
这样的趣味计算在许多课外书、杂志上有介绍,教师要做个有心人,注意收集运用。在这一段时间的小课题研究中,我们组的老师群策群力,每天都把自己的心得谈一谈,大家取长补短,共同进步,积累了数篇教学反思,教学叙事,有的老师也试图整理自己的经验论文。在我们不断的努力下,小课题研究一定会取得圆满的成功。
第二篇:《数与代数》心得
通过学习《数感的理解与实例分析》,我在此来
简单谈谈自己的一些学习心得
我认为,数感是学生的学习内容,也是学生应该具备的一种基本数学素养。学生不仅要认识数,学会计算,更重要的是要感受数和运算的实际意义,体会数用来表示和交流的作用,自然地、有意识地用数学的观点和方法来解决现实问题。因此,帮助学生建立、发展数感是数学教育的重要任务。
什么是数感?《标准》对数感的表述是“数感主要表现在:理解数的意义;能用多种方法来表示数;能在具体的情境中把握数的相对大小关系;能用数来表达和交流信息;能为解决问题而选择适当的算法;能估计运算的结果,并对结果的合理性做出解释。”标准中对数感的表示是一种外延的表述,即描述了数感的若干个表现,而没有用内涵概念界定的方式,从而避免了相关概念的混淆。在教学中又应该怎样培养学生的数感呢?我将从以下三个方面进行简单地论述:
一、在联系生活中获取数感
数学教学要从孩子的生活经验和已有的知识背景出发,向他们提供充分的从事教学活动和交流的机会,让孩子将数学与生活、学习、活动有机结合起来,让学生感受到数学来于生活,用于生活,激发学生自主学习数学的兴趣和欲望。所以在教学中要注重生活实际,重视学生的直接经验,把教学归于实践,归于生活。例如,在教学“0”的认识时,有些同学不理解4-0=□,我让学生结合生活中的例子来说明为什么4-0=4?学生已有的生活经验被充分调动了起来,纷纷举手:生1:我的想法是:比如说有4个苹果,吃了0个,也就是一个都没吃,所以还剩4个,4-0=4。生2:今天妈妈给了我4元钱,我现在一点也没用,还有4元钱,列式4-0=4……这些例子都是生活中身边的事,学生很容易理解和接受,明确了不管4个苹果,4元钱还是其他物品,只要减去0,就都是从4个东西里去掉0个,也就是一个都没去掉,所以4减0还是等于4。从而在这些生活实例中体会了数的含义,在不知不觉中获得了数感的启蒙。
二、在自主探究中体验数感
心理学研究表明,儿童有一种与生俱来的、以自我为中心的探索性学习方式。数感不是通过传授而能得到培养的,重要的是让学生自己去感知、发现,主动去探索。数学教学中,教师就要能够将静态的结论性的数学知识转化为动态的探索性的数学活动,帮助学生在自主探索的过程中体验数的意义和作用,建立良好的数感。因此,我们在数学教学中,教师要注重创设情境,设置教学内容和学生内在需求的“不平衡”,激发学生主动探索,给学生各种形式的探索机会。例如在判断一个数是不是3的倍数时,老师和学生进行了一次富有挑战性的游戏活动。我让学生报数,老师迅速作出正确判断。通过活动打动了学生的心灵,情感自然而然地活起来。而这种情感又是一种较高层次的心理状态,心中就充满了“我能行”的自豪感。学生在这种积极的情感中对数学产生亲近感,感受到学习数学的乐趣,进而产生了自主探索新知的强烈欲望,既能化解数学学习的难度,又能在成功的体验中获得自信,感受自尊,体验数感。
三、在合作学习中交流数感
小组合作学习有利于学生人人参与学习全过程,它不仅能发掘个人内在的潜能,还能培养集体合作精神,人人可以尝试成功的喜悦。同学之间的语言最容易理解,数感也能得到进一步加强。例如,在实际测量中,教师带领学生到操场上测量长方形花坛的长和宽,学生用不同的方法测出了花坛的长和宽。在课堂交流的时候,展示了多种多样的测量方法。有的学生直接用卷尺量;有的学生先测出一块砖的长度,再数长和宽各包含多少块砖,用每块砖的长度乘砖的块数得到长和宽的长度;有的学生先测出1米长的绳子,再1米1米的量;还有的学生使用步测的方法。在交流中,大家将自己的想法与别人进行交流,同时体会别人是怎样想的、怎样做的,从不同角度感知一定的长度,发展了距离感,也增进了数感。
四、在应用中发展数感。
人对数的感觉是没有一定的对错的,只有感觉的高低之别。具有良好数感的人更能主动地、自觉地理解数和运用数。当他们再重新回到现实生活中,解决现实生活中出现的数学问题,或是可能与数学有关的其它问题时,能自然地、有意识地与数学联系起来,或者会试图进一步用数学的观点和方法来处理解决。要达到这样的境界,需要一个长期的培养过程。建立和培养学生的数感就是要让学生更多地接触和理解现实问题,有意识地将现实问题与数量建立起联系。教学中,教师不能只局限于课内、教室内,可以让学生走出教室,适当开展数学课外活动,利用课外时间收集、运用所学知识;同时,在教学中要多让学生解决现实生活中的问题,这种应用意识就是数感进一步发展的必要体现。
综上所述,数感的形成是一个渐进的、沉淀的、积累的、潜移默化的过程,需要在较长时间的充分感知、体验和感受中逐步建立起来。教师应在数学教学活动中,深入钻研教材,密切联系生活实际,鼓励学生自主探究,合作交流,拓展知识的应用,把培养数感的任务落实到具体的每个教学环节中。让学生在对数的充分感知、感应和感受中,逐步形成解决问题的策略,不断升华数感,提升数学素养。
第三篇:《数与代数》学习心得
学习《数与代数》的几点体会
楼区东升小学
刘霞
数学新课程标准明确指出,义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生,实行“人人学有价值的数学”。而作为数学学科三大部分(数与代数、几何和统计)之一的数与代数部分,它是中小学数学课程中的经典内容,它在义务教育的阶段的数学课程中占有相当重要的地位,有着重要的教育价值。在新的课程标准下,这一学习领域的目标、内容、结构以及教学活动方面都发生了很大的变化。这里结合本人的实际教学谈谈几点体会。
(一)《标准》在总体目标中提出要使学生“经历运用数学符号和图形描述现实世界的过程,建立数感和符号感,发展抽象思维。”
可见,理解数感、符号感让学生在数学学习的过程中建立数感和符号感是非常重要的,是进入数学学习的基础。在义务教育阶段学生要学习整数、小数、分数、有理数、实数等数的概念,这些概念本身是抽象的,但通过数学的学习,使学生能将这些数的概念与它们所表示的实际意义建立起联系,例如,一百万有多大,一把黄豆大约有多少粒等等。在新课程标准中,重视对数的意义的理解,培养学生的数感和符号感,淡化过分“形式化”和记忆的要求,使学生在学习数学的过程中自主活动,不仅提高了自身的数学素养,还有助于他们利用数学头脑来理解和解释现实问题。数学与现实生活是有着密切联系的。因此,有价值的数学更多地体现在学生用数学的眼光和思维去观察、认识日常生活现象,去解决生活中的问题,获得或提高适应生活的能力。过去教师一直非常重视学生笔算的正确率和熟练度,学生缺乏估算意识与估算方法。但在日常生活中恰恰是估算较笔算用得更为广泛。我们常常需要估计上学、上班所用的时间,估计完成某一任务(烧饭、买菜、做作业等)所需的时间,估计写一篇文章所需的纸量,放置冰箱所需地方的大小,估计一次旅游所需的费用等等。因此,加强估算,培养学生估算意识,发展学生的估算能力,具有重要的价值。新课程标准也反复强调要加强估算,淡化笔算。
(二)使学生在情境感悟和实践活动中理解数与代数的意义。让学生理解数的意义、建立正确的数的概念通常有两条途径,首先从数的组成去建构;其次再联系实际来体会,把抽象的数的概念与具体的图形结合在一起,从中挖掘和利用概念中的一些直观的成分。数是单纯的抽象符号,而生活实际中的表达表意的数会让学生更好的接受。比如:小棒、方块或计数器上的算珠等等。因此,为了让学生更好的理解数的意义,我们可以利用现实中的有效素材和实践活动来提高学生学习的效率。如我在教一年级学生理解数的意义时,并没有只是简单让学生学习书本上数字,而是让学生在学习的过程中,联系周围的事物数数,让学生描述学校里有多少棵椰子树,多少栋楼、教室里有多少扇门窗、多少张桌椅、多少个学生等等,使得学生能深刻的体会到数具有表示物体数量的作用。
(三)“数与代数”有利于发展学生思维、能力,培养数学情感的数学。在提倡“人人学有价值的数学”的今天,将这一理念落实到中学阶段,就要求我们教师不仅仅要关注学生知识技能掌握如何,更要关注到学生的情感、态度、价值观和一般能力的培养。学生的思维能力、思想方法、习惯、情感和态度对于学生今后去创造生活有着不可估量的价值。因此,“数与代数”作为基础部分,它的主要内容是研究现实世界数量关系和运动、变化规律中的数学模型,它可以帮助人们从数量关系的角度更准确、清晰的认识、描述和把握现实世界和解决现实世界的问题,能有效发展学生思维、培养数学情感的,就是有价值的数学。这主要体现在解题策略多样化上。对一个问题能从多角度、多层次去思考,对一个问题能想出多种不同的解法,那么就不但可以发展自己的思维能力,还会对这一问题的认识更全面、更深刻,有助于学生创新精神的培养。
“数与代数”这一基础部分正是搭建这种思维的桥梁。它不仅能在数的运算、公式的推导、方程的求解、函数的研究等活动中通过对现实情境中数量关系及其变化规律的探索促进学生探究和发现,培养初步的创新精神和实践能力,还能利用正数与负数、精确与近似、方程与求解、已知与未知等概念中蕴涵着对立统一的思想,变量和函数概念中蕴涵着的运动、变化的思想,促进学生用数学、科学的观点认识现实世界!为了能够着实有效的提高教学质量,和教学的有效性,我们不仅要让学生掌握数学课本中的知识和技能还要让学生在掌握这些知识和技能的过程中能够真正的理解和体会其方法,让学生知道教学并不是单纯的数字知识,而是和我们的生活是紧密相连的,使学生学习到有价值的数学。所以我们要注意培养学生运用数和运算来认识生活现象、分析与解决生活中简单的实际问题的能力,并更好的适应生活的能力。
第四篇:《数与代数》教案
教学内容:
教材P68-70“整理与反思”、“练习与实践”第1-9题 教学目标:
1.学生回顾整理整数与小数的相关知识,加深理解整数与小数的意义,沟通各种数之间的关系,进一步弄清相关概念间的联系与区别,构建整数、小数认识的知识网络。
2.学生通过复习,进一步了解整数、小数的相关知识,掌握数的知识之间的联系;增强用数表达和交流信息的意识和能力,进一步发展数感。
3.学生进一步体会数在日常生活中的广泛应用;感受认数的作用,产生对数的学习兴趣,提高学好数学的自觉性。
教学重点:整数(自然数)和小数的意义、组成及读写。教学难点:理解数的相关知识间的联系。教学过程:
一、揭示课题
谈话:小学阶段的数学内容我们已经全部学完了,从今天开始我们要对所学内容进行总复习。这节课我们进行整数和小数的整理与复习。(板书课题)
通过复习,进一步认识整数、小数的意义,掌握整数、小数的有关知识,提高数的应用能力。
二、回顾整理 1.讨论整理。提问:首先请同学们回忆一下,你了解整数和小数的哪些知识?请你结合小面的问题先自已思考、整理,再与同学说一说。
出示问题:
(1)你能举例说说怎样的数是整数,怎样的数是负数,怎样的数是小数吗?小数的基本性质是什么?
(2)你能说出整数和小数的计数单位吗?相邻计数单位间的进率都是几?举例说一说。
(3)你能举例说说读、写整数和小数要注意什么吗?怎样比较整数和小数的大小?怎样求一个数的近似数?
让学生围绕上面三个问题思考,并在小组里讨论、交流。2.组织交流。
(1)提问:你能举例说说怎样的数是整数,怎样的数是负数,怎样的数是小数吗?小数的基本性质是什么?
结合学生回答,相机板书。
(2)提问:你能说出整数和小数的计数单位吗?相邻计数单位间的进率都有是几?举例说一说。
根据学生回答呈现数位顺序表。
提问:整数部分计数单位排列有什么规律?每个数级上的数表示什么?小数部分的计数单位按怎样的顺序排列的? 一个数在不同数位上表示的意义有什么不同?请举个例子说一说。(3)提问:你能举例说说读、写整数和小数要注意什么吗?怎样比较整数和小数的大小?怎样求一个数的近似数?
让学生依次交流不同内容的认识,举出例子说明。交流数的读、写法。
交流数的大小比较的方法。交流求近似数的方法。
三、应用练习
1.做“练习与实践”第1题 学生独立填写。
全班交流,呈现结果。
提问:从直线上看,正数和负数有什么区别?
0右边的□里为什么要写小数?0左边的□里的数是怎样想的?
说明:正数和负数表示相反意义,在直线上都是从0开始按顺序排列,正数都大于0,负数都小于0。
2.做“练习与实践”第2题(1)指名口答。
提问:你是怎样知道不同的数里的“2”表示多少的?(2)提问:你能说出这里每个数的组成吗?
说明:一个数表示多少,可以看每个数位上各是由多少个计数单位组成的。3.做“练习与实践”第3题。
学生读题后指名回答。
4.做“练习与实践”第5题。学生独立填写在书上。
集体校对,有错的同学说说错误的原因,并订正。5.做“练习与实践”第6题。指名学生读一读。
提问:怎样读数,能很方便地读出来?
说明:读数时先分级,按数级读既方便又能读准确。6.做“练习与实践”第7题。
学生先把语文、数学课本的单价填写在书上的表格中,再算出10本、100本、1000本的总价,然后交流结果并呈现。
提问:你是怎样算的?一个数乘10、100、1000,怎样很快写出得数? 一个数除以10、100、1000,可以怎样写出得数? 7.做“练习与实践”第8题。
(1)学生各自读题,再指名读一读表中的各个数。提问:通过读表中的数,你有什么想法吗?
(2)提问:你能把四个省(自治区)的面积改写成用“万平方千米”作单位的数,把四个省(自治区)的人口数精确到万位吗?
学生独立完成后集体交流。(3)提问:请你分别按面积大小和人口多少,排列四个省(自治区)的顺序。学生独立完成后集体交流,说说是怎样比较大小的。
四、课堂总结
谈话:这节课我们复习了哪些内容?你有什么收获?还有什么问题?
二
因数与倍数整理与复习
教学内容:
教材P70 “练习与实践”第10-14题,思考题。教学目标:
1.学生通过回忆和整理,进一步明确因数和倍数的相关知识,加深认识相关概念之间的联系与区别,能求两个数的公因数和公倍数,并能运用这些知识解决相关实际问题。
2.学生在应用相关知识进行判断和推理的过程中,能说明思考过程,进一步培养归纳概括和演绎推理等思维能力,进一步增强分析问题和解决问题的能力。
3.学生进一步体会数学知识之间的内在联系,感受数学思考的严谨性和数学结论的确定性,激发学习数学的兴趣和学好数学的自信心。
教学重点:掌握倍数和因数等相关概念,以及应用概念判断、推理。教学难点:理解相关概念的联系和区别。教学过程:
一、揭示课题 1.回顾知识。
提问:上节课,我们已经复习了整数和小数的有关知识。
在整数知识里,我们还学习了因数和倍数,谁能来说说你是怎样理解因数和倍数的?一个数的因数和倍数各有什么特点?
结合学生交流,板书。2.揭示课题。
引入:这节课,我们复习因数和倍数的相关知识。
通过复习,能进一步了解关于因数和倍数的知识,理解它们之间的联系和区别,并能应用这些知识。
二、基本练习
1.知识梳理。
提高:回想一下,在学习因数和倍数时,我们还学习了哪些相关的知识? 学生回顾,交流,教师适当引导回顾。提问:2、5、3的倍数各有什么特征?什么叫奇数,什么叫偶像?什么叫质数,什么叫合数?什么叫公因数和最大公因数?什么叫公倍数和最小公倍数? 根据学生回答,板书整理。2.做“练习与实践”第10题。学生独立完成,指名板演。
集体交流,让学生说说找一个数的因数和倍数的方法。3.做“练习与实践”第11题。
出示题目,学生直接口答。
提问:怎样判断一个数是不是2的倍数?判断是3和5的倍数呢? 追问:这里哪些是偶数,哪些是奇数?说说你是怎样想的。4.做“练习与实践”第12题。
学生先独立写出质数和合数,再指名口答。追问:最小质数是几?最小的合数呢? 提问:怎样判断一个数是质数还是合数?
指出:在判断一个是质数还是合数时,要看这个数有哪些因数,根据质数和合数的含义作出正确判断。
5.完成下面各题。
(1)写出12和18的公因数,说出最大是几。(2)写出6和8的公倍数,说出最小是几。
(3)求出下面每组数的最大公因数和最小公倍数。15和3 7和9 8和12 指名学生口答第(1)(2)题,教师板书找公因数、公倍数的过程。
让学生说明怎样找两个数的公因数和最大公因数,公倍数和最小公倍数。让学生独立完成第(3)题,交流方法并板书结果。提问:每组数各是怎样找最大公因数和最小公倍数的? 6.把12分解质因数。让学生独立完成。
交流结果和方法,板书分解过程和结果。
三、综合练习
1.做“练习与实践”第13题。指名读第(1)题。
谈话:同学们可以按要求先试着写一写,有困难的同学可以用数字卡片摆一摆,再写出来。
学生尝试练习后同桌交流。
集体校对,引导学生明白可以有序思考,逐一列举。学生自由读第(2)题后独立解答。指名口答,集体评议,结合说说有公因数2的数、有公因数3或5的数各有什么特点。
2.做“练习与实践”第14题。出示题目,学生尝试练习。展示学生的不同分法:
(1)2、10、16和3、9、13、25、33、45两类。(2)2、3、13和9、10、16、25、33、45两类。„„
提问:你是按怎样的标准来分的? 3.完成思考题。
指名读题,理解题意。
提问:根据“如果每行值6棵,最后一行缺1棵”,你能知道什么?根据“如果每行值5棵或4棵,最后一行也都缺1棵”呢?
指出:根据条件,可以知道总棵树比6的倍数少1,比5和4的倍数也都少1.启发:如果添上1棵,总棵树与6、5和4有什么关系?、学生尝试解答。
集体交流,让学生说说思考的过程。
四、课堂总结
交流:这节课我们复习了哪些内容?把你的收获和大家分享一下。
分数、百分数的认识整理与复习
教学内容:
教材P71-72“整理与反思”、“练习与实践”第1-10题。教学目标:
1.学生加深对分数和百分数的认识,进一步理解分数的基本性质以及分数与除法的关系,进一步掌握小数、分数和百分数的互相改写,以及求百分数的方法。
2.学生经历知识整理和应用的过程,进一步了解分数、百分数相关知识之间的内在联系,提高观察比较、分析判断能力和解决问题的能力,进一步发展数感。3.学生进一步体会分数和百分数在日常生活中的应用以及作用,增强数学应用意识;感受数学学习的乐趣,树立学好数学的信心。
教学重点:加深理解分数、百分数的意义。教学难点:分数、百分数在实际生活中的应用。教学过程:
一、揭示课题
谈话:前几节课我们一起复习了整数和小数的相关知识,这节课我们要对分数和百分数的相关知识进行整理和复习。
通过复习,要进一步认识分数和百分数的意义,体会它们之间的联系与区别,并能运用分数和百分数的相关知识解决一些实际问题。
二、回顾整理 1.回顾讨论。
提问:你了解分数和百分数的哪些知识?请大家联系下面的问题自己回顾整理,并且在小组里交流。
呈现以下四个问题:
(1)什么叫分数?什么叫百分数?
(2)分数和除法有什么联系?请你举例说明。
(3)分数的基本性质是什么?你能用它来说明小数的性质吗?(4)小数、分数和百分数怎样互相改写?
让学生围绕上面四个问题先独立思考,再在小组里讨论、交流。2.组织交流,回答上面四个问题。
三、基本练习
1.做“练习与实践”第1题。
学生独立填写后指名口答,说明理由。
强调:分数是看平均分成多少份,表示这样的几分;小数是看表示的十分之几、百分之几、千分之几„„百分数是看这个数量占整体的百分之几。
2.做“练习与实践”第2题。
学生填写在书上,然后集体校对,让学生说说思考过程。
追问:第(2)题把一根绳子平均分成8段,为什么两次填写的结果不同? 3.做“练习与实践”第3题。学生独立填写。集体交流,让学生说说是怎样想的,并说一说每个百分数表示的意义。4.做“练习与实践”第5题。学生先尝试填写,再集体交流。
提问:这两组数分别会越来越接近几? 指出:这两组数按规律可以无限地填下去,这样填写第一组数会越来越接近1,第二组数会越来越接近0.四、应用练习
1.做“练习与实践”第6题。
学生读题,理解题意,先独立估计。提问:你估计哪块花圃种玫瑰的面积所占的百分比最大?说说理由。指出:估计时,可以先想出相应的分数,再估计大小。
学生写出相应的百分数,并交流是怎样想的,再和估计的比一比。2.做“练习与实践”第7、8题。学生读题后独立解答,再集体交流。
提问:你能说说种子发芽率的具体含义吗?折扣表示什么?发芽率和折扣各是怎样求的?
3.做“练习与实践”第9题。
学生读题后,提问:你能根据所给信息,在图中表示出李华家上个月的支出情况吗?先独立思考并在图中表示。
五、课堂总结
这节课我们复习了哪些内容?你有什么收获或体会?
常见的量整理与复习
教学内容:
教材P73“整理与反思”、“练习与实践”第1-6题。教学目标:
1.学生进一步掌握质量、时间和人民币的单位及相邻单位的进率,能够根据实际选择、应用合适的单位;掌握单位之间的简单换算,以及量的简单计算。
2.学生在整理、应用常见的量及量的单位过程中,进一步体会各个量的具体意义;能说明对常见的量选择、分析、判断的理由,提高分析、判断和推理等思维能力。
3.学生在复习过程中进一步体会常见的量在日常生活中的应用,培养有据思考、判断、分析等良好的学习品质。
教学重点:常见的量的归纳整理和应用。教学难点:掌握时间单位间的关系。教学过程:
一、导入课题 引入:在我们的日常生产、生活和科学研究中,经常要接触各种量,并且进行各种量的计量。在小学阶段,我们学习过质量、时间和人民币这些常见的量和相应的计量单位。今天我们就复习这些常见的量。(板书课题)
通过复习,进一步认识质量、时间和人民币及相应的单位,了解各类量相邻单位的进率,进一步掌握单位间的简单换算,并提高计量单位应用的能力。
二、回顾整理 1.小组整理。
提问:常用的质量单位有哪些?(板书:质量)相邻单位之间的进率各是多少?常用的时间单位、人民币单位各有哪些?(板书:时间 人民币)你能说说这些单位,以及相邻单位间的关系吗?请先独立整理,再小组交流。
学生整理,小组交流,教师巡视、指导。2.集体交流。
(1)提问:你知道质量单位的哪些知识?
(2)提问:我们学习过哪些时间单位?你知道这些单位间的关系吗?说说你的认识。
提问:闰年有什么规律?怎样判断某一年是闰年还是平年?
提问:我们认识了哪两种计时法,这两种计时法有什么区别和联系? 24时计时法 普通计时法
(3)提问:关于人民币的单位你有哪些认识? 生:元 角 分
1元=10角 1角=10分
三、基本练习
1.做“练习与实践”第1题。学生直接填空。
集体反馈,指名说说分别填写了哪个单位,怎样想的。
指出:填写单位时,要先根据实际明确填写哪种量的单位,再根据具体物体选择合适的单位。
2.做“练习与实践”第2题。
学生先填写在书上,再指名口答结果,选择2—3题说说怎样想的。提问:通过这题的练习,你对单位换算有了怎样的认识?
3.做“练习与实践”第3题。学生先完成填空,再集体校队。
追问:每年第一季度的天数怎样计算?
四、应用练习。
1.做“练习与实践”第4题。指名读题,理解题意。学生独立计算。
集体校对,让学生说说是怎样计算的。2.做“练习与实践”第5题。学生读题,理解题意。
指名口答,让学生说出计算过程。
引导学生完整说出飞船进入预定轨道的时间时2012年6月16日18时55分。3.做“练习与实践”第6题。指名读题,理解题意。学生独立解答。
集体交流,展示学生的解答过程及结果,要求说明怎样想的。
说明:像这样计算载重量的问题,一般要按较大数量计算,求出物体最重可能有多少,和能承载的重量比较、判断。
五、课堂总结 提问:这节课复习了哪些内容?通过这节课的复习,你有哪些收获?
四则运算整理与复习
教学内容:
教材P74-75“整理与反思”、“练习与实践”第1-10题。教学目标:
1.学生进一步掌握整数、小数、分数四则运算的法则及计算法则之间的联系,能选择口算、笔算、估算以及计算器等不同方法进行计算,进一步认识常见的数量关系,并能解决一些简单的实际问题。
2.学生在整理与复习的过程中,进一步了解计算原理,感受知识之间的内在联系,进一步体会基本的数量关系,提高运算能力,以及分析问题和解决问题的能力。
3.学生进一步养成独立、认真计算等学习习惯,培养按规则计算的品质,增强学习数学的积极性,体会学习成功的乐趣。
教学重点:理解四则运算的意义和法则。教学难点:正确进行四则运算。教学过程:
一、揭示课题
谈话:前几节课,我们只要复习了数的认识,今天开始我们要复习数的运算。这节课先复习数的四则运算。(板书课题)通过复习,同学们要熟悉掌握四则运算的法则,能选择不同方法进行计算,并能解决一些简单的实际问题。
二、知识梳理 1.小组讨论。
引导:通常所说的四则运算是指加法、减法、乘法和除法。想一想,整数、小数、分数加、减法分别怎样计算?整数、小数和分数乘、除法呢?先独立思考,找一些例子想一想,再在小组里交流你的想法。
学生各自整理后在小组里讨论。
2.集体交流。
(1)提问:整数加、减法是怎样计算的?小数加、减法,分数加、减法呢? 追问:你能说说这些计算方法之间的联系吗? 生交流,汇报。
(2)提问:怎样计算整数、小数和分数的乘、除法?你能举出一些例子吗? 结合学生交流,用简单的例子说明,进一步明确法则。
提问:小数乘、除法计算和整数乘、除法有什么联系?要注意什么问题? 学生交流,总结。
提问:分数乘、除法计算有什么联系? 指出:分数乘法用分子相乘的积作分子,分母相乘的积作分母;分数除法用被除数乘除数的倒数,转化成分数乘法后按分数乘法的方法进行计算。
三、基本练习
1、做“练习与实践”第1题。直接写出得数。
选择部分题目让学生说说计算的方法,进一步明确计算方法。2.做“练习与实践”第2题。独立计算,并指名板演。
提问:比较每组两题的计算方法,你有什么发现? 3.做“练习与实践”第4题。
学生自由读题,独立思考分别选择哪种算法。
提问:每小题各适合口算、笔算、估算,还是用计算器计算? 指名口答,并说出想法。
四、应用练习
1.做“练习与实践”第5题。
出示表格,提问:从这张表中你能知道些什么? 学生回答后独立计算、填表。
集体交流结果,说明算法并呈现表里的结果。
提问:这里应用的是哪一组常见的数量关系?你能说出单价、数量和总价这一组数量关系式吗?
2.做“练习与实践”第6题。
学生读题,理解题意。学生各自解答,指名板演。
集体校对,说明按怎样的数量关系解答的。
提问:这里应用的是哪一组常见的数量关系?能说出这一组数量关系式吗? 3.做“练习与实践”第9题。
出示情景图,提问:从图中你能知道哪些数学信息? 引导学生明确信息。出示问题(1),学生独立思考、解答。
集体交流,让学生说说思考过程,说明可以用笔算,也可以用估算得出结论。出示问题(2),学生独立解答。集体交流,让学生说说思考过程,并板书算式、得数。提问:你还能提出什么问题? 4.做“练习与实践”第10题。
出示统计表,让学生说说表中的信息。
提问:怎样比较他们的成绩更合理?把你的想法在小组里交流。小组讨论后集体交流,指名说出合理的想法及理由。
学生各自计算,求出各人助跑摸高的厘米数想法于身高的百分之几,再比较得到的百分之几。
出示问题(2),学生独立解答,提示可以用计算器计算。
五、课题总结
提问:通过这节课的复习,你有哪些收获?这些知识之间有什么联系?
四则混合运算整理与复习(1)
教学内容:
教材P76“整理与反思”、“练习与实践”第1-5题。教学目标:
1.学生进一步认识整数、小数、分数四则混合运算的运算顺序,能按运算顺序正确进行运算;进一步理解和掌握学过的运算定律和一些规律,并能应用运算定律或规律进行简便运算。
2.学生进一步增强观察、辨析能力和合理、简捷运算的能力,进一步培养分析问题、解决问题的能力。
3.学生通过计算、观察、比较、交流等活动,体验与同学合作交流以及获取知识的乐趣,增进对数学学习的积极情感。
教学重点:四则混合运算的运算顺序;理解和掌握运算律和一些规律。教学难点:灵活选择合理、简捷的算法。教学过程:
一、谈话导入,揭示课题 谈话:上节课,我们一起回顾整理了加、减、乘、除四则运算的意义、关系,以及计算法则。今天这节课,我们在此基础上继续复习四则混合运算。(板书课题)
二、整理知识,沟通联系 1.复习运算顺序。
出示“练习与实践”第1题。指名学生说说每题的运算顺序。
提问:能说说四则混合运算的运算顺序吗?请同桌相互说一说。集体交流四则混合运算的运算顺序。(2)学生独立计算,教师巡视、指导。集体校队,做错的同学自己订正。2.复习运算律。
(1)引导:在四则混合运算里,我们学习过运算律。回忆一下,我们学过哪些运算律?你能举例说明吗?小组讨论,按要求把课本上的表格填写完整。
小组讨论、填表。
集体交流,结合学生回答,板书呈现填表。做“练习与实践”第2题。
学生独立计算,指名板演,教师巡视、知道。
集体校对,让学生说说每题是怎样想的,分别运用了什么运算律或规律。说明:在计算时,如果应用运算律或运算规律,能先把其中的小数、分数计算凑成整数,或者能把一些计算凑成整
十、整百的数使计算变得简单,就可以选择合理、简单的算法,使计算简便。
追问:你觉得应用简便计算要注意些什么?(3)下面各题,怎样算简便就怎样算。
31194―4―4 20×21
215.01―0.99(3―4)×12 学生计算,指名板演。
交流算法,要求说明计算方法和依据。
三、实际应用,内化提升
1.做“练习与实践”第3、4题。指名读题,理解题意。
学生独立列综合算式解答,指名板演,教师巡视、指导。
集体校对,让学生说说每题分别是怎样想的,先算什么,再算什么? 2.做“练习与实践”第5题。
学生读题,让学生说说题中的条件和问题。学生各自列综合算式解答,教师巡视,指导。集体交流,让学生说说每一步算的是什么。
四、回顾反思,总结全课
提问:同学们回顾一下,这节课我们复习了哪些内容?你有什么收获与体会?
四则混合运算整理与复习(2)
教学内容:
教材P77 “练习与实践”第6-10题。教学目标:
1.学生进一步理解和掌握稍复杂的分数、百分数实际问题的数量关系和解题思路,能正确解答稍复杂的分数、百分数实际问题。
2.学生进一步认识分数、百分数实际问题的特点和解题方法,进一步体会分数、百分数实际问题的内在联系;能说明分析问题的过程,提高比较、分析、推理、判断等思维能力,增强分析问题和解决问题的能力。
3.学生加深体会分数、百分数在现实世界的实际应用,增强数学应用意识,提高学习数学的兴趣和学好数学的自信心;培养独立思考、主动交流的学习习惯。
教学重点:稍复杂的分数、百分数实际问题的数量关系和解题方法。教学难点:理解各类分数、百分数实际问题的数量关系和解题思路。教学过程:
一、揭示课题
谈话:上节课,我们复习了四则混合运算和运算律。这节课我们要复习分数、百分数的实际问题。(板书课题)通过复习,要进一步理清分数、百分数实际问题的数量关系和解题思路,掌握解题方法,提高解决分数、百分数实际问题的能力。
二、基本练习
1.根据下列问题找出单位“1”的量,并说出数量关系式。(1)桃树棵树是梨树的几分之几?(2)桃树棵树比梨树少几分之几?
(3)实际产量超过了计划的百分之几?(4)实际降价了百分之几?
指名学生口答,并说说单位“1”的量是怎样找的。2.根据条件找出单位“1”的数量,说出数量关系式。
5(1)男生人数是女生的6;
(2)足球个数是排球的90%;
1(3)大米袋数比面粉多3;
(4)用水量降低了20%。指名口答,说出数量关系式。
说明:根据上面这样的条件,可以确定单位“1”的量,用单位“1”的量乘几分之几或百分之几,等于几分之几或百分之几的对应数量。
三、应用练习
1.解答下列各题。
(1)李大爷收白菜300千克,已经售出240千克,已经售出几分之几?
4(2)李大爷收白菜300千克,已经售出5,已经售出多少千克?
4(3)李大爷收了一批白菜,已经售出5,正好是240千克,这批白菜有多少千克?
学生读题,思考每题应怎样解答。
指名口答算式或方程,教师板书并计算结果。
提问:这三题里表示单位“1”的量是哪个数量?为什么解答这三题的计算方法不相同?
2.解答下面各题。
5(1)菜场运来西红柿300千克,运来黄瓜的千克数是西红柿的6,运来黄瓜多少千克?
1(2)菜场运来西红柿300千克,运来黄瓜的千克数比西红柿少6,运来黄瓜多少千克?
提问:你能列出每题的算式吗?请你说一说。
追问:为什么第(1)题只有一步计算,第(2)题要两步计算?解答分数、百分数实际问题要注意什么?
3.做“练习与实践”第7题。
学生读题后独立解答,指名板演,教师巡视、指导。
集体校对,让学生说出解题思路,再说说有没有不同解法。4.对比练习。出示:(1)某市修建一条12千米长的高架公路,已经修了全长的60%,还有多少千米没有修?
(2)某市修建一条高架公路,已经修了全长的60%,还有4.8千米没有修。这条高架公路长多少千米?
指名读题,说说两题中的条件和问题。提问:这两题有什么相同点和不同点?
交流解法,教师板书算式和结果。
结合交流要求学生说说这两题分别是怎样想的。追问:这两题的解题方法为什么不同?
5.做“练习与实践”第8题。
(1)学生读题,说说已知什么条件,第(1)题要求什么。让学生列式解答,指名板演。
交流:求一、二等奖的奖券一共多少张可以怎样想? 这里每一步求的什么?
(2)让学生提出不同的问题,选择板书。
选择一个球两种奖券相差多少张的问题让学生解答。交流:你是怎样列式的?
这个算是里每一步求的是什么? 6.做“练习与实践”第9题。
学生读题后独立解答。集体交流,让学生说说每道题的解题思路,教师板书算式和结果。
提问:比较这三个实际问题,在解法上有什么联系和区别?
四、全课总结
这节课复习了什么内容?通过这节课的复习,你又有哪些收获?还有什么问题呢?
解决问题的策略整理与复习(1)
教学内容:
教材P78-79“整理与反思”、“练习与实践”第1-5题。教学目标:
1.进一步明确解决问题的一般步骤,能按一般步骤解决实际问题;了解小学阶段学习的解决问题的策略;能应用从条件或问题想起的策略分析数量关系并列式解决实际问题;能根据条件提出相应的问题。
2.能用从条件或问题想起的策略说明解决问题的思路,进一步体会实际问题数量之间的联系,培养学生分析、推理等思维能力和解决问题的能力。
3.进一步感受数学知识、方法在解决实际问题里的应用,体会解决问题策略的应用价值;培养勤于思考、善于思考的学习品质。
教学重点:用从条件或问题想起的策略分析数量关系。教学难点:正确分析数量关系。教学过程:
一、引入课题
谈话:今天的复习内容,是我们小学阶段学过的解决实际问题。通过今天的复习,要进一步掌握解决问题的一般步骤,整理并掌握学习过的解决问题的策略。对策略的应用,今天着重复习从条件想起、从问题想起分析数量关系的策略,能掌握分析方法,正确说明解决问题的思路并且解答实际问题,提高分析和解决问题的能力。
二、整理与反思 1.回顾讨论。
引导:大家先回顾一下学过的解决问题知识,同桌互相讨论、交流:解决实际问题的一般步骤是怎样的?我们学习过解决问题的哪些策略?可以联系实际问题讨论一下,这些策略在解决什么问题时用过。
2.交流认识。
(1)交流解决问题的步骤。提问:大家回顾了学过的解决问题的步骤和策略,能说说解决实际问题时的一般步骤是怎样的吗?
(2)交流解决问题的策略。
提问:我们学习过解决问题的哪些策略?可以结合举出一些例子来说一说。你认为学习解决问题的策略有什么作用?
指出:从条件或问题想起分析数量关系是基本策略,有些问题还要通过列表、画图或者列举、转化、假设的策略才能清楚地找到解决问题的方法。所以学习策略可以帮助我们更清楚地了解数量间的联系,找出解决问题的方法。
三、练习与实践 1.做“练习与实践”第1题。
(1)让学生独立阅读第(1)(2)题。
让学生分别说一说每题的条件和问题,说说两道题哪里不一样。
(2)引导:这两题你能怎样想的?自己先思考准备怎样想,再同桌互相说说你的想法,看看有没有不同的想法,要先求什么,再求什么。
提问:你能说说第(1)题可以怎样想吗?还能怎样想? 指名几个学生从条件想起说一说是怎样想的。
提问:第(2)题你是怎样想的?有不同的想法吗? 指名几个学生从问题想起说一说是怎样想的。(3)学生独立解答,指名板演。
检查列式过程,让学生说说各题的每一步求出的什么。
提问:两题的问题都是求长袖衬衫的单价,为什么解答过程不一样?(4)引导:通过上面两题的解答,你有哪些体会? 2.做“练习与实践”第2题。(1)让学生独立读题,了解题意。
引导学生观察图形,结合图形说说第(1)题小芳走过的路线是怎样的,第(2)题两人是怎样行走的。
引导:先看看小芳和小军的速度各是多少,想想两人大致在哪里相遇,在图上用一个点表示出来。
交流:你估计大致在哪里相遇,怎样想的?
(2)让学生列式解答两个问题,教师巡视、指导。①交流:第(1)小题是怎样列式的?这样列式是怎样想的? 有没有不同的列式?这样列式又是怎样想的?
说明:解答实际问题,有时有不同的解答方法,这是因为分析方法不同,解决问题的过程或方法就可能不一样。
②交流:第(2)题怎样列式?这是根据什么数量关系列式的? 也有不同的解法吗?这又是根据什么数量关系列式的? 追问:这两种解法有什么联系? 解答上面两题,都和哪个常见的数量关系有关? 3.做“练习与实践”第4题。
让学生读题,说说从表格里的对应数值能知道什么,要解决什么问题。引导:你能解决这个问题吗?自己想办法解答。交流:你是怎样解答的?这是怎样想的?
还有不同的解答方法吗?这又是怎样想的?
提问:这两种解法思路有什么不同?能说说两种解法分别是先求的什么、再求的什么吗?
4.做“练习与实践”第5题。
让学生独立读题,摘录整理条件和问题。交流:你是怎样整理的? 提问:根据整理的条件和问题,这题可以怎样想?说一说你的想法。追问:你认为整理的条件和问题,对于解决问题有什么好处?
四、教学总结
今天复习了解决问题的哪些内容? 通过整理与练习,你有哪些收获?
解决问题的策略整理与复习(2)
教学内容:
教材P79“练习与实践”第6-9题。教学目标:
1.学生能应用画图、列表、转化等策略分析和解决实际问题,能根据问题特点选择不同策略分析数量关系、列式解答,并能解释和说明自己所用的策略。
2.学生能依据相应的策略说明分析实际问题数量关系的思考过程,提高灵活、综合应用策略的能力,培养思维的深刻性和灵活性,发展分析、推理等思维和几何直观,以及分析问题、解决问题的能力。
3.学生进一步感受现实生活存在各类数学问题,体会解决问题策略的实际应用,培养学生面对实际问题用数学方法分析、处理的意识。
教学重点:用画图、列表、转化等策略解决实际问题。教学难点:灵活选择策略解决实际问题。教学过程:
一、揭示课题
谈话:上一节课我们复习了解决问题的相关内容,并且重点应用了从条件或问题想起的策略解决实际问题。今天继续复习解决问题,主要应用画图、列表的策略解决问题,并且能自己选择策略灵活地解决实际问题。
二、练习与实践
1.做“练习与实践”第6题。
(1)让学生读题,利用图形理解条件和问题。交流:你知道了题里有哪些条件,要解决什么问题?(出示图形,根据交流注明长、宽的条件)
这块长方形菜地分成的两个部分各是什么形状的?
引导:要计算这里三角形的面积和梯形的面积,你能根据题里的条件在图上画一画,找到解决问题的思路吗?想一想怎样画,自己画一画。交流:你是怎样画的?
为什么想到在三角形的顶点画宽的平行线段?
说明:通过交流,我们知道根据黄瓜的面积比番茄面积少180平方米这个条件,可以在梯形中画出一个和种黄瓜的三角形地完全一样的三角形地块,这样就能直接看出黄瓜比番茄少的面积是右边这个长方形地块。让画法不合理的订正自己的画法。
(2)引导:现在你能看图说一说,解决这个问题可以怎样想吗?在四人小组里互相讨论,找找可以怎样解答这个问题。
交流:哪些同学想到了解决这个问题的思路?和大家交流一下。
结合交流,帮助学生理解不同思路。
(3)让学生选择一种思路解答,指名不同解法的学生板演。引导学生结合图形分别说说不同解法中每一步算的什么。(4)提问:我们刚才画图对于解答问题有什么好处?
2.下面的问题用哪个策略解决比较合适?请你应用恰当的策略解答。
出示:一个长方形长8分米,宽6分米。如果把一条长缩短到原来的一半,或者把一条宽缩短到原来的一半,都能得到一个梯形。这两个梯形面积会相等吗?算一算、比一比。
提问:想想这个图形分别怎样变化的,能用什么策略解决,用你想到的策略算一算、比一比,解决问题。学生独立解答,教师巡视、指导。
交流:你用了什么策略?怎样画图的?这两个梯形面积相等吗?你是怎样计算的?
说明:用画图的策略能找到相应的条件,计算各自的面积。这里虽然长方形通过不同的变化得到的梯形不同,但面积是相等的。
3.做“练习与实践”第7题。
提问:你能说说题里告诉我们什么,要解决什么问题? 引导:大家想一想杨大爷步行的过程,思考解决问题还需要什么条件;再列表或画图表示行走过程,看看从表里或图中能知道什么新条件。学生列表或画图,教师巡视、指导。
交流:你是怎样列表的?画图的是怎样画图表示的?
引导:大家先观察列出的表格或画出的图形,思考能得出哪个条件,可以怎样解决问题,各人独立解答。交流:你是怎样解答的?
你结合列表或画图,说说这里的每一步是怎样想的吗?列表或画图在解题过程中有什么作用?
4.做“练习与实践”第8题。
(1)让学生先根据题意补充线段图,再同桌交流怎样补充的,讨论怎样解答,有没有不同解答方法,然后选择一种方法解答。
学生画图、交流并解答,教师巡视,指名不同算法的学生板演。(2)交流:线段图是怎样补充完整的?
你能联系线段图理解这里的不同解法,说说每种解法是怎样想的吗?自己观察、思考,不明白的可以合同学交流。提问:你能说说这些解法各是怎样想的吗?
指名交流,引导学生结合图形理解不同解法。
比较:哪种解法更方便一些?这里应用了哪个策略? 5.做“练习与实践”第9题。学生读题,要求交流条件和问题。提问:下面的线段图表示了哪些条件?还有什么条件没有表示出来?
2引导:根据从第一筐取出9放入第二筐,两筐苹果就同样重这个条件,表示第二筐苹果多重的线段怎样画呢?先看表示第一筐的线段想一想,再画一画。学生画图,教师巡视、指导。
交流:根据条件,表示第二筐苹果有多重的线段怎样画的?说说你的想法。引导:请你看线段图,想想这两筐苹果的千克数之间有什么关系,能怎样解答,然后用你想到的方法解答出来。如果与困难,可以讨论讨论。学生解答,教师巡视、指导。
交流:你是怎样解答的?用了什么策略?
结合交流板书算式,并引导学生理解不同解法。反思:通过解答这道题,你有哪些体会?
三、总结交流
回顾今天解决问题的内容和过程,都应用了哪些策略?你对画图、列表、假设和转化这些策略的应用,有哪些新的认识?还有哪些收获?
解决问题的策略整理与复习(3)
教学内容:
教材P80 “练习与实践”第10-13题,思考题。教学目标:
1.学生能应用假设、列举等策略分析和解决实际问题,能根据问题特点选择恰当的策略或综合运用策略解决实际问题,并能解释和说明选择的策略和思路。
2.学生能根据策略说明分析问题的思考过程,提高根据问题特点灵活选择、应用策略的能力,提高分析、推理等思维能力和解决问题的能力。
3.学生加深对数学和现实生活联系的体会,进一步体会数学策略、方法在解决实际问题中的应用价值,培养应用数学策略的意识。
教学重点:用假设、列举等策略解决问题。教学难点:根据问题特点选择合适的策略解决问题。教学过程:
一、揭示课题
谈话:前两节课我们复习了解决问题的相关内容和策略,主要复习了应用从条件或问题想起、画图、列表和转化等策略解决实际问题。今天继续复习解决问题,主要应用假设、列举等策略解决问题,了解一些实际问题特点和相应的策略,提高解决问题的能力。
二、练习与实践 1.做“练习与实践”第10题。
要求学生读题,看懂表格里的意思。
提问:能说说习题的意思吗?表格里已经填写的分别表示的是什么?
引导:请你在表格里填一填,看看是怎样变化的,经过几次白子和黑子枚数相等,然后根据填表的过程想想可以怎样列式解答,自己列式计算。
学生独立填表,列式解答。
交流:你是怎样填表的?用列表的方法,可以看出这样取放多少次后,白子与黑子正好相等?
你是怎样列式的?能说说怎样想的吗? 追问:解答这道题时用的什么策略? 2.做“练习与实践”第11题。
让学生说说题里告诉哪些条件,要求什么问题。
提问:把长90米的绳子分成的三段长度有什么关系?
引导:你准备怎样理清三段绳长的关系,怎样解决问题?同桌讨论一下。交流:你准备怎样理清绳长的关系?你想怎样解决问题呢?可以有哪些假设的方法?
引导:请你选择一种假设的方法,列式解答。交流:你怎样假设的?说说你的算式。用不同假设的同学来说说你的方法。提问:解答这个问题用了哪些策略? 3.做“练习与实践”第12题。
让学生观察、阅读,把情境组织成实际问题。
引导:你想怎样解答?自己想一想可以用什么策略解决,然后列式求出结果。学生解答,教师巡视、指导,指名学生板演。
交流:大家看看这里是怎样解答的,用了什么策略? 追问:你是怎样假设的?
提问:还可以怎样假设?哪位同学用了这样的假设策略的?说说你的解答过程。
追问:假设的方法虽然不同,但都是根据哪个条件假设的? 4.用恰当的策略解决下列问题。
出示:货场要运货50吨,用2辆大货车和6辆小货车正好运完。一辆大货车的载重量比一辆小货车多3吨,大货车的载重量是多少吨?小货车呢?
提问:这道题和上面的有什么不同?
引导:想想可以用什么策略解决,自己解答。有困难的可以讨论。学生解答,教师巡视,指名不同假设方法的学生分别板演。交流:解答这道题能用什么策略?可以怎样假设呢? 哪一种解法假设都是小货车的?怎样思考的?
假设都是大货车时要注意什么呢?这里每一步表示的什么意思? 提问:这里用假设策略时要注意什么? 5.做“练习与实践”第13题。(1)指名学生读题。
引导:你能按要求先在表里假设两种门票的张数,再通过调整找出答案吗?那请你自己假设、调整找出答案。
学生假设完成,教师巡视。
交流:你是怎样假设的?这样假设后怎样调整的?
还有假设不同的张数再调整的吗? 提问:调整时,每张按多少元调整的?
(2)引导:你能用假设的策略列算式解答吗?自己列式解答。学生列式解答,教师巡视,指名不同假设策略的同学板演。引导:两种解法,你用了哪一种,怎样想的?;另一种呢?
三、拓展提高
解决思考题。学生说明条件和问题。
引导:想一想可以用怎样的策略解决问题,用你想到的策略解决,看看能不能得出结果。如果有困难,可以在四人小组里讨论方法。学生解答,教师巡视、交流指导。
交流:你得出的结果是几比几?你是怎样解答的?
四、课堂总结
提问:这节课主要用到了哪些策略?能根据上面的练习说说哪些题适合用假设策略,哪些题适合用列举策略吗? 式与方程整理与复习(1)
教学内容:
教材P81-82“整理与反思”、“练习与实践”第1-4题。教学目标:
1.学生加深理解用字母表示数的意义及方法,进一步体会方程的意义及方程与等式的关系,会用等式的性质解方程,能列方程解答简单的实际问题。2.学生进一步提高用字母的式子表示数量关系的能力,增强符号意识,体会方程思想;进一步提高分析问题和解决问题的能力。
3.学生主动参与整理和练习等学习活动,进一步感受数学与日常生活的紧密联系,体验学习成功的乐趣,发展数学学习的积极情感。
教学重点:掌握方程的意义及解方程的方法。教学难点:用含有字母的式子表示数量关系。教学过程:
一、谈话导入
谈话:这节课,我们复习“式与方程”的有关知识。(板书课题)
今天主要复习其中的字母表示数、方程的意义和解方程,并且列方程解决一些简单的实际问题。通过复习进一步掌握用字母表示数,提高解方程和列方程解决简单实际问题的能力。
二、回顾整理
1.复习用字母表示数。
(1)回顾举例。
提问:你能举出一些用字母表示数的例子吗?先独立思考,再与同桌交流。小组交流后组织汇报,教师相应板书: ①表示计算公式,如C=2(a+b)。②表示运算律,如a+b=b+a.③表示数量关系,如s=vt。
提问:用字母可以表示这么多的内容,那么在用字母表示数的乘法式子里,你觉得应该提醒大家注意些什么?
(2)做“练习与实践”第1题。
学生独立在书上完成,教师巡视、指导。集体订正,选择几题让学生说说是怎样想的。
追问:第(3)题是怎样根据a=3求周长4a和面积a各是多少的? 提问:列含有字母的式子,是根据数量之间的联系,用字母表示数列出相应的式子。求含有字母式子的值,只要把字母的值直接代入式子计算结果。
2.复习方程与等式。
(1)复习方程的概念。
下面的式子中,哪些是方程,哪些不是方程?为什么?
4203x=15 x-2 x-9x=21
218÷3=6 16+4x=40 a+4<b 提问:根据刚才的判断,你能说说什么是方程吗?一个式子是方程,必须具备什么条件?
方程与等式有什么关系?请你说一说,并从上面式子中找出例子说明。根据学生回答呈现集合体。帮助学生进一步理解:方程是含义未知数的等式;方程是等式,等式不一定是方程。
(2)复习等式的性质及解方程。①等式的性质。
提问:等式的性质有哪些?等式的性质有什么应用?
提问:怎样应用等式的性质解下面的方程?说说你的想法。
1出示:x-3=15 0.5x=1 x÷2=2 根据学生说明板书解方程。
指出:根据方程里已知数和未知数的关系,应用等式的性质使方程左边只剩下x,就能求出方程的解。
②做“练习与实践”第2题。学生观察第2题。
提问:你会解这些方程吗?请你独立解方程。学生解方程,指名板演。
集体校对,让学生说说解方程的思路。
指名说说检验的方法,选择一题板演检验过程。
提问:解方程与方程的解有什么区别?请你选择一题说说它们的区别。3.复习列方程解决实际问题。
(1)谈话:学习方程是为了用它解决生活中的实际问题,请同学们回忆一下,列方程解决实际问题的一般步骤有哪些?你认为最关键的是哪一步? 结合学生回答,教师板书: 第一步:弄清题意,用x表示未知数。第二步:找出等量关系。第三步:列出方程并解方程。第四步:检验,写答句。
(2)说出下面各题中数量之间的相等关系。①果园有桃树和柳树共1000棵。②红花比黄花少25朵。
③学校航模组的人数是美术组的3倍。④花金鱼比黑金鱼的1.2倍还多8条。
让学生独立思考,指名说出等量关系,明确要根据条件表示的意思确定数量间的相等关系。
三、巩固深化
1.做“练习与实践”第3题。学生读题后独立解答。
集体交流,学生说出解题思路,教师板书等量关系和方程,并解方程。说明:这题的关键是根据条件找出等量关系,再根据等量关系列出方程。2.做“练习与实践”第4题。学生读题,理解题意。
提问:鞋的码数与厘米数之间有怎样的关系? 学生独立完成,把书上的表填写完整。集体交流,让学生说说是怎样思考的。
追问:求b的码数和求a的厘米数有什么不同?
四、课堂小结
这节课我们复习了哪些知识?你有什么收获?式与方程整理与复习(2)
教学内容:
教材P82“练习与实践”第5-9题。教学目标:
1.学生进一步掌握列方程解决实际问题的步骤和思路,能根据题意说说数量间的相等关系,正确地列方程解答相关实际问题。
2.学生在分析问题、解决问题的活动中,进一步提高分析数量关系和用方程表示数量关系的能力,体会,模型思想,积累解决问题的经验,发展数学思考。3.学生进一步体会列方程解决实际问题的意义和价值,感受数学与现实生活的联系,培养应用意识;在应用知识的过程中体验成功的乐趣,激发数学学习的兴趣。
教学重点:列方程解决实际问题。
教学难点:分析和理解实际问题的数量关系。教学过程:
一、揭示课题
谈话:这节课,我们继续复习方程的相关知识,主要复习列方程解决实际问题。(板书课题)
通过复习,进一步掌握列方程解决实际问题的方法,提高用方程解决实际问题的能力。
二、基本练习
1.解答下列问题。
引导:上节课已经复习过列方程解决简单的实际问题,现在再看一道题,大家独立列方程解答,并想想按怎样的步骤解答的,关键是哪一步。
出示:甲、乙两地间的公路长240米,一辆汽车从甲地开往乙地,行驶了1.5小时后离乙地还有75千米。这辆汽车的速度是多少千米╱时?
学生独立读题并列方程解答,指名板演。交流:这题是怎样解答的?说说是怎样想的。方程是根据怎样的等量关系列出来的?
还能找出怎样的等量关系?根据这个等量关系可以怎样列方程? 2.把下列各题中数量间的相等关系填写完整,并列出方程。
(1)学校书法组有42人,比音乐组的2倍少4人。音乐组有多少人?
○ =书法组人数
○ =4人
(2)学校书法组和音乐组一共42人,书法组人数是音乐组的2倍。书法组和音乐组各有多少人?
○ =书法组和音乐组一共的人数 学生独立读题,完成数量关系式,设未知数并列出方程。
指名学生说出等量关系,设未知数为x,口头列出方程;根据交流呈现等量关系式和相应的方程。
追问:方程是根据什么列出的?
三、应用练习
1.做“练习与实践”第5题。
学生读题,理解题意。
学生独立解答,教师巡视,指名列不同方程的学生板演。
集体交流,让学生说说这是哪一类实际问题,不同方程相应的等量关系各是怎样的,检查列方程解题过程。
2.做“练习与实践”第6题。学生读题后独立解答。集体交流,让学生说说解答这题的数量关系式和方程,教师板书。
3.出示:水果店运来苹果的千克数是橘子的3倍,一共480千克。运来橘子多少千克?
引导:同桌相互说说数量之间的相等关系,应该怎样列方程。提问:这里数量间有怎样的相等关系?方程怎样列的? 4.做“练习与实践”第7题。学生读题后独立解答,指名板演。
集体交流、评议,让学生说说思考的过程,应该怎样找数量间的相等关系。5.做“练习与实践”第8题。
指名学生读题,说说题中的条件和问题。提问:你能说说“甲种衬衫按四折销售”和“乙种衬衣按五折销售”的意思吗?
学生独立解答,教师巡视、指导。
集体交流,提问:这题中单位“1”的量是什么?数量关系式应该怎样列? 引导:比较第7、8题,为什么都用方程解答?列方程时怎样表示题里两个未知数量的?
四、拓展练习
出示“练习与实践”第9题,引导学生了解题意。(1)出示数表和3个方框。①让学生按横框直接在书上的数表里框4个数,同桌相互说说自己框的4个数之间有什么关系。
要求再框几次,验证自己发现的关系,看看能发现什么规律。提问:这样每次框出的4个数之间有什么关系?
如果用a表示框里的第一个数,后面3个数分别怎样表示?自己想一想、填一填。
交流:你是怎样填的?说说你的想法和填的结果。引导:这4个数的和可以怎样表示? 学生计算,教师巡视。
集体交流,教师相机板书:4a+6。
②引导:请每人分别用另两个长方形框连续框几次,看看又能发现什么规律,在下面每个相应的框里表示其余3个数,看看和可以怎样表示。如果有困难,可以同桌商量完成。
学生活动,教师巡视、指导。
集体交流,让学生说说填写的结果及思考的过程,呈现并板书交流的结果。(2)框数、猜数游戏。出示第(2)题,了解要求。
引导:框出4个数算出它们的和,能不能按刚才表示4个数和的式子,说出4个数各是多少呢?谁愿意来报出一组4个数的和,大家想一想这4个数分别是多少?
指名一人报出和,其余学生说出4个数,交流结果和思考方法,引导学生了解可以根据表示和的式子试着列方程,看能根据哪个式子列出方程求出结果。
要求:现在同桌两人一组,一人框4个数说出和,另一人说出这4个数;两人交换进行游戏。
学生活动,教师巡视、指导。
提问:根据4个数的和说出4个数各是多少,其实是用到了什么知识?
五、课堂总结
提问:这节课复习了什么内容?你又有哪些新的认识和收获?还有什么不懂的问题?
比和比例整理与复习
教学内容:
教材P83-84“整理与反思”、“练习与实践”第1-6题。教学目标:
1.学生进一步巩固比和比例的意义、性质,加深认识比和分数、除法之间的联系;进一步认识比例尺,巩固解比例的方法,能应用比和比例的知识解决有关实际问题。
2.学生在回顾整理与练习应用的过程中,进一步认识知识的内在联系,加深对数量比较的认识,提高分析、推理、判断等思维能力,增强运用比和比例知识解决实际问题的能力。
3.学生在复习过程中感受数学知识系统性的特点,体验数学与生活实际的密切联系,培养学生的数学应用意识,激发学生学习数学的自信心。
教学重点:比和比例的意义、性质及应用。教学难点:正确解答有关比和比例的问题。教学过程:
一、揭示课题
谈话:这节课我们要对比和比例的相关知识进行整理和复习。在整理与复习过程中,同学们要主动回顾、整理比和比例的知识,系统掌握比和比例的知识及应用,进一步增强运用比和比例知识解决实际问题的能力。
二、知识梳理 1.唤醒记忆。
提问:请同学们回忆一下,我们学过了比和比例的哪些内容? 学生自由回答,教师相应板书。2.复习比的知识。(1)出示问题:
①什么是比?什么是比的基本性质?用比的知识可以解决哪些实际问题? ②比和分数、除法有什么联系?
③什么叫求比值?什么叫化简比?请你举例说明。
学生在小组里交流,互相补充、修正,教师巡视、指导。(2)全班交流。
①什么是比?什么是比的基本性质?用比的知识可以解决哪些实际问题? 结合交流,教师相应板书。
②引导:比和分数、除法有什么联系呢?请你填写课本上的式子,相互说一说它们之间的联系和区别。
集体交流,教师相应板书。提问:能根据这个式子说说比和分数、除法之间的联系吗?它们有什么区别? 提问:比的基本性质是什么?比的基本性质与分数的基本性质、商不变的规律有什么联系?
交流小结比的基本性质,依据相互间的联系说明比的基本性质与商不变的规律、分数的基本性质本质上是相同的。
③什么叫求比值?什么叫化简比?求比值和化简比的依据和结果有什么不同?
结合交流,教师相应板书。
(3)做“练习与实践”第1题。学生独立完成,填写在书上。
集体交流,让学生说说是怎样想的。3.复习比例的知识。
(1)出示问题:
①什么是比例?什么是比例的基本性质?写出一个比例说说自己的认识。②什么是解比例?怎样应用比例的基本性质解比例?举例说一说。③什么是比例尺?根据比例尺求图上距离或实际距离的方法是怎样的? 小组讨论、交流。
(2)按出示的问题全班交流,结合学生回答,相应板书。
三、组织练习
1.做“练习与实践”第2题。
出示第(1)题,学生根据要求先量出每副图片的长和宽,并写出长和宽的比。集体交流,有错的同学订正。
提问:估计哪两个比能组成比例?你是怎样估计的? 让学生算一算,写出比例。
交流写出的比例,说明能组成比例的理由,并与估计结果比较。2.做“练习与实践”第4题。
(1)出示统计表。
引导:你理解表中每个百分数的含义吗?选择几个百分数,在小组里相互说说它的含义。
小组交流后指名汇报,选择2至3个百分数说说含义。(2)出示问题(1)。
指名学生口答,并让学生说说思考的过程。
(3)提问:从表中还能获得哪些信息?你还能提出哪些问题? 学生小组讨论后集体交流。3.做“练习与实践”第5题。(1)学生读题,理解题意。
让学生自己写出比,并求出每种地砖的铺地面积。交流:两种地砖面积的比是怎样的?说说你的方法。
(2)提问:求两种地砖铺地面积是怎样的问题?你是怎样解答的? 结合学生回答,教师板书算式、得数,并让学生说说每一步求的什么? 提问:按比例分配实际问题有什么特点?解答时通常应该怎样想? 4.做“练习与实践”第6题。
指名学生读题,了解题意。
要求学生独立操作、计算,教师巡视、指导。
集体交流,让学生说说是用怎样的方程计算的,注意理解不同的思路、方法。追问:这里不同的解题方法各是怎样想的?
四、课堂总结
提问:今天这节课我们复习了哪些内容?在整理与复习的过程中,你又有了哪些收获和体会?
正比例和反比例整理与复习
教学内容:
教材P84-85 “练习与实践”第7-10题。
教学目标:
1.学生进一步认识成正比例和反比例的量,掌握两种量是否成正比例或反比例的思考方法,能正确判断两种量成不成比例,成什么比例。
2.学生通过判断两种相关联的量是否成正比例或反比例,加深理解成正比例和反比例关系的特点,体会数形结合和函数思想,提高分析、判断和初步演绎推理能力。
3.学生进一步体会生活中常见的相关联的变换关系,感受比和比例的应用价值,体会不同领域数学内容之间的联系,激发学习数学的积极性。
教学重点:正确判断两种相关联量的正比例和反比例关系。教学难点:有条理地说明判断正、反比例的理由。教学过程:
一、揭示课题
谈话:上节课我们复习了比和比例的相关知识,这节课我们一起复习正比例和反比例。(板书课题)
通过复习,进一步认识正比例和反比例的意义、正比例图像,了解正、反比例的区别和联系,掌握判断两种量是否成正比例或者反比例的方法,能正确地进行判断。
二、回顾梳理
1.提问:请同学们回忆一下,怎样的两种量是成正比例的量?怎样的两种量是成反比例的量?
根据学生回答板书。
提问:你能举一些生活中成正比例或反比例的例子吗?在小组里相互说一说。全班交流,让学生举例说一说。2.做“练习与实践”第7题。
提问:每张表里有哪两种量?每张表里的两种量是成正比例、反比例,还是不成比例?先独立分析每张表的数量变化过程,再把你的想法与同桌交流。集体交流,引导学生判断并说明理由。
提问:我们是怎样判断两种量成不成比例,成比例的是成正比例还是反比例的?
3.做“练习与实践”第8题。
学生理解题意后独立思考,判断结论。
指名学生说说各题中两种量是否成比例,成比例的是成正比例还是成反比例,并说明理由,结合交流板书相应的关系式。
三、综合练习
1.做“练习与实践”第9题。(1)学生练习。
出示第9题,让学生说说图中的信息。
要求学生独立思考和完成第(1)-(3)题,再和同桌相互说一说。(2)学生交流。
①提问:这辆汽车在高速公路上行驶的路程和耗油量成正比例吗?为什么? 让学生判断并说出判断理由。
②让学生说说问题(2)判断的方法。
结合图像说明:可以先在横轴上找到表示75千米在图像上的对应点,再通过图像上的对应点找出和确定耗油升数。
③出示学生根据第(3)题画出的图像。
提问:怎样描出路程和耗油量对应的点画出图像的?
2.做“练习与实践”第10题。出示表格,让学生说说表中的信息。(1)出示问题(1),提出要求: ①画一画:根据表中数据描点连线。
②议一议:哪一杯中纯酒精与蒸馏水体积的比和其他几杯不一样?在小组里交流你的想法和理由。
学生独立操作后小组讨论。
集体交流,展示学生画出的图像,说说是怎样画的。让学生判断结果,并说出理由。(2)出示问题(2)(3),学生独立解答。
集体交流,让学生说说解答结果及思考方法。
四、课题总结
提问:通过这节课的复习,你有什么收获?还有什么困惑吗?
第五篇:《“数与代数”领域核心内容分析与教学策略(第二学段)》作业
数与代数这一部分的重要核心概念包括:数感、符号意识、运算能力、推理能力、模型思想、应用意识和创新意识。
下面我主要把数感这个核心概念与大家一起交流。
数感就是对数的感悟。《标准》将这种对数的感悟归纳为三个方面:数与数量、数量关系、运算结果估计。如何在教学过程中帮助学生建立数感呢?下面我就结合自己的教学实践,谈谈我的一些观点:
1、在生活情境中感知。
数学知识比较抽象,许多学生对数都不能很好地建立表象,更不能真正地理解数的内涵。教师应积极创设与学生生活环境,知识背景密切相关的学习情境,帮助学生对数的认识,更好的感知数的存在。在教学比的意义时。重点就是让学生体会比是一种数量关系。其实,比就是从生活中来,我们必须让学生充分体验生活中的比所表示的关系,才能让学生真正理解知识,并应用知识。若教3:2的意义是怎样的,我是这样讲的。课件出示:3杯牛奶和2杯果汁,先让学生用已有的分数知识表示出牛奶与果汁的关系,再引入比来表示牛奶和果汁的关系,从而让学生体会到比能简洁地表示出分数所能表示的两个数量关系,认识到学习比的必要性。并能理解比所表示的这两个数量关系,并很好地感悟比的意义,建立数感。当学生建立数感后,遇到生活中的溶液配制问题就会迎刃而解,比如:米与水的比为:1:2,学生会想到水量是米量的2倍。从而在这些生活实例中体会了数的含义,初步建立了数感。
2、实践操作,增强数感 儿童的思维特点以具体性、形象性为主,很大程度上还要依赖动作思维。因此动手操作是帮助儿童形成数感极为重要的方法。如学习10以内数的组成,让学生通过动手分一分小棒、小红花等各类学具,让学生体验到一个数可以分成几个比它小的数,几个小的数又可以合成一个较大的数,从而积累整体与部分之间的相加关系和互补关系的感性经验。这样,学生的数感在动手实践中得到了进一步的发展。
3、合作探究,交流数感
我们知道,数学知识有一个从形象到表象,从表象到抽象,两个过程。而这两个过程,也是两次提升,而在这个提升的过程中,合作交流起到了非常重要的作用。小组合作学习有利于学生人人参与学习全过程,它不仅能发掘个人内在的潜能,还能培养集体合作精神,人人可以尝试成功的喜悦。
4、数感在实际应用中升华
数感的建立来自于生活,只有在具体的生活情境中加以应用,才能得到升华。当学生把所学知识应用到生活中去,才能更好地掌握知识内化知识,使学生认识到知识和生活是密不可分的,同时在应用中进一步培养和发展了学生的数感。
总之,培养学生数感的过程是循序渐进的.培养学生的数感,可以使学生有更多的机会接触社会,体验现实表达自己对问题的看法,用不同的方式思考和解决问题,这无疑会有助于学生创新精神和实践能力的.培养,随着数感的建立发展和强化,学生的整体数学素养也会有所提高.所以在今后的教学中,还要不断地探究和完善。