第一篇:对《正弦定理》一课例题的思考
龙源期刊网 http://.cn
对《正弦定理》一课例题的思考 作者:段海婷
来源:《教育界·中旬》2013年第07期
对《正弦定理》一课例题的思考
第二篇:正弦定理教案
正弦定理教案
教学目标:
1.知识目标:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。
2.能力目标:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。
3.情感目标:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。
教学重点:正弦定理的探索和证明及其基本应用。
教学难点:已知两边和其中一边的对角解三角形时判断解的个数。
教学过程:
一、复习引入
创设情境:
【师】:世界闻名的巴黎埃菲尔铁塔,比其他的建筑高出很多。如果只提供测角仪和皮尺,你能测出埃菲尔铁塔的高度吗?
【生】:可以先在离铁塔一段距离的地方测出观看铁塔的仰角,再测出与铁塔的水平距离,就可以利用三角函数测出高度。
【创设情境总结】:解决上述问题的过程中我们将距离的问题转化为角,进而转化为三角函数的问题进行计算。这个实际问题说明了三角形的边与角有紧密的联系,边和角甚至可以互相转化,这节课我们就要从正弦这个侧面来研究三角形边角的关系即正弦定理。
二、新课讲解
【师】:请同学们回忆一下,在直角三角形中各个角的正弦是怎么样表示的?
【生】:在直角三角形ABC中,sinAab,sinB,sinC1 cc
abc,c,c,也就是说在Rt△ABCsinAsinBsinC【师】:有没有一个量可以把三个式子联系起来? 【生】:边c可以把他们联系起来,即c
中abc sinAsinBsinC
【师】:对,很美、很对称的一个式子,用文字来描述就是:“在一个直角三角形中,各边与
它所对角的正弦比相等”,那么在斜三角形中,该式是否也成立呢?让我们在几何画板中验证一下,对任意的三角形ABC是不是都有“各边与它所对角的正弦比相等”成立?
【师】:通过验证我们得到,在任意的三角形中都有各个边和他所对的角的正弦值相等。
在上面这个对称的式子中涉及到了三角形三个角的正弦,因此我们把它称为正弦定理,即我们今天的课题。
【师】:直观的印象并不能代替严格的数学证明,所以,只是直观的验证是不够的,那能不
能对这个定理给出一个证明呢?
【生】:可以用三角形的面积公式对正弦定理进行证明:S1111absinCacsinBbcsinA,然后三个式子同时处以abc就可以得222
2到正弦定理了。
【师】:这是一种很好的证明方法,能不能用之前学过的向量来证明呢?答案是肯定的。怎
么样利用向量只是来证明正弦定理呢?大家观察,这个式子涉及到的是边和角,即向量的模和夹角之间的关系。哪一种运算同时涉及到向量的夹角和模呢?
(板书:证法二,向量法)
【生】:向量的数量积ababcos
【师】:先在锐角三角形中讨论一下,如果把三角形的三边看做向量的话,则容易得到三角
形的三个边向量满足的关系:ABBCAC,那么,和哪个向量做数量积呢?还
有数量积公式中提到的是夹角的余弦,而我们要得是夹角的正弦,这个又怎么转化?(启发学生得出通过做点A的垂线根据诱导公式来得到)
【生】:做A点的垂线
【师】:那是那条线的垂线呢?
【生】:AC的垂线
【师】:如果我们做AC垂线上的一个单位向量j,把向量j和上面那个式子的两边同时做数
cos(90A)cos(90C)cos90,化简000
即可得到csinAasinC,即acbc,同理可以得到。即在sinAsinCsinBsinC
锐角三角形ABC中有每条边和它所对的角的正弦值相等这个结论。
【师】:如果△ABC是钝角三角形呢?又怎么样得到正弦定理的证明呢?不妨假设∠A是钝
角,那么同样道理如果我们做AC垂线上的一个单位向量j,把向量j和上面那个式
子ABBCAC的两边同时做数量积运算就可以得到
00jABcos(C90)jBCcos(90C)jACcos900,化简即可得到csinAasinC,即acbc,同理可以得到。即在钝角三角sinAsinCsinBsinC
形ABC中也有每条边和它所对的角的正弦值相等这个结论。
【师】:经过上面的证明,我们用两种方法得到了正弦定理的证明,并且得到了正弦定理对
于直角、锐角、钝角三角形都是成立的。
【师】:大家观察一下正弦定理的这个式子,它是一个比例式。对于一个比例式来说,如果
我们知道其中的三项,那么就可以根据比例的运算性质得到第四项。因此正弦定理的应用主要有哪些呢?
【生】:已知三角形的两边一其中一边的对角求另外一边的对角,或者两角一边求出另外一
边。
【师】:其实大家如果联系三角形的内角和公式的话,其实只要有上面的任意一个条件,我们都可以解出三角形中所有的未知边和角。下面我们来看正弦定理的一些应用。
三、例题解析
【例1】优化P101例
1分析:直接代入正弦定理中运算即可
absinAsinB
csinA10sin45
asinCsin30
bcsinBsinC
B180(AC)180(4530)105
csinB10sin105b205sinCsin30总结:本道例题给出了解三角形的第一类问题(已知两角和一边,求另外两边和一
角,因为两个角都是确定的的,所以只有一种情况)
【课堂练习1】教材P144练习1(可以让学生上台板演)
【随堂检测】见幻灯片
四、课堂小结
【师】:本节课的主要内容是正弦定理,即三角形ABC中有每条边和它所对的角的正弦值相等。写成数学式子就是abc。并且一起研究了他的证明方法,利用它解决sinAsinBsinC
了一些解三角形问题。对于正弦定理的证明主,要有面积法和向量法,其实对于正弦定理的证明,还有很多别的方法,有兴趣的同学下去之后可以自己去了解一下。
五、作业布置
世纪金榜P86自测自评、例
1、例
2板书设计:
六、教学反思
第三篇:正弦定理证明
新课标必修数学5“解三角形”内容分析及教学建议
江苏省锡山高级中学杨志文
新课程必修数学5的内容主要包括解三角形、数列、不等式。这些内容都是高中数学中的传统内容。其中“解三角形”既是高中数学的基本内容,又有较强的应用性。在历次教材改革中都作为中学数学中的重点内容,一直被保留下来。在这次新课程改革中,新普通高中《数学课程标准》(以下简称《标准》)与原全日制普通高级中学《数学教学大纲》(以下简称《大纲》)相比,“解三角形”这块内容在安排顺序上进行了新的整合。本文就《标准》必修模块数学5第一部分“解三角形”的课程内容、教学目标要求、课程关注点、内容处理上等方面的变化进行简要的分析,并对教学中应注意的几个问题谈谈自己的一些设想和教学建议,供大家参考。
一、《标准》必修模块数学5中“解三角形”与原课程中“解斜三角形”的比较
1.课程内容安排上的变化
“解三角形”在原课程中为“解斜三角形”,安排在“平面向量”一章中,作为平面向量的一个单元。而在新课程《标准》中重新进行了整合,将其安排在必修模块数学5中,独立成为一章,与必修模块数学4中的“平面向量”分别安排在不同的模块中。
2.教学要求的变化
原大纲对“解斜三角形”的教学要求是:
(1)掌握正弦定理、余弦定理,并能运用它们解斜三角形,能利用计算器解决解斜三角形的计算问题。
(2)通过解三角形的应用的教学,提高运用所学知识解决实际问题的能力。
(3)实习作业以测量为内容,培养学生应用数学知识解决实际问题的能力和实际操作的能力。《标准》对“解三角形”的教学要求是:
(1)通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。
(2)能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题。由此可以看出,《标准》在计算方面降低了要求,取消了“利用计算器解决解斜三角形的计算问题”的要求,而在探索推理方面提高了要求,要求“通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理”。
3、课程关注点的变化
原《大纲》中,解斜三角形内容,比较关注三角形边角关系的恒等变换,往往把侧重点放在运算上。而《标准》则关注运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题。侧重点放在学生探究和推理能力的培养上。
4、内容处理上的变化
原《大纲》中,解斜三角形作为平面向量知识的应用,突出其工具性和应用性。而《标准》将解三角形作为几何度量问题来处理,突出几何的作用,为学生理解数学中的量化思想、进一步学习数学奠定基础。解三角形处理的是三角形中长度、角度、面积的度量问题,长度、面积是理解积分的基础,角度是刻画方向的,长度、方向是向量的特征,有了长度、方向,向量的工具自然就有用武之地。
二、教学中应注意的几个问题及教学建议
原《大纲》中解斜三角形的内容,比较关注三角形边角关系的恒等变换,往往把侧重点放在运算上。而《标准》将解三角形作为几何度量问题来展开,强调学生在已有知识的基础上,通过对任意三角形边角关系的探究,发现并掌握三角形中的边长与角度之间的数量关系,解决简单的三角形度量问题。这就要求在教学过程中,突出几何的作用和数学量化思想,发挥学生学习的主动性,使学生的学习过程成为在教师引导下的探究过程、再创造过程。因此在教学中应注意以下几个问题。
1.要重视探究和推理
《标准》要求“通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理”。因此建议在教学中,既要重视从特殊到一般的探索学习过程的教学,又要重视数学的理性思维的培养。教学中不要直接给出定理进行证明,可通过学生对三角形边与角的正弦的测量与计算,研究边与其对角的正弦之间的比,揭示它们在数量上的规律,发现正弦定理的结论,然后再从理论上进行论证,从而掌握正弦定理。从中体会发现和探索数学知识的思想方法。
参考案例:正弦定理的探索、发现与证明
教学建议:建议按如下步骤设计教学过程:
(1)从特殊三角形入手进行发现
让学生观察并测量一个三角板的边长。
提出问题:你能发现三边长与其对角的正弦值之比之间的关系吗?
例如,量得三角板三内角300,600,900所对的三边长分别约为5cm,8.6cm,10cm,58.610,101010 000
sin30sin60sin90
abc
对于特殊三角形,我们发现规律:。
sinAsinBsinC
则有:
提出问题:上述规律,对任意三角形成立吗?(2)实验,探索规律
二人合作,先在纸上做一任意锐角(锐角或钝角)三角形,测量三边长及其三个对角,然后用计算器计算每一边与其对角正弦值的比,填入下面表中,验证前面得出的结论是否正确。(其中,角精确到分,忽略测量误差,通过实验,对任意三角形,有结论:
abc,即在一个三角形中,
sinAsinBsinC
各边和它所对的角的正弦的比相等。
提出问题:上述的探索过程所得出的结论,只是我们通过实验(近似结果)发现的一个结果,如果我们能在理论上证明它是正确的,则把它叫做正弦定理。那么怎样证明呢?
(4)研究定理证明的方法方法一:(向量法)①若△ABC为直角三角形,由锐角三角函数的定义知,定理显然成立。②若△ABC为锐角三角形,过点A做单位向量j垂直于AC,则向量j与向量的夹角为900-A,向
量j
与向量CB的夹角为900-C,(如图1),且有:ACCBAB,所以j·(+)= j·即j·+ j· = j·AB 展开|j||AC|cos900+ | j||CB|cos(900-C)=| j|||cos(900-A)
ac
。
sinAsinC
cbabc
同理,过点C做单位向量j垂直于,可得:,故有。
sinCsinBsinAsinBsinC
③若△ABC为钝角三角形,不妨设角A>900(如图2),过点A做单位向量j垂直于AC,则向量j与
则得 a sinC = c sinA,即
向量AB的夹角为A-900,向量j与向量的夹角为900-C,且有:,同样可证得:
abc
。
sinAsinB
提出问题:你还能利用其他方法证明吗?
方法二:请同学们课后自己利用平面几何中圆内接三角形(锐角,钝角和直角)及同弧所对的圆周角相等等知识,将△ABC中的边角关系转化为以直径为斜边的直角三角形中去探讨证明方法。
2.要重视综合应用
《标准》要求掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。建议在正弦定理、余弦定理的教学中,设计一些关于正弦定理、余弦定理的综合性问题,提高学生综合应用知识解决问题的能力。如可设计下面的问题进行教学:
参考案例:正弦定理、余弦定理的综合应用 C 如图,在四边形ABCD中,已知ADCD,AD=10,AB=14,BDA=60,BCD=135.求BC的长.教学建议:
引导学生进行分析,欲求BC,需在△BCD中求解,∵BCD=135,BDC=30,∴需要求BD,而BD需在△ABD中求解.再引导学生将
A B
四边形问题转化为三角形问题,选择余弦定理求BD,再由正弦定理
例2图 求BC。
3.要重视实际应用
《标准》要求运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题。因此建议在教学中,设计一些实际应用问题,为学生体验数学在解决问题中的作用,感受数学与日常生活及与其他学科的联系,培养学生的数学应用意识,提高学生解决实际问题的能力。在题目的设计中要注意对恒等变形降低要求,避免技巧性强的变形和繁琐的运算。
参考案例:解三角形在实际中的应用
参考案例1.航海中甲船在A处发现乙船在北偏东45,与A的距离为10海里的C处正以20海里/h的速度向南偏东75的方向航行,已知甲船速度是203海里/h,问甲船沿什么方向,用多少时间才能与
乙船相遇?
教学建议:引导学生依据题意画出示意图,将实际问题转化为解三角形问题。若设甲船与乙船经过t小时在B处相遇,构建ACB,容易计算出AB20海里,BC20海里,根据余弦定理建立关于t的方程,求出t,问题就解决了。
答: 甲船沿北偏东75的方向,经过0.5小时与乙船相遇.参考案例2.为了测量某城市电视塔的高度,在一条直道上选 择了A,B,C三点,使ABBC60m,在A,B,C三点
例1图 DA 观察塔的最高点,测得仰角分别为45,54.2,60,若测量 E
者的身高为1.5m,试求电视塔的高度(结果保留1位小数).F 教学建议:引导学生依据题意画出示意图如图,将实际问题转化为
解三角形问题。要求电视塔的高度。只要求出DE的长。将问题中的已
知量、未知量集中到有关三角形中,构造出解三角形的数学模型。在例2图 ACE中和BCE中应用余弦定理,使问题获得解决.答: 电视塔的高度约为158.3m.4.要重视研究性学习
解三角形的内容有较强的应用性和研究性,可为学生提供丰富的研究性素材。建议在教学内容的设计上探索开放,在教学形式上灵活多样。可设计一些研究性、开放性的问题,让学生自行探索解决。参考案例:研究性学习
课外研究题:将一块圆心角为120,半径为20厘米的扇形铁片裁成一块矩形,请你设计裁法,使裁得矩形的面积最大?并说明理由.
教学建议:这是一个研究性学习内容,可让学生在课外两人一组合作完成,写成研究报告,在习题课上让学生交流研究结果,老师可适当进行点评。
参考答案:这是一个如何下料的问题,一般有如图(1)、图(2)的两种裁法:即让矩形一边在扇形的一条半径OA上,或让矩形一边与弦AB
平行。从图形的特点来看,涉及到线段的长度和角度,将
这些量放置在三角形中,通过解三角形求出矩形的边长,再计算出两种方案所得矩形的最大面积,加以比较,就可以得出问题的结论.
NBB
PO图(2)
QM
O图(1)
按图(1)的裁法:矩形的一边OP在OA上,顶点M在圆弧上,设MOA,则:
时,Smax200.
4按图(2)的裁法: 矩形一边PQ与弦AB平行,设MOQ,在MOQ中,OQM9030120,由正弦定理,得:
sin120
又MN2OMsin(60)40sin(60),MQ
20sin
3sin. 3
MP20sin,OP20cos,从而S400sincos200sin2.即当
∴SMQMN
sinsin(60)cos(260)cos60. 33
∴当30时,Smax由于
400. 3
400平方厘米. 200,所以用第二中裁法可裁得面积最大的矩形,最大面积为33
也可以建议学生在课外自行寻找研究性、应用性的题目去做,写出研究或实验报告,在学校开设的研究性学习课上进行交流,评价。
参考文献:
①全日制普通高中级学《数学教学大纲》。人民教育出版社。2002年4 月。
②《普通高中数学课程标准(实验))》。人民教育出版社。2003年4月第一次印刷。③《普通高中数学课程标准(实验)解读》。严士健 张奠宙王尚志等主编。江苏教育出版社。2004年4月。
第四篇:正弦定理余弦定理[推荐]
正弦定理 余弦定理
一、知识概述
主要学习了正弦定理、余弦定理的推导及其应用,正弦定理是指在一个三角形中,各边和它所对角的正弦的比相等.即余弦定理是指三角形任何一边的平方等于其它两边平方的和减去这两边与它们夹角的余弦的积的两倍,即a2=b2+c2-2bccosA,b2=c2+a2-2cacosB, c2=a2+b2-2abcosC.通过两定理的学习,掌握正弦定理和余弦定理,并能利用这两个定理去解斜三角形,学会用计算器解决解斜三角形的计算问题,熟悉两定理各自解决不同类型的解三角形的问题.认识在三角形中,已知两边和其中一边的对角解三角形,产生多解的原因,并能准确判断解的情况.
二、重点知识讲解
1、三角形中的边角关系
在△ABC中,设角A、B、C的对边分别为a、b、c,则有
(1)角与角之间的关系:A+B+C=180°;
(2)边与角之间的关系:
正弦定理:
余弦定理:a2=b2+c2-2bccosA
b2=c2+a2-2accosB
c2=a2+b2-2abcosC
射影定理:a=bcosC+ccosB
b=ccosA+acosC c=acosB+
bcosA
2、正弦定理的另三种表示形式:
3、余弦定理的另一种表示形式:
4、正弦定理的另一种推导方法——面积推导法
在△ABC中,易证明再在上式各边同时除
以在此方法推导过程中,要注意对
面积公式的应用.
例
1、在△ABC中,ab=60, sinB=cosB.面积S=15,求△ABC的三个内角. 分析:
在正弦定理中,由
进而可以利用三角函数之间的关系进行解题. 解:
可以把面积进行转化,由公式
∴C=30°或150°
又sinA=cosB∴A+B=90°或A-B=90°显然A+B=90°不可能成立
当C=30°时,由A+B=150°,A-B=90°得A=120°B=30°
当C=150°时,由A-B=90°得B为负值,不合题意故所求解为A=120°,B=30°,C=30°.例
2、在△ABC中,a、b、c分别是内角A、B、C的外边,若b=2a,B=A+60°,求A的值. 分析:
把题中的边的关系b=2a利用正弦定理化为角的关系,2RsinB=4RsinA,即sinB=2sinA. 解:
∵B=A+60°
∴sinB=sin(A+60°)=sinAcos60°+cosAsin60°
=
又∵b=2a
∴2RsinB=4RsinA,∴sinB=2sinA
例
3、在△ABC中,若tanA︰tanB=a2︰b2,试判断△ABC的形状. 分析:
三角形分类是按边或角进行的,所以判定三角形形状时一般要把条件转化为边之间关系或角之间关系式,从而得到诸如a+b=c,a+b>c(锐角三角形),a+b<c(钝角三角形)或sin(A-B)=0,sinA=sinB,sinC=1或cosC=0等一些等式,进而判定其形状,但在选择转化为边或是角的关系上,要进行探索.
解法一:由同角三角函数关系及正弦定理可推得,∵A、B为三角形的内角,∴sinA≠0,sinB≠0.
.
∴2A=2B或2A=π-2B,∴A=B或A+B=所以△ABC为等腰三角形或直角三角形.解法二:由已知和正弦定理可得:
整理得a-ac+bc-b=0,即(a-b)(a+b-c)=0,于是a=b或a+b-c=0,∴a=b或a+b=c.∴△ABC是等腰三角形或直角三角形.
5、利用正弦定理和余弦定理判定三角形形状,此类问题主要考查边角互化、要么同时化边为角,要么同时化角为边,然后再找出它们之间的关系,注意解答问题要周密、严谨.
例
4、若acosA=bcosB,试判断△ABC的形状. 分析:
本题既可以利用正弦定理化边为角,也可以利用余弦定理化角为边. 解:
解法一:由正弦定理得:2RsinAcosA=2RsinBcosB∴sin2A=sin2B
∴2A=2B或2A+2B=180°∴A=B或A+B=90°
故△ABC为等腰三角形或直角三角形解法二:由余弦定理得
∴a(b+c-a)=b(a+c-b)∴(a-b)(a+b-c)=0∴a=b或a+b=c
故△ABC为等腰三角形或直角三角形.
6、正弦定理,余弦定理与函数之间的相结合,注意运用方程的思想.
例
5、如图,设P是正方形ABCD的一点,点P到顶点A、B、C的距离分别是
1,2,3,求正方形的边长.
分析:
本题运用方程的思想,列方程求未知数. 解:
设边长为x(1 设x=t,则1 -5)=16t 三、难点剖析 1、已知两边和其中一边的对角,解三角形时,将出现无解、一解和两解的情况,应分情况予以讨论. 下图即是表示在△ABC中,已知a、b和A时解三角形的各种情况. (1)当A为锐角时(如下图),(2)当A为直角或钝角时(如下图),也可利用正弦定理进行讨论. 如果sinB>1,则问题无解; 如果sinB=1,则问题有一解; 如果求出sinB<1,则可得B的两个值,但要通过“三角形内角和定理”或“大边对大角”等三角形有关性质进行判断. 2、用方程的思想理解和运用余弦定理:当等式a2=b2+c2-2bccosA中含有未知数时,等式便成为方程.式中有四个量,知道任意三个,便可以解出另一个,运用此式可以求a或b或c或cosA. 3、向量方法证明三角形中的射影定理 在△ABC中,设三内角A、B、C的对边分别是a、b、c. 4、正弦定理解三角形可解决的类型:(1)已知两角和任一边解三角形; (2)已知两边和一边的对角解三角形. 5、余弦定理解三角形可解决的类型:(1)已知三边解三角形; (2)已知两边和夹角解三角形. 6、三角形面积公式: 例 6、不解三角形,判断三角形的个数. ①a=5,b=4,A=120° ②a=30,b=30,A=50° ③a=7,b=14,A=30° ④a=9,b=10,A=60° ⑤a=6,b=9,A=45° ⑥c=50,b=72,C=135° 解析: ①a>b,A=120°,∴△ABC有一解.②a=b,A=50°<90°,∴△ABC有一解. ③a ④a0 ∴△ABC有两解. ⑤b>c,C=45°,∴△ABC无解(不存在).⑥b>c,C=135°>90°,又由b>c知∠B>∠C=135°,这样B+C>180°,∴△ABC无解. 正弦定理说课内容 一 教材分析 : 本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。因此,正弦定理的知识非常重要。 根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标: 认知目标:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理与三角形的内角和定理解斜三角形的两类问题。 能力目标:引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,培养学生的创新意识和观察与逻辑思维能力,能体会用向量作为数形结合的工具,将几何问题转化为代数问题。 情感目标:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,给学生成功的体验,激发学生学习的兴趣。教学重点:正弦定理的内容,正弦定理的证明及基本应用。 教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。 二 教法 为了更有效地突出重点,突破难点,本节课 采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。突破重点的手段:抓住学生情感的兴奋点,激发他们的兴趣,鼓励学生大胆猜想,积极探索,以及及时地鼓励,使他们知难而进。另外,抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给以适当的提示和指导。突破难点的方法:抓住学生的能力线联系方法与技能使学生较易证明正弦定理,另外通过例题和练习来突破难点.三 学法: 指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。让学生在问题情景中学习,观察,类比,思考,探究,概括,动手尝试相结合,体现学生的主体地位,增强学生由特殊到一般的数学思维能力.四 教学过程 第一:创设情景,大概用2分钟 第二:实践探究,形成概念,大约用12分钟 第三:应用概念,拓展反思,大约用6分钟 (一)创设情境,布疑激趣 “兴趣是最好的老师”,如果一节课有个好的开头,那就意味着成功了一半,本节课由一个实 际问题引入 “工人师傅的一个三角形的模型坏了,只剩下如右图所示的部分,∠A=47°,∠B=53°,AB长为1m,想修好这个零件,但他不知道AC和BC的长度是多少好去截料,你能帮师傅这个忙吗?”激发学生帮助别人的热情和学习的兴趣,从而进入今天的学习课题。 (二)探寻特例,提出猜想 1.激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,发现正弦定理。 2.那结论对任意三角形都适用吗?指导学生分小组用刻度尺、量角器、计算器等工具对一般三角形进行验证。 3.让学生总结实验结果,得出猜想:在三角形中,角与所对的边满足关系 这为下一步证明树立 信心,不断的使学生对结论的认识从感性逐步上升到理性。 (三)逻辑推理,证明猜想 1.强调将猜想转化为定理,需要严格的理论证明。 2.鼓励学生通过作高转化为熟悉的直角三角形进行证明。 3.提示学生思考哪些知识能把长度和三角函数联系起来,继而思考向量分析层面,用数量积作为工具证明定理,体现了数形结合的数学思想。 4.思考是否还有其他的方法来证明正弦定理,布置课后练习,提示,做三角形的外接圆构造直角三角形,或用坐标法来证明 (四)归纳总结,简单应用 1.让学生用文字叙述正弦定理,引导学生发现定理具有对称和谐美,提升对数学美的享受。 2.正弦定理的内容,讨论可以解决哪几类有关三角形的问题。 3.运用正弦定理求解本节课引入的三角形零件边长的问题。自己参与实际问题的解决,能激发学生知识后用于实际的价值观。 (五)讲解例题,巩固定理 (六)课堂练习,提高巩固 (七)小结反思,提高认识 通过以上的研究过程,同学们主要学到了那些知识和方法?你对此有何体会? 1.用向量证明了正弦定理,体现了数形结合的数学思想。 2.它表述了三角形的边与对角的正弦值的关系。 3.定理证明分别从直角、锐角、钝角出发,运用分类讨论的思想。 大纲要求 (一)课程内容安排上的变化“解三角形”在原课程中为“解斜三角形”安排在“平面向量”一章,作为该章的一个单元。而在《普通高中数学课程标准》中重新进行了整合,将其安排在必修模块数学5中,独立成为一章。“平面向量”则安排在必修模块数学4中。 (二)教学要求的变化 大纲版教材要求 (1)掌握正弦定理、余弦定理,并能运用它们解斜三角形,能利用计算器解决解斜三角形的计算问题。 (2)通过解三角形的应用的教学,提高运用所学知识解决实际问题的能力。 (3)实习作业以测量为内容,培养学生应用数学知识解决实际问题的能力和实际操作的能力。 新课标教材要求 (1)通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。 (2)能运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题。 由此可以看出,《普通高中数学课程标准》在计算方面降低了要求,取消了“利用计算器解决解斜三角形的计算问题”的要求,而在探索推理方面提高了要求,要求“通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理”。 (三)课程关注点的变化原《全日制普通高级中学数学教学大纲》中的“解斜三角形”,比较关注三角形边角关系的恒等变换,往往把侧重点放在运算上。而《普通高中数学课程标准》则关注运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题,侧重点放在学生探究和推理能力的培养上。 (四)教材编写理念上的变化原《全日制普通高级中学数学教学大纲》中,解斜三角形作为平面向量知识的应用,突出其工具性和应用性。而《普通高中数学课程标准》将解三角形作为几何度量问题来处理,突出几何的作用,为学生理解数学中的量化思想、为进一步学习数学奠定基础。解三角形处理的是三角形中长度、角度、面积和度量问题,长度、面积是理解积分的基础,角度是刻画方向的,长度、方向是向量的特征,有了长度、方向,向量的工具自然就有了用武之地。第五篇:正弦定理说课稿