第一篇:《直角三角形的三边关系》教学反思
《直角三角形的三边关系》教学反思
本节课为华东师大版第十四章第一节的内容,在初中数学知识体系中,直角三角形三边关系是一节承上启下的内容,它与实数,二次根式,方程知识联系,将来学习四边形,圆,一元二次方程后,它的应用范围更大,《直角三角形的三边关系》教学反思。勾股定理也是后续学习“解直角三角形”的基础。依照教学大纲,为了更好地实现教学目标,突破重点难点,任课教师采用的是新课堂教学模式“三学两评”,即让学生自学,其次学生展示自学成果,同时教师进行导学,最后通过练习和师生小结进行学习评价。
下面,任课教师从两个方面来进行本节课的教学反思。
一、本节课的成功之处:
1、实现了教学方式的转变。
传统的教学方式是教师讲,学生听。在这次教学中,任课教师灵活地运用“三学两评”,通过小组讨论,学生展示自学成果,小师傅一拖N,充分调动学生学习的积极性和主动性,使学生爱学、乐学,充分体现了“教师角色向利于学生主动、自主、探究学习的方向转变,促成师生之间民主和谐与平等合作,教学反思《《直角三角形的三边关系》教学反思》。
2、信息技术辅助教学。
本节课任课教师利用了多媒体辅助教学,如情境导入、学习目标、学生活动、习题训练内容的展示、作业布置等,这些内容都是为教学服务的。通过多媒体课件的展示,增大了教学密度,使学生的双基训练得到了加强,使传统的课堂走向了开放,使学生真正感受到学习方式在发生变化。
3、知识来源于生活,再返回生活应用。
从生活实际中得出数学知识,再回到实际生活中加以运用也是本节课的一个教学”亮点"。使数学教学在生活情境中得以创新。本节课以活动为主线,通过猜想,推导到验证的过程,最后运用结论解决生活中实际问题,思路清晰,脉络明了。
4、教学中,教师也尊重了学生的这种个性差异,要求不同的学生达到不同的学习水平。在本节课的习题设置上,基本是呈阶梯式分布,后进生能做到基本的知识点应用,同时对于一些学有余力的学生,也给他们提供了发展的机会。
二、本节课的不足之处及改进方法:
1、教学没有彻底放开
回忆一下本节课的教学,任课教师感受到自己的教学还是没有彻底放开,教学设计不够创新,某些问题指向性还不够强,语言的陈述上不够严密,教学中的一切活动都是在教师精心安排下进行的,还是有一点点教师牵着学生走的感觉。在以后的教学工作中,还要继续向优秀教师学习,多听他们的课,自己也要多研究大纲和教材,多研究中考题。
2、某些习题问的太过直接,可稍微增加点技巧。
3、学生在应用勾股定理解决问题过程中书写过程不够规范和严谨,在计算技巧方面还有在与提高和加强。
第二篇:直角三角形三边的关系说课稿
各位专家评委、各位老师
大家好!我是中南学校的袁小劝,能参加这次活动,我感到十分高兴,同时也非常珍惜这样一个难得的交流和学习的机会,希望大家多多指教。我今天的说课课题是第14章勾股定理的第一节内容直角三角形三边的关系。
以下我就五个方面来介绍这堂课的说课内容:
一、教材分析
(一).教材地位、作用 这节课是九年制义务教育课程标准实验教科书(华师大版),八年级第14章第一节“勾股定理”的第一课时。勾股定理是几何中几个最重要的定理之一,它揭示了一个直角三角形三条边之间的数量关系,它可以解决许多直角三角形中的计算问题,是解直角三角形的主要依据之一,在生产生活实际中用途很大。它不仅在数学中,而且在其他自然科学中也被广泛地应用。由于勾股定理反映了一个直角三角形三边之间的关系,它也是直角三角形的一条重要性质,它能够把形的特征转化成数量关系,它把形与数密切联系起来。因此,它在理论上有重要的地位。
(二)、教学重点、难点
1、重点:经历探索和验证勾股定理的过程,会利用两边长求直角三角形的另一边长
2、难点:发现和验证勾股定理
(三)、教学目标
根据上述教材结构特点与教学重、难点,考虑到学生已有的认知结构、心理特征,结合新课改理念,特制定如下教学目标: 1.知识目标
(1)理解掌握勾股定理的内容,能够灵活运用勾股定理进行计算。
(2)通过观察,分析,动手实践,猜想,探索勾股定理,培养学生动脑,动手的操作能力,合作交流能力以及推理分析能力。
2.能力目标
在探究勾股定理的过程中,让学生经过“观察——猜想——归纳——验证”的数学思想,并体会数形结合和从特殊到一般的思想方法 3.情感态度与价值观
古今中外对勾股定理的认识和评价,感受数学文化,渗透爱国主义教育,激发民族自豪感。
三、教学方法、手段 1 教学设想
突出以学生的“数学活动”为主线,激发学生学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流过程中真正理解和掌握基本的数学知识与技能、数学思想与方法,获得广泛的数学活动经验。2. 教学方法 利用引导发现法、引导学生从具体生活情境及已有的知识和生活经验出发,提出问题与学生共同探索、学生与学生共同探索,以调动学生求知欲望,培养探索能力、创新意识。3. 教学手段
利用多媒体创设教学情境,引导学生观察、探索、发现、归纳来激发学生学习兴趣、激活学生思维,以利于突破教学重点和难点,提高课堂教学效益。新课标提倡教学中要重视现代教育技术、要引导学生独立思考、自主探索与合作交流,让学生掌握知识的发生发展过程,主动去获得新的知识,学会获取知识的方法,因而在教学中创设情境让学生乐意并全身心投入到现实的、探索性的数学活动中去。
四、学法指导 自主探究法:主动观察→分析→思考→比较→探索→猜测→类比→归纳→例题探索→练习挑战、巩固提高→总结
五、说教学过程设计:
<一>创设情景。
1、出示图片:这是2002年在北京召开的国际数学家大会的照片,大会会徽的主体图案就是这个图形,它是什么图形呢?它又有什么意义呢?为什么选它作为大会的会徽呢?
设计意图:“问题是思维的起点”从学生接受知识的最近思维发展区出发,通过问题引发学生的好奇心和求知欲望,激发学生的学习兴趣。
<二>探求新知。
1、出示 “毕达哥拉斯的故事”并提出相应的问题。
1、毕达哥拉斯朋友家地砖的形状是什么图形?
2、以a、b为边的两个小正方形P、Q的面积之和与以c为边的大正方形R的面积有什么关系?为什么?
3、等腰直角三角形三边之间有什么关系呢?
设计意图:通过传说故事来进一步激发学生的学习兴趣,使学生不知不觉地进入到学习的最佳状态。然后老师通过三个问题的引导,使学生发现:以等腰直角三角形两直角边为边长的两个小正方形的面积之和等于以斜边为边长的大正方形的面积。让学生通过对三个正方形的面积之间的关系发现:等腰直角三角形两直角边的平方和等于斜边的平方。这样的设计能让学生在轻松的氛围中积极参与对数学问题的讨论和探索,感受数学学习的过程。同时也有利于培养学生的语言表达能力,体会把形的特征轻化为数量关系的数形结合的思想。
2、组织学生学习并思考;等腰直角三角形具有上述性质,如果是一般的直角三角形,它的三边之间是否也具备这样的特殊的关系呢?
(2)探究P+Q与R,设计意图:这个问题,学生很容易求出正方形P与Q,可是求正方形R的面积就有一定的困难了。对于求R的面积通过互相交流后得出,老师在学生回答的基础上归纳方法:割补法和结论。(借助幻灯演示)发现在一般直角三角形中也存在两直角边的平方和等于斜边的平方。让学生体会到“从特殊到一般”的情形,这样的归纳结论更具有一般性。
<三>验证归纳
在图的方格图中,用三角尺画出两条直角边分别为5cm、12cm的直角三角形,然后用刻度尺量出斜边的长,并验证上述关系对这个直角三角形是否成立.设计意图:通过学生的动手画图,测量,验证,合作交流,来获取知识。使学生对验证的命题定理有更加深刻的认识和理解,再次体会数形结合的思想。从而归纳出勾股定理
四、勾股定理的相关知识
设计意图:前后呼应,通过对会徽的展示和勾股定理古今中外的介绍,激发学生强烈的民族自豪感,并能进行爱国主义教育。
五、解决问题。
1、练习
1、求出下列直角三角形中未知边的长度 练习
2、如图,将长为5.41米的梯子AC斜靠在墙上,BC长为2.16米,求梯子上端A到墙的底边的垂直距离AB.(精确到0.01米)
设计意图:使学生能初步用勾股定理解决一些简单的数学问题,突出本节课的重点,达到学以致用的目的。
3、小明妈妈买了一部29英(74cm)的电视机,小明量了电视机的屏幕后,发现屏幕只有58cm长和46cm宽,他觉得一定是售货员搞错了。你同意他的想法吗?你能解释这是为什么吗?
设计意图:这个问题是实际生活中的问题,老师引导学生把它转化为数学问题,也就是“已知一直角三角形的两边,求第三边?”的问题。这样学生利用刚学的“勾股定理”很容易地解决这个问题。设计的目的是反映了“数学来源于生活”,学习数学是为了更好地“服务于生活。”
<五>课堂小结:
设计意图:通过小结,完善学生对整学时课所学的知识与过程进行整理。
<六>布置作业:
设计意图:(1)是为了巩固“勾股定理”;(2)进一步学习定理的其他的证明方法。
七、板书设计
第三篇:三角形三边关系教学反思
让数学课既“有营养”又“好吃”
字数:2592 字号: 【大 中小】
《三角形三边关系》是苏教版数学四年级下册的教学内容,“三角形任意两边长度之和大于第三边”是三角形的重要性质。了解这一知识,不仅可以更好地理解和掌握三角形的特征,而且可以利用它解决很多日常生活问题。教材在例题之后编排了以下几道习题。
【教材呈现】
原题1:下面哪组线段可以围成一个三角形?为什么?
面画“√”。
原题2:一个三角形,两边的长分别是12厘米和18厘米,第三条边的长可能是多少厘米?在合适的答案下
原题3:先量出下面两根小棒的长度,再想一想,能和它们围成三角形的第三根小棒的长可能是多少厘米?
原题4:从学校到少年宫有几条路线?走哪一条路最近?
在实际教学中,逐一解决以上习题固然能巩固“三角形任意三边之和大于第三边”这一知识点,加深对三角形三边关系的理解。但是,总是以小棒为载体,运用结论进行判断和选择,学生始终感觉在进行数学训练,兴趣淡然,体会不到这一知识内涵的丰富性以及在生活中的广泛应用。为此,我对练习进行了重新设计。
【教学片段】
师:这节课我们一起研究了三角形的三边关系,知道了三角形任意两边之和都是大于第三边的。这个知识在生活中用处可大着呢!不信,你看!
第一组:
师:木匠王师傅要找三根木料做一个三角形,他挑出了这样三根,能做出来吗?出示:
生:不能,因为第二根加第三根小于第一根。
师:只判断这两根就确定啦?
生:我觉得只要有两条边的和小于第三边就肯定不行了。
师:那你为什么不先判断第一根加第二根,或者第一根加第三根呢?
生:第一根最长,再加一根更长,肯定大于第三根。
师:那能不能围成,最关键是看什么?
生:两条短一些的边加起来大于最长的边。
师:哦!难怪你们这么快,原来还有这个窍门啊!
第二组:
师:王师傅试了试,果然做不成三角形。无奈之下,换了一根。这回,能做起来吗?
出示:
生:还是不能,因为第二根加第三根的和等于第一根,还是围不成。
师:为什么选7+3来判断?
生:因为7和3是较短的。这一组如果符合要求,其余的也一定符合要求!
师:说得真棒!
第三组:
师:王师傅两次都没做起来,有些不高兴了,他拿起锯子,把最长的一根锯掉了一段!这回,他成功了吗?
出示:
生(很失望):还是没有!
师:怎么又失败了呢?这最长的一根已经被锯短了呀!
生:不对,因为这一锯,让第二根成为最长的了,3厘米加3厘米小于7厘米,两条短边加起来小于最长的边,还是做不成!
第四组:
师:王师傅一气之下,把这根锯短的扔掉了,他决心重新寻找!你们能给王师傅一些建议?(取整数)
出示4:
生:5厘米。
师:可以吗?
生判断:3厘米+5厘米>7厘米,能围成三角形。
生:8厘米也可以。
师:行吗?其他学生判断。
……
师:大家你一言我一语,都有道理!王师傅想,你们要是能给我个范围就好了!
生交流,汇报。
生:我认为只要大于4厘米小于10厘米都可以。
师:为什么?
生:如果正好是4厘米,那么3+4=7,围不成,所以要比4厘米多;如果正好是10厘米,那么3+7=10,也围不成,所以要比10厘米少。
师:看来,第三根的长度除了要比两根之和短,还有什么要求?
生:两边之和大于第三边,两边之差小于第三边。
师:有了大家的建议,王师傅终于找到了合适的木料!
生不禁欢呼……
第五组:
师:王师傅完成了任务!一看时间,不早了,得赶紧回家!
出示:
师:王师傅从木料场回家,有几条路可走?他会选择哪一条路呢?
生:中间一条。
师:为什么?
生:两边的路是弯曲的,中间的是直的,两点之间线段最短。
师:用我们今天学的知识能解释吗?
生:中间一条路和两边的路合在一起,可以看作两个三角形。每个三角形中,两边之和又是大于第三边的,所以中间的路最近。
【设计思考】
特级教师吴正宪提出,要让孩子享受既有“营养”又“好吃”的数学学习,单调的练习题如何烹饪成适合孩子的美味?本节课,主要做了以下思考:
有“营养”,要有明确的目标定位。课前,我首先对教材中安排的4道习题进行了研究。题1是根据每组中3条线段的长度判断它们是否能围成三角形,巩固对三角形三边关系的认识,强化对三角形特征的认知。题2引导学生根据给定的三角形的两条边,讨论第三边的长度所在的区间,并选择合适的第三边的长度,使学生更深刻地理解三角形的三边关系,培养思维的条理性和严密性,发展空间观念。题3要求先测量长度,再判断能与之围成三角形的第三根小棒的长度。促使学生在寻求第三根小棒长度的过程中,初步形成三角形两边长度的差小于第三边的认识,进而加深对三角形三边关系的认识与理解。题4则是让学生应用三角形的三边关系解决简单的实际问题,使学生在解决问题的过程中不断加深对三角形三边关系的理解。
以上习题的训练目标成为我练习设计的首要定位,即:无论以何种形式呈现,内在的达成目标应该是既定不变予以落实的。
有“营养”,要有助于提升思维能力。
教材习题是通过不同的要求,达成学习目标的,但每道题在独立练习时,目标指向性比较单一,一道题解决一个问题。而关于三边关系的知识,内在联系是非常紧密的,三条边中任意一条边长度的改变都有可能引起整体的变化。是否可以通过“变式”来沟通知识的联系,让学生在不断的思维转换中加深对三边关系的理解?这一想法成为练习设计的落脚点。于是梳理不同类型三角形的特点并有机串联,第一组是两边之和小于第三边的类型,通过追问,引导学生得出判断的简便方法,只要判断两条短边之和大于第三边即可。第二组呈现两边之和等于第三边的情形,用于巩固。第三组则在第二组的基础上,将最长的变为最短的,此举,从形式上来看,只是改变了一根小棒的长度,但从本质上讲,此时三角形三边的长短关系则发生了变化,较短边不再是前两组的7和3,而是3和3,这就促使学生重新审视三边长度整体把握后再作判断。第四组只给定两根小棒的长度,思考第三根小棒的长度区间,不仅考虑两根之和大于第三边,还要考虑两边之差小于第三边。最后一组将知识应用于生活。此环节没有出示过多的习题与要求,只是在一组练习的基础上通过不断地变式,由浅入深,逐步提升思维含量,培养学生的思维能力。
“好吃”,要能激发儿童兴趣。
很多学生抱怨数学冰冷、枯燥、无趣,那往往是因为我们将原本鲜活的内容生硬地呈现在了学生面前。课堂上,学生为了做题而做题,数学与生活成了两张皮,学生丝毫体会不到所学的数学知识离开了课本在生活中能有何应用?儿童的心理特征决定了只有有趣的,才是他们愿意学的。激发学习兴趣,理应成为教师课堂教学的重要任务。上述案例中,笔者反复思量,寻找与三边关系紧密结合的生活原型,创造性地设置出木匠王师傅做三角形的情境,学生在帮助王师傅寻找合适木料的过程中,积极性被充分调动起来,体会到了问题解决后的愉悦之情。
“好吃”,要站在儿童立场解决问题。
所谓儿童立场,简单地说,就是教师要能够换位思考,把自己当作儿童,以儿童的眼光看待事物,以儿童的视角考虑问题。我们常常以成人的眼光审视严谨系统的数学,并以自己习惯了的教学方式将数学“成人化”地呈现在学生面前。课堂上,常常忽视了童年期学生心理、特点和学习规律,失去了儿童的情趣。上述案例中,教者就抓住了儿童爱听故事的年龄特点,为数学问题创设生活情境,在情境中生动地讲述故事,王师傅找木料,换木料,锯木料,扔木料,一波三折,环环相扣。当王师傅总是找不到合适的木料时,学生们不禁发出一阵阵叹息,继而迅速投入到紧张的思考中。当王师傅在大家的帮助下终于完成任务,学生们竟不约而同地发出“耶……”的欢呼声!课堂上,既有人物情感的相互交融,又有学生思维的深度撞击,师生互动,生生互动,在分析、讨论、质疑、归纳过程中,学生对于三角形三边关系的认识不断丰富,理解更加深刻。有位老师听课后不觉感叹:数学课上成了“故事课”,不要说学生,连我们也意犹未尽啊!
作为教师,我们要读懂教材、读懂学生、读懂课堂,用心研究,尽可能地丰富习题内涵,让习题承载多重训练目标。同时用智慧创造,让学生在兴趣的指引下,思维不断得到提升。唯有“营养”与“好吃”兼而有之,才能烹饪出学生喜欢的数学课堂。
第四篇:《三角形三边的关系》教学反思
三角形三边关系教学反思
《三角形的三边关系》三角形的三边关系是在学生了解了三角形的一些基本特征的基础上学习的,学生虽然知道了三角形有三条边,但三角形“边”的研究却是学生首次接触,短短的三十五分钟之内,要让学生从抽象的几何图形中得出三角形三边的关系这个结论,并加以运用,并非易事。因此,教学中,我让学生亲身经历了探究的过程,围绕“任意的三条线段能不能围成一个三角形?”这个问题让学生自己动手操作,发现有的能围成,有的不能围成,再次由学生自己找出原因,为什么能?为什么不能?初步感知三条边之间的关系,接着重点研究“能围成三角形的三条边之间到底有什么关系?”通过观察、验证、再操作,最终发现三角形任意两边之和大于第三边这一结论。这样教学符合学生的认知特点,既增加了兴趣,又增强学生的动手能力。通过本节课的教学,既让我感受到了成功的喜悦,同时也从课堂中暴露出了一些实际问题,下面我将从以下几方面反思本节课的课堂教学:
一、关注学生亲身经历
本节课的一个突出特点就在于学生的实际动手操作上,通过教师提问:能否摆成三角形与三角形的“边的长度”有关系,它们之间有着怎样的关系呢?今天我们就一起来研究这个问题。这样很自然地就导入了新课,为后面的新课做了铺垫。在新授部分:学生用手中的小棒按老师的要求来摆三角形,并且做好记录。这个过程必须得每个学生亲自动手,在此基础上观察、发现、比较,从而得出结论。苏霍姆林斯基曾说:“在人的心理深处都有一种根深蒂固的需要,这就是希望自己是一个发现者、研究者和探索者。而在儿童的精神世界中,这种需要特别强烈。”教学中,我有意设置这些实际动手操作、共同探讨的活动,既满足了学生的精神需要,又让学生在浓烈的学习兴趣中学到了知识,体验到了成功的快乐。
二、练习设计层层深入
本节课我设计了四个练习:
1、判断能否围成三角形。
2、小明从家到学校走哪条路最近?
3、从五根小棒中选择3根小棒组成三角形,4、找第3根边组成三角形
评价一节数学课,最直接有效的方式就是通过练习得到的反馈。而学生之间参差不齐,为了能兼顾全班学生的整体水平,我在练习设计上主要采用了层层深入的原则,先是基础知识的练习,并从中发现3根一样长的小棒一定能组成三角形;然后用三角形的知识解决实际问题;最后增加拓展延伸题,让优等生在这个知识点上的学习更进一步。而每一道题都运用了本节课的知识,每一道题目的呈现方式又都不同。这样既能让后进生跟得上,又能让优等生吃得饱,从而让全班同学共同进步。
但是从教学过程中我也反思了自己的不足之处。
一、时间安排不够合理,当发现学生在填写表格时有困难,应及时引导学生填写,在这部分时间有所浪费;
二、没有及时捕捉学生的智慧。学生在思考“能围成三角形三条边的关系”时,其中有一个学生说“我发现两条短边的和比另外一条边长时,就能围成三角形。”当时由于我考虑到为后面的“任意”二字做铺垫,并没有对学生的这个答案做过多的评价。而是自后面的优化环节才提及,没有很好地利用学生生成的资源。
第五篇:《三角形三边关系》的教学反思
《三角形三边关系》这节课重难点非常的清楚,就是让学生明确在三角形中任意两边之和大于第三边,主要是让学生通过操作来探索。但是在这其中又有一个难点就是对于有两条边加起来和第三条一样长的情况该怎样去处理,在实际操作中有误差,这样就会让大部分学生会认为能围成三角形,对于这一点该怎样去处理确实让人头疼,经过研讨我们组老师建议尽量的减少教具的误差,之后加上课件的直观演示,可能会让学生能更好地理解,通过这一次的连片教研我更好地体会到这样做的原因了。其次在教学过程中另一个让我们纠结的地方是到底是先研究能围成的两组,还是先研究不能围成的两组,经过讨论大家一致认为由学生的争议点2.6.8这一组不能围成的入手,但是到最后该怎样引导学生去自己探索三边之间的关系,在这一点上我做的有些生涩。经过这次的研讨,于华静老师给的建议让我顿时觉得开阔了很多,调整了研究的顺序让学生从简单入手,慢慢的深入研究,把主动性还给学生。这是我第一次以这样的形式参加连片教研,过程虽是难过,但是收获却是满满的!