第一篇:六年级数学下册抽屉原理教材分析
抽屉原理教材分析
抽屉原理:把(n+1)个苹果放入n个抽屉中,那么必有一个抽屉中至少含有2个苹果。这个原理就是抽屉原理。
1。原理的证明:首先,若某个抽屉中被放入有2个苹果,那么原理得证;若一个抽屉放入一个苹果,那么n个抽屉中用去了n个苹果。n+1 个苹果还剩一个苹果,这一个苹果也要放入一个抽屉,无论这个苹果放入哪个抽屉中,这个抽屉中就含有2个苹果。原理得证。
2。关于抽屉原理:
(1)抽屉原理是说明一个操作的所有可能结果事件中,恰有一个结果必然存在的说理方法。
(2)做为原理本身,其表述是比较简单的。但是在解决实际问题要去使用这个原理的时候,有几个问题还是要注意处理好的:
[1]造抽屉:在实际问题中,抽屉往往是没有的,并且不同的问题,其抽屉往往也是不一样的。因此,在使用这个原理前,要先去构造抽屉。没有抽屉,抽屉原理是不能用的。
[2]造苹果:在实际问题中,苹果往往是没有的,并且不同的问题,其其苹果往往也是不一样的。因此,在使用这个原理前,也要去构造苹果。没有苹果,抽屉
3。学习抽屉原理的意义
1)培养抽象思维能力。因为对一个实际问题需要我们来说明的结论,我们是不可能把所有的情况一个一个列举出来,再去说明其正确性,而且有时候你想这样做也做不到,做不成。尤其是情况比较复杂、数量又比较大的时候,这样做(列举)几乎是不可能的。所以,在这样的背景下,要把问题解决好,说清楚,说明白,让别人认可你说的,你就必须要有一定的抽象思维能力。做使用抽屉原理解决问题的题目,可以发展我们的抽象思维。
2)训练从极端的层面来思考解决问题的策略。抽屉原理解决的问题的本身是离散的,可以用抽屉原理来解决的很多问题其牵涉到的面也是离散的。那么,这样一个离散度比较大的问题,却可以有一个让我们依靠的原理来解决,那其中必有其思考和解决异于其它问题的独特地方。而从问题结果中的一个比较极端的情况来思考,就是独特的地方之一。
第二篇:人教版六年级数学下册抽屉原理教学设计
小学六年级数学下册《抽屉原理》教学设计
教学内容:义务教育课程标准实验教科书六年级下册《抽屉原理》。
教学目标:
1.知识与能力:初步了解抽屉原理,运用抽屉原理知识解决简单的实际问题。
2.过程和方法:经历抽屉原理的探究过程,通过动手操作、分析、推理等活动,发现、归纳、总结原理。
3.情感与价值:通过“抽屉原理”的灵活应用感受数学的魅力;提高同学们解决问题的能力和兴趣。
教学重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。
教学难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。教具学具:课件、扑克牌、每组都有相应数量的笔筒、铅笔、书。
教学过程:
一、创设情景 导入新课
师:今天我们在学习新课之前,老师想请3名同学上来做一个游戏,游戏的名字叫“抢椅子”。谁愿意来?同学们看:这有几把椅子?几名同学?游戏的规则是:这3名同学绕着椅子顺时针转圈,老师说“停”时,必须找身旁的椅子坐下。请同学们观察,会发生怎样的情况。师:准备好了吗?走!(学生转,师说停)谁来说一下发生了什么情况?(一人没有做到座位)(再重复一遍做)这次又发生了什么情况?(两人挤在了一个椅子上)
师:这个游戏蕴含一个有趣的数学原理——抽屉原理。(板书课题)这节课我们就一起来研究这个数学原理。
二、自主操作 探究新知
1、用铅笔和文具盒探究抽屉原理
(一)活动1课件出示:把4根铅笔放到3个文具盒里,你有什么发现?
师:4人一小组你们摆摆看,会有什么发现?把你们发现的结果用自己喜欢的方式记录下来。(可以用图表示,也可以用数字表示)
1、学生动手操作,师巡视,了解情况。
2、汇报交流 说理活动
① 师:有什么发现?哪个小组先说说看?(指名说)
师:我看有些同学没有听清楚,老师在用课件展示一下。
② 再认真观察记录,还有什么发现? 板书:总有一个文具盒里至少放2 枝铅笔。“总有”是什么意思?(肯定有,一定有):至少有2枝“是什么意思?(有2枝或者2枝以上)
③ 怎样摆可以一次得出结论?(启发学生用平均分的摆法,引出用除法计算。)用算式怎么表示?(板书: 4 ÷3=1……1)
④ 师:这种方法是不是很快就能确定总有一个文具盒里至少有几枝铅笔呢?
⑤ 把5 根铅笔放进4 个文具盒里呢?还用摆吗?(板书: 5÷4=1……1)我们再来验证一下。(出示课件,再次出示课件,小结)⑥ 课件出示: 把7 根铅笔放进6 个文具盒呢? 把10 根铅笔放进9 个文具盒呢? 把100 根铅笔放进99 个文具盒呢? ⑦ 观察这些数据你发现了什么规律?(预设学生说出:至少数=商+余数)
师:是不是这个规律呢?我们来试一试吧!
3.深化探究 得出结论
课件出示:7 只鸽子飞回5个鸽笼,至少有两只鸽子要飞进同一个鸽笼里,为什么?
① 学生活动:同桌互相说一说。
② 交流说理活动 预设:生1:题目的说法是错误的,用商加余数,应该至少有3 只鸽子要飞进同一个鸽笼。生2:不同意!不是“商加余数”是“商加1”.③ 师:到底是“商加余数”还是“商加1”?谁的结论对呢?在小组里进行研究、讨论。
④ 师:谁能说清楚?板书:7÷5=1(只)……2(只)至少数=商+1 ④回顾刚才的想一想,如果要放的铅笔数比文具盒的数量多2,多3,多4或更多呢?这个结论还成立吗?(成立)那至少数等于什么?是商加1,还是商加余数呢?(至少数=商+1)
(二)活动二
课件出示:把5 本书放进2 个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?
1、分组操作后汇报。(板书:5÷2=2……1
7÷2=3……1 9÷2=4……1
2、那么探究到现在,大家认为怎样才能确定总有一个抽屉至少有几本书?怎么来的?(生:至少数=商+1)、师:我同意大家的讨论。我们这个发现就是有趣的“抽屉原理”,(点题)。(出示课件):“抽屉原理” 又称“鸽笼原理”,最先是由19 世纪德国数学家狄里克雷提出的,所以又称“狄里克雷原理”。这一原理在实际问题中有着广泛的应用,用它可以解决许多有趣的问题。(出示课件)抽屉原理虽然简单,却能解决许多有趣的问题。运用它时,关键是要找出谁是“抽屉”,谁是“待分物体”。像刚才的问题中,谁相当于“抽屉”?谁相当于“物体”?
三、灵活应用 解决问题
1、解释课前提出的游戏问题。
2、课件出示:8 只鸽子飞回3 个鸽舍,不管怎样分,总有一个鸽舍至少有几只鸽子?
3、课件出示:六二班任意13人中,至少有两人的出生月份相同。为什么?
4、课件出示:蓟县第六小学六年级共有学生385人,至少有2名学生,他们在同一天过生日。为什么?
四、畅谈感受 教学结束
同学们,今天这节课有什么感受?
【板书设计】
抽屉原理
铅笔 文具盒 总有一个杯子里至少有 4 ÷ 3 = 1„„1 2 5 ÷ 4 = 1„„1 2 7 ÷ 5 = 1„„2 2 7 ÷ 2 = 3„„1 4 9 ÷ 2 = 4„„1 5 物体
商+1
抽
屉
第三篇:六年级下册《抽屉原理》教学反思
抽屉原理是人教版六年级下册数学广角中的内容,由于初次接触新教材,对这部分内容不太理解.在教学设计中我亦有着一些困惑与问题:
1、如何定位教学目标,抽屉原理原属奥数内容,使学生初步感受一些基本的数学思想方法是“数学广角”的主要教学目标之一,但在具体的课堂中如何适度把握教学要求。我虽然在课前已经钻研了教参,也已经上完了课,但这个还是我值得探究的一个问题。
2、如何设计教学活动使学生在观察、操作中建立起解决“抽屉原理”问题的一般解决问题的方法的同时发展学生的思维也是值得思考的一个问题。
于是我通过翻阅奥赛书籍和在网上查询,终于弄清了原委。上课有了把握和信心。
一生活情境导入激发学习兴趣
新课标指出,数学来源于生活,服务于生活。引入新课时我设计了与生活有关的小问题,给学生造成悬念,激发他们积极思维,很快进入学习情境。
二从简单问题着手发现一般规律
在解决复杂问题时,为寻找规律可从简单情况入手分析,直到找到规律,再加以运用。本节课就是从较小的数据变化中探索规律、发现规律的。
三加强说理帮助学生弄清所以然
本节课从始至终我都要学生说理,叙述自己的思维过程。重在让学生真正理解什么叫“最不利”的情况。我觉得让学生弄清原因,比直接知道结果更重要。
由于此内容属于奥数范畴,某些学生理解起来还是不很轻松。这一现象说明他们还没有真正掌握抽屉原理的内涵,需要在今后的教学中进一步改进。真的希望自己能让学生们感受到学习奥数的快乐。
第四篇:六年级数学《抽屉原理》教学设计
六年级数学《抽屉原理》教学设计
《抽屉原理》教学设计
教学内容:
人教版《义务教育课程标准实验教科书数学》六年级下册数学广角《抽屉原理》。
教学目标:
1.知识与能力:初步了解抽屉原理,运用抽屉原理知识解决简单的实际问题。
2.过程和方法:经历抽屉原理的探究过程,通过动手操作、分析、推理等活动,发现、归纳、总结原理。
3.情感与价值:通过“抽屉原理”的灵活应用感受数学的魅力;提高同学们解决问题的能力和兴趣。
教学重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。
教学难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
教具学具:课件、扑克牌、每组都有相应数量的杯子、吸管。
教学过程:
一、创设情景,导入新课
分配房间1、3个人住两个房间 2、4个人住3个房间
板书课题:抽屉原理
展示学习目标1经历抽屉原理的探究过程,初步了解抽屉原理;
2运用抽屉原理解决简单的实际问题。
二、探究新知,揭示原理
1.出示题目:把4根吸管放进3个纸杯里。
师:先进入活动
(一):把4枝吸管放进3个杯子里,有多少种放法呢?会出现什么情况呢?大家摆摆看。在不同的摆法中,把每个杯子里面吸管的枝数记录下来,当某个杯子中没放吸管时可以用0表示。
2.学生动手操作,自主探究。师巡视,了解情况。
3.汇报交流 指名演示。
4.思考:再认真观察记录,有什么发现?
课件出示:总有一个杯子里至少有2根吸管。
5.理解“总有”、“至少”的含义
总有一个杯子:一定有一个杯子,但并不一定是只有一个杯子。
至少2根吸管:最少2枝,也可能比2枝多
6.讨论、交流:刚刚我们是把每一种放法都列举出来,知道了总有一个杯子里至少有2枝吸管。那为什么会出现这种情况呢?可不可以每个杯子里只放1枝吸管呢?和小组里的同学说说你的想法。
7.汇报:
吸管多,杯子少。
课件演示:如果每个杯子只放1枝吸管,最多放3枝。剩下的1枝吸管不管放进哪个杯子里,一定会出现“总有一个杯子里至少有2枝吸管”的现象。
8.优化方法
如果把5枝吸管放进4个杯子,结果是否一样呢?怎样解释这一现象?
师:把4枝吸管放进3个杯子里,把5枝吸管放进4个杯子里,都会出现“总有一个杯子里至少有2枝吸管”的现象。那么
把6枝吸管放进5个杯子里,把7枝吸管放进6个杯子里,把100枝吸管放进99个杯子里,结果会怎样呢?
9.发现规律
师:从上面的几个问题中,你发现了什么相同的地方?
条件都是吸管数比杯子数多1;结果都一样:总有一个杯子里至少有2枝吸管。
课件出示:只要放的吸管数比杯子的数量多1,不论怎么放,总有一个杯子里至少放进2枝吸管。
10.想一想:如果要放的吸管数比杯子的数量多2,多3,多4或更多呢?这个结论还成立吗?(只要求学生能说出自己的看法,并不要求一定是正确的)
师:是不是像同学们想的那样呢?我们接着进入下面的学习。
11出示自学提示:结合刚才所学,大胆猜一猜,也可动手摆一摆,并结合书上例2进行小组合作学习,完成表格,试着探索求“至少数”的方法。
学生小组学习,填写表格,讨论规律。
指生汇报得出结论:至少数=商+1
三、归纳总结抽屉原理
把m个物体放进n个抽屉里,用算术表示m/n=a......b,总有一个杯子里至少放a+i个物体,也就至“少数=商+1”
四、拓展应用:
课件一:填空1、34个小朋友要进4间屋子,至少有()个小朋友要进同一间屋子。
2、13个同学坐5张椅子,至少有()个同学坐在同一张椅子上
3、新兵训练,战士小王5枪命中了41环,战士小王总有一枪不低于()环。
4、从街上人群中任意找来20个人,可以确定,至少有()个人属相相同
课件二:
从扑克牌中取出两张王牌,在剩下的52张扑克牌任意抽牌。
(1)从中抽出18张牌,至少有几张是同花色?
(2)从中抽出20张牌,至少有几张数字相同?
课件三:
六(2)班有学生39人,我们可以肯定,在这39人中,至少有 人的生日在同一个月?想一想,为什么?
课件四:
六年级四个班的学生去春游,自由活动时,有6个同学在一起,可以肯定。为什么?
五、课堂总结
同学们,通过本节课的学习,你有哪些收获?
六、生成创新
课后搜集生活中有关抽屉原理的应用,试着自己编写一些利用抽屉原理解决的问题。
第五篇:小学六年级数学抽屉原理练习题
抽屉原理练习题
1.木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球?
解:把3种颜色看作3个抽屉,若要符合题意,则小球的数目必须大于3,故至少取出4个小球才能符合要求。
2.一幅扑克牌有54张,最少要抽取几张牌,方能保证其中至少有2张牌有相同的点数?
解:点数为1(A)、2、3、4、5、6、7、8、9、10、11(J)、12(Q)、13(K)的牌各取1张,再取大王、小王各1张,一共15张,这15张牌中,没有两张的点数相同。这样,如果任意再取1张的话,它的点数必为1~13中的一个,于是有2张点数相同。
3.11名学生到老师家借书,老师是书房中有A、B、C、D四类书,每名学生最多可借两本不同类的书,最少借一本。试证明:必有两个学生所借的书的类型相同。
证明:若学生只借一本书,则不同的类型有A、B、C、D四种,若学生借两本不同类型的书,则不同的类型有AB、AC、AD、BC、BD、CD六种。共有10种类型,把这10种类型看作10个“抽屉”,把11个学生看作11个“苹果”。如果谁借哪种类型的书,就进入哪个抽屉,由抽屉原理,至少有两个学生,他们所借的书的类型相同。
4.有50名运动员进行某个项目的单循环赛,如果没有平局,也没有全胜,试证明:一定有两个运动员积分相同。
证明:设每胜一局得一分,由于没有平局,也没有全胜,则得分情况只有1、2、3„„49,只有49种可能,以这49种可能得分的情况为49个抽屉,现有50名运动员得分,则一定有两名运动员得分相同。
5.体育用品仓库里有许多足球、排球和篮球,某班50名同学来仓库拿球,规定每个人至少拿1个球,至多拿2个球,问至少有几名同学所拿的球种类是一致的?
解题关键:利用抽屉原理2。
解:根据规定,多有同学拿球的配组方式共有以下9种:﹛足﹜﹛排﹜﹛蓝﹜﹛足足﹜﹛排排﹜﹛蓝蓝﹜﹛足排﹜﹛足蓝﹜﹛排蓝﹜。以这9种配组方式制造9个抽屉,将这50个同学看作苹果50÷9 =5„„5
由抽屉原理2k=[m/n ]+1可得,至少有6人,他们所拿的球类是完全一致的。
6.某校有55个同学参加数学竞赛,已知将参赛人任意分成四组,则必有一组的女生多于2人,又知参赛者中任何10人中必有男生,则参赛男生的人生为__________人。
解:因为任意分成四组,必有一组的女生多于2人,所以女生至少有4×2+1=9(人);因为任意10人中必有男生,所以女生人数至多有9人。所以女生有9人,男生有55-9=46(人)
7、证明:从1,3,5,„„,99中任选26个数,其中必有两个数的和是100。
解析:将这50个奇数按照和为100,放进25个抽屉:(1,99),(3,97),(5,95),„„,(49,51)。根据抽屉原理,从中选出26个数,则必定有两个数来自同一个抽屉,那么这两个数的和即为100。
8.某旅游车上有47名乘客,每位乘客都只带有一种水果。如果乘客中有人带梨,并且其中任何两位乘客中至少有一个人带苹果,那么乘客中有______人带苹果。解析:由题意,不带苹果的乘客不多于一名,但又确实有不带苹果的乘客,所以不带苹果的乘客恰有一名,所以带苹果的就有46人。
9.一些苹果和梨混放在一个筐里,小明把这筐水果分成了若干堆,后来发现无论怎么分,总能从这若干堆里找到两堆,把这两堆水果合并在一起后,苹果和梨的个数是偶数,那么小明至少把这些水果分成了_______堆。
解析:要求把其中两堆合并在一起后,苹果和梨的个数一定是偶数,那么这两堆水果中,苹果和梨的奇偶性必须相同。对于每一堆苹果和梨,奇偶可能性有4种:(奇,奇),(奇,偶),(偶,奇),(偶,偶),所以根据抽屉原理可知最少分了4+1=5筐。
10.有黑色、白色、蓝色手套各5只(不分左右手),至少要拿出_____只(拿的时候不许看颜色),才能使拿出的手套中一定有两双是同颜色的。
解析:考虑最坏情况,假设拿了3只黑色、1只白色和1只蓝色,则只有一双同颜色的,但是再多拿一只,不论什么颜色,则一定会有两双同颜色的,所以至少要那6只。
11.从前25个自然数中任意取出7个数,证明:取出的数中一定有两个数,这两个数中大数不超过小数的1.5倍.证明:把前25个自然数分成下面6组:
1;①
2,3;② 4,5,6;③
7,8,9,10;④
11,12,13,14,15,16;⑤
17,18,19,20,21,22,23, ⑥
因为从前25个自然数中任意取出7个数,所以至少有两个数取自上面第②组到第⑥组中的某同一组,这两个数中大数就不超过小数的1.5倍.12.一副扑克牌有四种花色,每种花色各有13张,现在从中任意抽牌。问最少抽几张牌,才能保证有4张牌是同一种花色的?
解析:根据抽屉原理,当每次取出4张牌时,则至少可以保障每种花色一样一张,按此类推,当取出12张牌时,则至少可以保障每种花色一样三张,所以当抽取第13张牌时,无论是什么花色,都可以至少保障有4张牌是同一种花色,选B。
13.从1、2、3、4„„、12这12个自然数中,至少任选几个,就可以保证其中一定包括两个数,他们的差是7?
【解析】在这12个自然数中,差是7的自然树有以下5对:{12,5}{11,4}{10,3}{9,2}{8,1}。另外,还有2个不能配对的数是{6}{7}。可构造抽屉原理,共构造了7个抽屉。只要有两个数是取自同一个抽屉,那么它们的差就等于7。这7个抽屉可以表示为{12,5}{11,4}{10,3}{9,2}{8,1}{6}{7},显然从7个抽屉中取8个数,则一定可以使有两个数字来源于同一个抽屉,也即作差为7,所以选择D。
15.某幼儿班有40名小朋友,现有各种玩具122件,把这些玩具全部分给小朋友,是否会有小朋友得到4件或4件以上的玩具?
分析与解:将40名小朋友看成40个抽屉。今有玩具122件,122=3×40+2。应用抽屉原理2,取n=40,m=3,立即知道:至少有一个抽屉中放有4件或4件以上的玩具。也就是说,至少会有一个小朋友得到4件或4件以上的玩具。
16.一个布袋中有40块相同的木块,其中编上号码1,2,3,4的各有10块。问:一次至少要取出多少木块,才能保证其中至少有3块号码相同的木块?
分析与解:将1,2,3,4四种号码看成4个抽屉。要保证有一个抽屉中至少有3件物品,根据抽屉原理2,至少要有4×2+1=9(件)物品。所以一次至少要取出9块木块,才能保证其中有3块号码相同的木块。
17.六年级有100名学生,他们都订阅甲、乙、丙三种杂志中的一种、二种或三种。问:至少有多少名学生订阅的杂志种类相同?
分析与解:首先应当弄清订阅杂志的种类共有多少种不同的情况。
订一种杂志有:订甲、订乙、订丙3种情况;
订二种杂志有:订甲乙、订乙丙、订丙甲3种情况;
订三种杂志有:订甲乙丙1种情况。
总共有3+3+1=7(种)订阅方法。我们将这7种订法看成是7个“抽屉”,把100名学生看作100件物品。因为100=14×7+2。根据抽屉原理2,至少有14+1=15(人)所订阅的报刊种类是相同的。
18.篮子里有苹果、梨、桃和桔子,现有81个小朋友,如果每个小朋友都从中任意拿两个水果,那么至少有多少个小朋友拿的水果是相同的?
分析与解:首先应弄清不同的水果搭配有多少种。两个水果是相同的有4种,两个水果不同有6种:苹果和梨、苹果和桃、苹果和桔子、梨和桃、梨和桔子、桃和桔子。所以不同的水果搭配共有4+6=10(种)。将这10种搭配作为10个“抽屉”。
81÷10=8„„1(个)。
根据抽屉原理2,至少有8+1=9(个)小朋友拿的水果相同。
19.学校开办了语文、数学、美术三个课外学习班,每个学生最多可以参加两个(可以不参加)。问:至少有多少名学生,才能保证有不少于5名同学参加学习班的情况完全相同?
分析与解:首先要弄清参加学习班有多少种不同情况。不参加学习班有1种情况,只参加一个学习班有3种情况,参加两个学习班有语文和数学、语文和美术、数学和美术3种情况。共有1+3+3=7(种)情况。将这7种情况作为7个“抽屉”,根据抽屉原理2,要保证不少于5名同学参加学习班的情况相同,要有学生 7×(5-1)+1=29(名)。
20.在1,4,7,10,„,100中任选20个数,其中至少有不同的两对数,其和等于104。
分析:解这道题,可以考虑先将4与100,7与97,49与55„„,这些和等于104的两个数组成一组,构成16个抽屉,剩下1和52再构成2个抽屉,这样,即使20个数中取到了1和52,剩下的18个数还必须至少有两个数取自前面16个抽屉中的两个抽屉,从而有不同的两组数,其和等于104;如果取不到1和52,或1和52不全取到,那么和等于104的数组将多于两组。
解:1,4,7,10,„„,100中共有34个数,将其分成{4,100},{7,97},„„,{49,55},{1},{52}共18个抽屉,从这18个抽屉中任取20个数,若取到1和52,则剩下的18个数取自前16个抽屉,至少有4个数取自某两个抽屉中,结论成立;若不全取1和52,则有多于18个数取自前16个抽屉,结论亦成立。
21.任意5个自然数中,必可找出3个数,使这三个数的和能被3整除。
分析:解这个问题,注意到一个数被3除的余数只有0,1,2三个,可以用余数来构造抽屉。解:以一个数被3除的余数0、1、2构造抽屉,共有3个抽屉。任意五个数放入这三个抽屉中,若每个抽屉内均有数,则各抽屉取一个数,这三个数的和是3的倍数,结论成立;若至少有一个抽屉内没有数,那么5个数中必有三个数在同一抽屉内,这三个数的和是3的倍数,结论亦成立。
22.在边长为1的正方形内,任意放入9个点,证明在以这些点为顶点的三角形中,必有一个三角形的面积不超过1/8.解:分别连结正方形两组对边的中点,将正方形分为四个全等的小正方形,则各个小正方形的面积均为1/4。把这四个小正方形看作4个抽屉,将9个点随意放入4个抽屉中,据抽屉原理,至少有一个小正方形中有3个点。显然,以这三个点为顶点的三角形的面积不超过1/8。
反思:将边长为1的正方形分成4个面积均为1/4 的小正方形,从而构造出4个抽屉,是解决本题的关键。我们知道。将正方形分成面积均为1/4 的图形的方法不只一种,如可连结两条对角线将正方形分成4个全等的直角三角形,这4个图形的面积也都是1/4,但这样构造抽屉不能证到结论。可见,如何构造抽屉是利用抽屉原理解决问题的关键。
23. 班上有50名学生,将书分给大家,至少要拿多少本,才能保证至少有一个学生能得到两本或两本以上的书。
解:把50名学生看作50个抽屉,把书看成苹果 ,根据原理1,书的数目要比学生的人数多,即书至少需要50+1=51本.24. 在一条长100米的小路一旁植树101棵,不管怎样种,总有两棵树的距离不超过1米。
解:把这条小路分成每段1米长,共100段,每段看作是一个抽屉,共100个抽屉,把101棵树看作是101个苹果 ,于是101个苹果放入100个抽屉中,至少有一个抽屉中有两个苹果 ,即至少有一段有两棵或两棵以上的树.25. 有50名运动员进行某个项目的单循环赛,如果没有平局,也没有全胜.试证明:一定有两个运动员积分相同
证明:设每胜一局得一分,由于没有平局,也没有全胜,则得分情况只有1、2、3„„49,只有49种可能 ,以这49种可能得分的情况为49个抽屉 ,现有50名运动员得分 则一定有两名运动员得分相同.26.体育用品仓库里有许多足球、排球和篮球,某班50名同学来仓库拿球,规定每个人至少拿1个球,至多拿2个球,问至少有几名同学所拿的球种类是一致的? 解题关键:利用抽屉原理2。
解:根据规定,多有同学拿球的配组方式共有以下9种:
{足}{排}{蓝}{足足}{排排}{蓝蓝}{足排}{足蓝}{排蓝}
以这9种配组方式制造9个抽屉,将这50个同学看作苹果=5.5„„5
由抽屉原理2k=〔 〕+1可得,至少有6人,他们所拿的球类是完全一致的。