第一篇:《充要条件证明题》
《充要条件证明题》
1、数列{xn}满足:x10,xn1xnxnc(nN)证明:数列{xn}是单调递减数列的充分必要条件是c0
证明:必要条件:当c0时,xn1xnxncxn数列{xn}是单调递减数列充分条件:数列{xn}是单调递减数列x1x2x1x1ccx10得:数列{xn}是单调递减数列的充分必要条件是c02、设数列a1,a2,an中的每一项都不为0.证明,an为等差数列的充分必要条件是:对任何nN,都有证明:先证必要性
设数列{an}的公差为d,若d0,则所述等式显然成立,若d0,则
*
111n.a1a2a2a3anan1a1an1
a1a2a2a3anan1
aan1a2a1a3a2
(n1)da1a2a2a3anan3
1111111(()()())da1a2a2a3anan1
1111an1a1()da1an1da1an1n
.a1an1
再证充分性.证法1:(数学归纳法)设所述的等式对一切nN都成立,首先,在等式
112
① a1a2a2a3a1a3
两端同乘a1a2a3,即得a1a32a2,所以a1,a2,a3成等差数列,记公差为d,则a2a1d.
第二篇:证明题
一、听力部分
1—5 ACACB6—10 ABCBC11—15 ACABC16—20 CABAA
二、单选
21—25 ABBCC26—30 DBACC31—35 DCCDB
三、完形填空
36—40 BACCD41—45 AABAB
四、阅读理解
46-50 ABBCD51—55 BBABD56—60 DADCD 61—65 TFTFF
五、综合填空
66.hear67.advice
71.discuss72.angry
六、情景交际
76—80CFAED
七 作文
该卷分工情况
第五大题:史永利
第七答题:孙荣花68.how to73.them董丽萍 陈志宏69.understanding70.feel74.true75.goes 周婷平晓蕾
第三篇:证明题
一.解答题(共10小题)1.已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.
2.如图,已知∠1+∠C=180°,∠B=∠C,试说明:AD∥BC.
3.已知:如图,若∠B=35°,∠CDF=145°,问AB与CE是否平
行,请说明理由.
分值:显示解析
4.如图,已知CD⊥DA,DA⊥AB,∠1=∠2.试说明DF∥AE.请
你完成下列填空,把解答过程补充完整.
解:∵CD⊥DA,DA⊥AB,∴∠CDA=90°,∠DAB=90°.()
∴∠CDA=∠DAB.(等量代换)
又∠1=∠2,从而∠CDA-∠1=∠DAB-
.(等式的性质)
即∠3=
.
∴DF∥AE.(7.如图,∠B=55°,∠EAC=110°,AD平分∠EAC,AD与BC平行吗?
为什么?根据下面的解答过程,在括号内填空或填写理由.
解:∵AD平分∠EAC,∠EAC=110°(已知)
∴∠EAD=
第四篇:证明题格式
证明题格式把已知的作为条件 因为(已知的内容)因为条件得出的结论 所以(因为已知知道的东西)顺顺顺 最后就会得出 题目所要求的 东西了 谢谢 数学我的强项 1 当 xx 时,满足。是以xx为条件,做出答案。2 试探究。。。。是以。。。。。为条件,做出答案 【需要证的】
∵【从题目已知条件找】(已知)∴【从上一步推结论】(定理)„„(写上你所找的已知条件然后推出结论进行证明,最好“∴”后面都标上所根据的定理)∴【最终所证明的】
就是不知道怎么区分这两种证明格式: 1 当 时,满足。并证明
回答时好像要把该满足的内容当做条件证明 2 试探究。。。。同上
怎么回答时就要自己在草稿本上算出当 时,然后把它作为条件 得到满足 的结论 2 1 当 xx 时,满足。是以xx为条件,做出答案。2 试探究。。。。是以。。。。。为条件,做出答案 3 把已知的作为条件 因为(已知的内容)因为条件得出的结论 所以(因为已知知道的东西)顺顺顺 最后就会得出 题目所要求的 东西了 谢谢 数学我的强项 尽管问我吧 谢谢..............4 格式就按照你的想法写就行。要说的是,不少证明题是可以“骗分”的。假如有一道题是要求证某三角形的形状,你知道是等边三角形,到不会算,那你就可以利用等边三角形的特性,随便写。多多益善,只要不是错的。老师改卷时一般先看结果,结果对的话,只要过程没有很明显毛病就会得到大部分分数。就是是被看出是错的,因为你写的特性没错。老师也不会给你零分。
试论推理格式与数学证明方法孙宗明摘要本文以命题真值代数的基本知识为依据,阐述五种主要的数学证明方法:演绎法、完全归纳法、反证法、半反证法、数学归纳法。关键词推理,推理格式,数学证明本文假定熟知命题真值代数的基本知识.本文所使用的符号是标准的,见【川.1 1 当 xx 时,满足。是以xx为条件,做出答案。2 试探究。。。。是以。。。。。为条件,做出答案 3 把已知的作为条件 因为(已知的内容)因为条件得出的结论 所以(因为已知知道的东西)顺顺顺 最后就会得出 题目所要求的 东西了 谢谢 数学我的强项 1 当 xx 时,满足。是以xx为条件,做出答案。2 试探究。。。。是以。。。。。
第五篇:证明题格式
证明题格式
把已知的作为条件因为(已知的内容)
因为条件得出的结论所以(因为已知知道的东西)
顺顺顺最后就会得出题目所要求的东西了谢谢数学我的强项
1当xx时,满足。是以xx为条件,做出答案。
2试探究。。。。是以。。。。。为条件,做出答案
【需要证的】
∵【从题目已知条件找】(已知)
∴【从上一步推结论】(定理)
……(写上你所找的已知条件然后推出结论进行证明,最好“∴”后面都标上所根据的定理)
∴【最终所证明的】
就是不知道怎么区分这两种证明格式:
1当时,满足。并证明
回答时好像要把该满足的内容当做条件证明
2试探究。。。。同上
怎么回答时就要自己在草稿本上算出当时,然后把它作为条件得到满足的结论
21当xx时,满足。是以xx为条件,做出答案。
2试探究。。。。是以。。。。。为条件,做出答案
3把已知的作为条件因为(已知的内容)
因为条件得出的结论所以(因为已知知道的东西)
顺顺顺最后就会得出题目所要求的东西了谢谢数学我的强项尽管问我吧谢谢..............4格式就按照你的想法写就行。要说的是,不少证明题是可以“骗分”的。假如有一道题是要求证某三角形的形状,你知道是等边三角形,到不会算,那你就可以利用等边三角形的特性,随便写。多多益善,只要不是错的。老师改卷时一般先看结果,结果对的话,只要过程没有很明显毛病就会得到大部分分数。就是是被看出是错的,因为你写的特性没错。老师也不会给你零分。
试论推理格式与数学证明方法孙宗明摘要本文以命题真值代数的基本知识为依据,阐述五种主要的数学证明方法:演绎法、完全归纳法、反证法、半反证法、数学归纳法。关键词推理,推理格式,数学证明本文假定熟知命题真值代数的基本知识.本文所使用的符号是标准的,见【川.1
1当xx时,满足。是以xx为条件,做出答案。
2试探究。。。。是以。。。。。为条件,做出答案
把已知的作为条件因为(已知的内容)
因为条件得出的结论所以(因为已知知道的东西)
顺顺顺最后就会得出题目所要求的东西了谢谢数学我的强项
1当xx时,满足。是以xx为条件,做出答案。
2试探究。。。。是以。。。。。为条件,做出答案
把已知的作为条件因为(已知的内容)
因为条件得出的结论所以(因为已知知道的东西)
顺顺顺最后就会得出题目所要求的东西了谢谢数学我的强项尽管问我吧谢谢..............