添平行线、利用相似三角形证明(共五则)

时间:2019-05-15 14:10:31下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《添平行线、利用相似三角形证明》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《添平行线、利用相似三角形证明》。

第一篇:添平行线、利用相似三角形证明

平行线分线段成比例(添辅助线)

一、知识要点:

1、平行线分线段成比例的基本图形;

2、构造基本图形来解题。

二、例题简析及练习:

1、已知FD与△ABC的边AB交于F,与AC交于E,与BC的延长线交于D,且

DEABAF=CD,求证: EFBC

B C D

1EF2AF练习

1、已知如图BD=CD,求证: 2BEAC

C例

2、△ABC中AF∶FC=1∶2,G是BF的中点,AG的延长线交BC于E,求BE:EC

C E

练习

2、△ABC中D是BC上的一点,AE∶EC=3∶4,BD∶DC=2∶3,求BF∶FE

E

C D 1例

3、□ABCD中,E是AB的中点,AF=FD,连接FE交AC于G,求AG∶AC 2D C

B E A

练习

3、已知,如图,△ABC中,E、F分别为BC的三等分点,D为AC的中点,BD分别与AE、AF交于点M、N,求BM:MN:ND

DE F C

三、巩固练习:

1、△ABC中,AB=AC,AD⊥BC,AP=PD。求证:1)PB=3PF;2)如果AC=13,求

AF的长。

F

C D

2、如图,D、F分别是△ABC的边AB、AC上的点,且AD∶DB=CF∶FA=2∶3 连DF交BC的延长线于E.求EF∶FD.3、已知OM∶MP=ON∶NR,求证:△PQR为等腰三角形。O4、直线截△ABC的边AB、BC、AC或其延长线于D、E、F,求证:

5、在△ABC中AC=BC,F为底边AB上的一点,的中点D,连接AD并延长交BC于E。1)求

R

ADBECF

1 DBECFA

F

E

D

C

BFm

,(m,n为正数)。取CFAFn

BE的值;2)如果BE=2EC,那么CFEC

所在的直线与边AB有怎样的位置关系?证明你的结论。3)E点能否为BC的中

m

点?如果能,求出相应的值,如果不能,说明理由。

n

利用相似三角形的证明

1、已知菱形ABCD中,F是BD上的一点,AF的延长线交BC于E,交DC的延长线于G,A

求证:CFFEFG

D

练习、如图,在△ABC中,AB=AC,D为BC上一点, E、F分别在AB、AC上,∠BDE=∠CFD.试说明 : BD·DC = BE·CF

练习、等腰梯形ABCD中,AD∥BC,AB=DC,过点D作AC的平行线交BA延长线于E,求证:DEDCEABD

D

C2、已知如图,∠A=90°,D是AB上任意一点,BE⊥BC,∠BCE=∠DCA,EF⊥AB,求证:AD=BF3、已知等腰直角△ABC中,BD

B

D

A

1AB,AEAC,求证:∠ADE=∠EBC。3

3练习、已知等腰直角△ABC中,AM∶MN∶NC=3∶1∶2,求证:∠CBN=∠ABM

E

C

B4、已知:如图,在△ABC中,AB=AC,点D、E分别在CB和CB的延长线上,∠BAE=∠ADB.求证:AB2=CD·BE.

B

C

E

练习、已知:如图4-38,等腰△ABC中,AB=AC,∠BAC=36°,AE是△ABC的外角平分线,BF是∠ABC的平分线,BF的延长线交AE于E.求证:(1)AF=BF=BC;(2)EF∶BF=BC∶FC.

5、已知如图,△ABC中AD是∠A的平分线,E是AB的中点,EF⊥AD交BC延长线于F,求证:DFCFBF

F D C

练习、△ABC中,AB=AC,AD是中线,P是AD上的一点,过点C作CF∥AB,延长BP

交AC于E,交CF于F,求证:BPPEPFF

D C6、已知如图,△ABC中,AB=AC,BD⊥AC,求证:BC22ACCD

C

练习

3、已知:在△ABC中,∠

BAC=90°,点D为BC上的中点,过点D作BC的垂线DF,交BA的延长线于点F,交AC于点E.求证:BC2=4DE·DF.

A CE

巩固练习

F1、如图△ABC是等边三角形,∠DAE=120°,D、B、C、E共线,则图中有相似三角形的个数至少为()(A)一对(B)二对(C)三对(D)四对

ABC,C90,CDAB于D,延长CB到E,使BECB。

2、已知:如图,求证:BAEBED。

3、如图,△ABC中,∠BAC=90°,AD⊥BC于D,DE为AC的中线,延长线交AB的延长于F,求证:AB·AF=AC·DF。

4、已知:如图,D、E是△ABC的边BC上两点,且∠BAD=∠C,∠DAE=∠EAC,求证:BD:BA=DE:EC5、已知:如图,在△ABC中EF是BC的垂直平分线,AF、BE交于一点D,AB=AF。求证:AD=DF。

6、已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于D,E是AC上一点,CF⊥BE于F。求证:EB·DF=AE·DB7、如图,△ABC中,点D、E分别在边AB、AC上,连接并延长DE交BC的延长线于点

F,连接DC、BE,若∠BDE+∠BCE=180°。⑴写出图中3对相似三角形(注意:不得添加字母和线)⑵请在你所找出的相似三角形中选取1对,说明它们相似的理由。A、如图,在△ABC中,DF经过△ABC的重心G,且DF∥AB,DE∥AC,连接EF,如果BC=5,AC=2AB.求证:△DEF∽△ABC

F

第二篇:利用相似三角形测高教学设计

《利用相似三角形测高》

教 学 设 计

教学目标

1、知识与技能

(1).通过测量旗杆的高度的活动,巩固相似三角形和三角函数有关知识,积累数学活动的经验.(2).熟悉测量工具的使用技能,了解小镜子使用的物理原理.2、过程与方法

(1).通过测量旗杆的高度,使学生运用所学知识问题,以分组合作活动的方法进行全班交流,进一步积累数学活动经验。(2).通过测量活动,使学生初步学会数学建模的方法.(3).提高综合运用知识的能力.3、情感态度与价值观

(1).理解数学模型来源生活,又为解决生活中的某一问题而服务,体会数学与实际生活的紧密联系,从而增强学生的数学应用意识。(2).通过问题情境的设置,培养学生积极的进取精神,增强学生数学学习的自信心。实现学生之间的交流合作,体现数学知识解决实际问题的价值。教学重点、难点

重点:综合运用相似三角形判定条件,性质和三角函数知识解决实际问题。

难点:

1、解决学生在操作过程中如何联系课本中的知识。

2、抓住测量方法,结合所学,进行问题的解决。教学过程:

一、问题导入

同学们,我们学校操场的旗杆很高,我们如何能知道它的高度呢?我们能否运用所学知识来解决这一问题呢?这就是这节课我们将要解决的问题。

二、探究新知

将全班分成4人一组,选出组长。活动1:利用太阳光下的影子

实验原理:利用太阳光是平行光,得到△ABE∽△CDB 具体操作:小组选一名同学直立于旗杆影子的顶端处。需测量的数据:观测者的身高AB、观测者的影长BE、同一时刻旗杆的影长BD 计算方法:由△ABD∽△CDB得

ABBEABBD从而求出CD.CDBDBE优点:1测量简便易行 2计算快捷 缺点:需要阳光,阴天不行

活动2:利用标杆,用眼睛观测,观测者的眼睛与标杆的顶端和旗杆的顶端“三点共线”

实验原理:当旗杆顶部、标杆的顶端与眼睛恰好在一条直线上时,因为人所在直线AB与标杆、旗杆都平行,过眼睛所在点A作旗杆DC的垂线交旗杆DC于N,交标杆EF于M,于是得△AEM∽△ACN.具体操作:选一名同学作为观测者,在观测者与旗杆之间的地面上直立一根高度适当的标杆。观测者适当调整自己所处的位置,当旗杆的顶部、标杆的顶端、观测者的眼睛恰好在一条直线上。

需测量的数据:观测者的眼睛到地面的距离AB、观测者的脚到标杆底部的距离FB和到旗杆底部的距离BD、标杆的高EF.计算方法:可以得出△AME∽△ANC,列出比例式CNANME,再用CN+DN即求出旗杆的高度。AMAMME,可得ANCN优点:1无需阳光 2有关数据易测量 3测量工具简单 缺点:1需要工具 2要求标杆与地面垂直 “三点一线” 活动3:利用镜子反射

实验原理:根据光线的入射角等于反射角,得到△ABE∽△CDE 3 具体操作:小组选一名同学作为观测者,在观测者与旗杆之间的地面上平放一面镜子,在镜子上做一个标记。观测者看着镜子来回移动,直至看到旗杆顶端在镜子中的像与镜子上的标记重合。

需测量的数据:观测者的身高AB、观测者的脚到镜子的距离BE和镜子到旗杆底部的距离ED。计算方法:

根据△ABE∽△CDE,列出比例式

ABBEAEDE,可得CD CDEDBE优点:1需要工具少且容易计量 2计算较简单 缺点:1镜子需要水平放置 2旗杆前无障碍物

三、实验收获与反思:

在此实践活动中,学生的显性收获是学会了如何测量旗杆的高度,如何构建相似三角形,如何构建直角三角形,将相似三角形、直角三角形等有关知识体系进行一定程度地梳理;隐性收获是体验到哪些方法可行,哪些方法不可行,那些方法较容易操作,得出的结果比较精确,从而获得构建几何模型解决实际问题的方法与经验。

第三篇:4.6利用相似三角形测高 教学设计

“自·合+”学习任务单

北师大版 九年级数学(上册)

4.6利用相似三角形测高

主备:童娇凤

1. 【教学目标】

2. 能够运用三角形相似的知识,解决不能直接测量物体的长度和高度(如测量金字塔高度问题、测量河宽问题、盲区问题)等的一些实际问题.

3. 通过把实际问题转化成有关相似三角形的数学模型,进一步了解数学建模的思想,培养分析问题、解决问题的能力.

【教学重点】

1.重点:运用三角形相似的知识计算不能直接测量物体的长度和高度.

2.难点:灵活运用三角形相似的知识解决实际问题(如何把实际问题抽象为数学问题).

【教学过程】

一、检查课前学习情况 出示学习目标

二、自·合探究1 任务:思考后回答以下列问题。

1.在阳光下,物体的高度与影长有有什么关系。2.你能有理由说明吗?

要求:独学2分钟,对学2分钟

(说明:了解太阳光本不是平行光,是离我们太遥远了,所以近视的看作是平行光,利用相似三角形的性质不难证明)

三、自·合探究2 任务:思考后回答以下问题。

利用三角形相似,如何测量旗杆的高 要求:独学5分钟,对学3分钟

四、归纳:

方法一:利用阳光下的影子 方法二:利用标杆 方法三:利用镜面反射

五、目标检测1 任务:

完成“学习单 目标检测1” 要求:

1.独立完成,答语完整,表述清晰; 2.独学10分钟.2.1有理数 1 “自·合+”学习任务单

北师大版 九年级数学(上册)

1,皮皮欲测楼房高度,他借助一长5m的标竿,当楼房顶部、标竿顶端与他的眼睛在一条直线 上时,其他人测出AB=4cm,AC=12m。已知皮皮眼睛离地面1.6m.请你帮他算出楼房的高度。

2.小明要测量一座古塔的高度,从距他2米的一小块积水处C看到塔顶的倒影,已知小明的眼部离地面的高度DE是1.5米,塔底中心B到积水处C的距离是40米.求塔高AB?

3.某同学想利用树影测量树高.他在某一时刻测得小树高为1.5米时,其影长为1.2米,当他测量教学楼旁的一棵大树影长时,因大树靠近教学楼,有一部分影子在墙上.经测量,地面部分影长为6.4米,墙上影长为1.4米,那么这棵大树高多少米?

4.有一棵高大的松树,小丽想测算出它的高度。由于太高无法攀登,也不好砍倒它。如果此时小丽手中只有一卷的软皮尺,你能帮帮她吗?说说你的设计方案。

(说明:利用前面的三种方法灵活应用三角形相似,寻找对应边的比)

2.1有理数 2 “自·合+”学习任务单

北师大版 九年级数学(上册)

六、课堂小结

1.掌握了利用相似三角形测高的方法 2.知道了如何测旗杆的高

【课后学习】

1. 在同一时刻物体的高度与它的影长成正比例.在某一时刻,有人测得一高为1.8米的竹竿的影长为3米,某一高楼的影长为60米,那么高楼的高度是多少米?

2.小明要测量一座古塔的高度,从距他2米的一小块积水处C看到塔顶的倒影,已知小明的眼部离地面的高度DE是1.5米,塔底中心B到积水处C的距离是40米.求塔高?

3.如图,小明在打网球时,使球恰好能打过网,而且落在离网5米的位置上,求球拍击球的高度h.(设网球是直线运动)

4.小明想利用树影测量树高,他在某一时刻测得长为1m的竹竿影长0.9m,但当他马上测量树影时,因树靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上,如图,他先测得留在墙上的影高1.2m,又测得地面部分的影长2.7m,他求得的树高是多少?

2.1有理数 “自·合+”学习任务单

北师大版 九年级数学(上册)

2.1有理数 4

第四篇:【教案】 相似三角形及平行线分线段成比例

27.2.1 相似三角形及平行线分线段成比例

一、教学目标: 知识目标

理解并掌握相似三角形及平行线分线段成比例的基本事实及其推论,并会灵活应用。能力目标

通过应用,培养识图能力和推理论证能力。情感态度与价值观

(1)、培养学生积极的思考、动手、观察的能力,使学生感悟几何知识在生活中的价值。

(2)、在进行探索的活动过程中发展学生的探索发现归纳意识并养成合作交流的习惯。

二、重、难点

重点:平行线分线段成比例定理和推论及其应用。

难点:平行线分线段成比例定理及推论的灵活应用,平行线分线段成比例定理的变式。

三、教学过程

1、复习设疑,引入新课

内容:教师提问:(1)什么是成比例线段?(2)什么是相似多边形?

(3)你能不通过测量快速将一根绳子分成两部分,使得这两部分的比是2:3?

目的:(1)复习成比例线段的内容,回顾上节课通过方格纸探究成比例线段性质的过程。(2)通过一个生活中的实例激发学生探究的欲望。效果:学生对不通过测量快速将一根绳子分成两部分,使得这两部分的比是2:3,这一问题很感兴趣,急切想要知道解决办法。

2、小组活动,探究定理

探究活动一:

内容:如图(1)小方格的边长都是1,直线a ∥b∥ c ,分别交直线m,n于 A1,A2,A3,B1,B2,B3。

A1A2B1B2,(1)计算

你有什么发现? A2A3B2B3(2)将b向下平移到如下图2的位置,直线m,n与直线b的交点分别为A2,B2。你在问题(1)中发现的结论还成立吗?如果将b平移到其他位置呢?

(图2)

(3)在平面上任意作三条平行线,用它们截两条直线,截得的线段成比例吗?

归纳:平行线分线段成比例定理:两条直线被一组平行线所截,所得的对应线段成比例;

目的:让学生通过观察、度量、计算、猜测、验证、推理与交流等数学活动,达到对平行线分线段成比例定理的意会、感悟。

效果:学生在以前的学习中,尤其是本章前两节的探究也是通过表格中的多边形来完成的。所以学生有种熟悉感,并不感到困难。

2.议一议: 内容:教师提问: 1.如何理解“对应线段”?

2.平行线分线段成比例定理的符号语言如何表示? 3.“对应线段”成比例都有哪些表达形式?

A1A2B1B2=若a ∥b∥ c,则

A2A3B2B3。

A1A2BBA2A3B2B3=12=AAB1B3,A1A2B1B2,由比例的性质还可以得到:13A2A3B2B3=A1A3B1B3等。

目的:让学生在探究得出结论的基础上,对平行线分线段成比例定理的有进一步的理解。并掌握定理的符号语言,进一步发展推理能力。

效果:学生从几何直观上很容易找出“对应线段”。利用比例的性质写出成比例线段时,感觉结论很多,老师这时可以引导总结出成比例线段的特点,那就是都体现了“对应”二字。探究活动二:

内容:如图3,直线a ∥b∥ c,分别交直线m,n于 A1,A2,A3,B1,B2,B3。过点A1作直线n的平行线,分别交直线b,c于点C2,C3。(如图4),图4中有哪些成比例线段?

(图3)

(图4)

推论:平行于三角形一边的直线与其他两边相交,截得的对应线段成比例。目的:让学生脱离表格,不通过计算,运用平行四边形的性质推理得出平行线等分线段定理的推论。

效果:学生已经学习过特殊四边形的性质与证明,所以很容易得出A1C2=B1B2,C2C3=B2B3,进而得出推论。而且让学生归纳表述结论,可培养学生的抽象概括能力及语言表达能力。

目的:加深对平行线分线段成比例定理及其推论的理解,发展学生的应用能力。效果:经过这一环节的变式应用,学生能够归纳出平行线分线段成比例定理及其 推论的本质特征。3.探究活动三:

内容:直线l1//l2//l3,l4、l5、l6被l1、l2、l3所截且AB=BC则图中还有哪些线段相等?

l4

l6

C

O F

l3

B

N E

l2

A D M l思考:当平行线之间的距离相等时,对应线段的比是多少?

2.如何不通过测量,运用所学知识,快速将一根绳子分成两部分,使这两部分之比是2:3? 目的:让学生体会平行线等分线段定理可看作是平行线分线段成比例定理的特例。解决课堂引入时提出的问题。

效果:学生很容易得出此时的对应线段的比值为1,也为后面探究相似与全等的关系做了铺垫。

3、灵活应用

内容:例

1、如图,在△ABC中,E、F分别是AB和AC上的点,且 EF∥BC,(1).如果AE = 7, FC = 4,那么AF的长是多少?

(2).如果AB = 10, AE=6,AF = 5,那么FC的长是多少?

课堂练习: B

C

E

F A

1、如图,已知l1//l2//l3,(1).在图(1)中AB = 5, BC = 7,EF=4,求DE的长。

(2).在图(2)中DE = 6, EF = 7,AB=5,求AC的长。

2、如图,在△ABC中,D、E分别是AB和AC上的点,且 DE∥BC,(1).如果AD = 3.2cm, DB = 1.2cm,AE=2.4cm,那么EC的长是多少?

(2).如果AB = 5cm, AD=3cm,AC = 4cm,那么EC的长是多少?

目的:通过对平行线分线段成比例定理的简单应用,规范书写格式,培养学生严谨的逻辑推理能力,深化对知识的理解。

效果:由学生直观操作得出的结论与简单推理进行有机结合,是对探索活动的自然延续和必要发展,实现理性升华,培养语言表达能力。

4、课堂小结:

内容:本节课你有哪些收获? 目的:

通过师生反思评价,实理知识的系统归纳,对知识和方法进行总结,并通过作业和考题全面巩固平行线分线段成比例定理及其推论。效果:

学生都能归纳出:

1、两条直线被一组平行线所截,所得的对应线段成比例; B D

E

A C(1)

F

C F B E A D

D A

E B

(2)

C

2、平行于三角形一边的直线与其他两边相交,截得的对应线段成比例。

5、布置作业:

第五篇:三角形相似教案

相似三角形的判定(1)教学设计

一、课题

相似三角形的判定(1)(选自2013年人教版数学九年级下册27.2.1,第1课时)

二、教材分析

1.内容要点

本节课让学生利用相似三角形的定义来进一步探索相似三角形的判定条件,从而让学生在学习新知里发展思维,加强与前面已学过的知识:图形的相似、相似多边形的主要特征(相似多边形对应的角相等,对应边的比相等),相似比甚至引导学生联系八年级上册所学的相等三角形的判定定理和平行从对比探索中增强学生的推理归纳和类比应用的能力。2.地位

本节课处于承上启下的位置,既增强了对图形的相似和相似多边形定义联系和运用,又为下一课时相似三角形的判定2以及以后的几何证明奠定了基础。3.作用

从初步认识相似三角形到探索如何利用平行线的特点判定两个三角形相似,从无到有的知识萌发,让学生由探究得到的平行线分线段成比例定理初步返回去严谨地认识两个图形的相似,在探索过程中掌握自主探究、类比、归纳以及转化的思想方法,增强推理能力,进而让学生感受到数学图形之美。经过对平行线分线段成比例定理以及相似三角形判定定理的探究学习,使学生的合情推理意识和主动探究的学习习惯得到发展。

三、学情分析 1.认知基础

学生在八年级上册中已经全面地认识了三角形,并且掌握了全等三角形的判定定理,加上平行线同位角等性质,并且在上一节课已学过了图形的相似以及相似多边形的主要特征,为本节课的学习相似三角形打下了基础。学生在观察、想象、合作探究、归纳概括等方面有了初步的体验,再加上学生会做辅助线,这为本课的学习奠定了一定的基础,但学生对转化思想,几何论证推理能力还在初步形成阶段,这使本节课的学习还有一定的困难。2.情意基础

学生是九年级的学生,对于新知识有一定的接受能力,且数形结合思想,转化思想都相对成熟,对探索学习饶有兴趣,但是思维容易固化,对问题看待不够全面。

四、教学目标

1.理解相似三角形不因位置改变而改变,书写三角形相似时对应角的字母顺序对应;

2.能运用平行线和三角形中线比例关系证明“A字型”三角形相似,能运用三角形全等的方法将“X字型”三角形转化为“A字型”三角形证明其相似;

3.理解相似三角形概念,能正确找出相似三角形的对应边和对应角; 4.能掌握并运用相似三角形判定的“预备定理”; 5.让学生参与探索,获取相似三角形判定条件,感受数学的魅力,体会到数学的充满探索与创造,在学习中发现数学的乐趣并在数学学习生活中形成自主,自信,健康的心理。

五、教学重难点

1.教学重点

相似三角形判定的“预备定理”的探索; 2.教学难点

探索过程中的各种三角形相似的有关证明;

六、教学方法和手段 1.教学方法 引导探究法 2.教学媒体 PPT

七、教学设计思想

探究式的教学方法是新课改的一个重要内容,布鲁纳主张学习的目的是以发现学习的方式使学科的基本结构转变为学生头脑中的认知结构,并且指出学生的知识学习是通过类别化信息的加工过程,积极主动地形成认知结构。利用学生的好奇心,设疑,解疑,组织互动,有效的教学活动,鼓励学生积极参与,大胆猜想,使学生在自主探究与合作交流中理解和掌握本节课的内容,增强直观效果,提高课堂效率。其次,数形结合思想,化归思想以及归纳法和分析法的应用,让学生对新知的认识更加透彻,对问题的探索思路更加明确,并从中让思维得到进一步的提升。

八、教学过程

(一)复习引入(5分钟)1.复习概念性质(3分钟)

T:同学们还记得相似图形的概念是什么吗? S:对应角相等,对应边成比例的两个图形相似。T:相似的两个图形会随它们位置的改变而改变吗? S:不会。

T:很好,大家先记着我们刚刚回忆的内容。下面我们来了解一下最简单的多边形----三角形的相似情况。

T:刚才我们回忆了相似图形的一些性质,那现在我手头上有根据相似图形性质画出来的两个相似三角形,不论它们之间的相对位置如何,乃至处于不同的平面,这两个三角形仍然是相似的。(老师拿出两个相似三角形并在同一平面变换两个三角形纸片的位置,然后让两纸片处于不同平面变换位置)(老师将两纸片贴在黑板上并标明字母)T:同学们我们要用字母表示这两个三角形相似,应该怎么写呢?我们一起来写,首先把两个三角形表示出来,分别是∆ABC∆DEF,同学在写的时候还要注意对应的顶点字母相对应,那中间用什么符号来表示两个三角形相似呢?有同学可以告诉我吗?

S:大写字母S横着写。

T:很好,这跟我们曾经学过的什么符号很像呢? SSS:全等符号。

T:那课后大家思考全等三角形与相似三角形之间有什么联系,下节课我再叫同学回答这个问题。2.创设情境(2分钟)

(老师利用这组相似三角形纸片,将两个三角形的一个对应顶点重叠,贴在黑板上)

T:同学们你们看,相似三角形∆ABC和∆DEF的∆ABC的顶点A与∆DEF的顶点D重合并且∠BAC与∠EDF重合,那边EF和边BC有什么关系吗?

S:平行。

T:为什么呢?

S:同位角相等两直线平行。

T:嗯,AEB三点共线,且∠AEF=∠ABC,所以EF和BC平行。

(二)探索新知(20分钟)

T:如果平行于∆ABCBC边的直线与其他两边AB、AC相交与点E、F,所构成的∆AEF是否与∆ABC相似呢?

S:相似(不相似)。

T:大部分同学都说相似,接下来我们该做些什么去证明这两个三角形相似呢?

T:首先我们从我们学过的类似的图形出发,假设这条平行线是三角形中位线,我们来证明看看。同学们自行思考,待会来分享思路。[PPT显示相应题目和图形](2min过去了,期间教师下台观察学生情况,选一名写完了的同学上台分享思路)

S1:(在黑板上画△ABC并取分别AB、AC中点D、E,连接DE)∵DE是△ABC的中位线∴DE=1/2BC(由三角形中位线定理)

∴AB/AD =AC/AE =BC/DE =1/2.又∵两直线平行同位角相等 ∴∠ADE=∠B,∠AED=∠C,∠A=∠A ∴△ADE∽△ABC.T:同学们觉得S1的解答对吗? S:对。

T:S1的解答充分运用了已学的三角形中位线的知识,找出来隐含在三角形ADE和三角形ABC中边的比例关系,依照定义证明出了这两个三角形相似,证明过程很完整,是对的,让我们给他一些掌声鼓励。(解析S1的做法,并给予肯定)

(老师和学生一起鼓掌)T:接下来加大难度咯,“如图过点D作DE∥BC交AC于点E,那么△ADE与△ABC相似吗?”,请同学们自行思考,待会请同学上来分享思路。[PPT显示相应题目和图形](4min过去了)

S2:由同位角相等可知三个角对应相等,只需证明对应边成比例.因为DE∥BC,所以AD/AB=AE/EC=k, 只需证明DE/BC=k.过点D作DF∥AC交BC于点F,则由两组对边分别平行,得四边形DFCE为平行四边形.所以DE/BC=FC/BC,∵DF∥AC ∴FC/BC=DA/BA,故DE/BC= DA/BA =k ∴△ADE∽△ABC.T:S2将问题转化为了求三角形的一边对应成比例,通过作辅助线DF,构造出了平行四边形,并灵活运用平行四边形和相似的性质,得到了三边对应相等,从而证明了两个三角形相似,做的很棒,让我们把掌声送给他!(和同学们一起鼓掌)T:以上都是平行线与边AB和边AC相交的情况,现在我们延长AB和AC,如图当DE与三角形两边延长线交于边BC下方时,所构成的三角形和原三角形是否相似呢? [PPT显示相应题目和图形] S:相似。

T:要怎样证明呢? S:和上一题一样。

T:对,没错。像这种平行线位于点A下方的,我们统称为“A字型”,凡是拥有这种形状的三角形和平行线,都隐藏着相似三角形。那如果DE与三角形两边延长线交于边点A上方时,所构成的三角形和原三角形是否相似呢?请同学们自行思考。[PPT显示相应题目和图形](T下台观察、指点。2min后)

T:老师刚刚发现,大部分同学都不再用定义进行繁琐的证明了,而是直接由“A字型”的结论出发,将新图形转换为“A字型”加以证明。有哪位同学愿意上台分享一下,你是怎样转化的呢?

S3:分别在边AB和边AC作点N’和M’,使AN=AN’,AM=AM’,由对顶角相等和SAS可得

△AMN≌△AM’N’,从而得到“A字型”,故新三角形和原三角形相似。T:S3分析的很好!让我们给他掌声鼓励!(和同学们一起鼓掌)我们称这种图形为“X字型”,通过“A字型”和“X字型”的相似三角形探究,我们现在可以总结得出我们一开始要证明的结论了,同学们还记得是什么吗?

S:逆命题(刚刚的猜想)。

T:没错,我们给这个刚刚证明的猜想一个名称“预备定理”,大家请看屏幕,一齐朗读一边[PPT显示预备定理] S:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似;

T:预备定理比定义要简便的多,它的几何语言也是相当简洁 ∵EF∥BC ∴△ADE∽△ABC.(三)知识迁移(7分钟)(备注:此环节题目让学生以同桌为单位交流完成,老师再请同学发言说明思路)

(四)总结反思(7分钟)

定义:„„。要求三边三角满足对应关系,非常严谨但证明过程过于繁琐且使用条件有限。

预备定理:„„。只要求有找到原三角形一边的平行线,构成“A字型”或“X字型”,极大简化了证明过程。

(备注:以上总结,老师说整体性语言,关键字引导学生说出)

(五)布置作业(1分钟)

1.常规作业(第几页第几题)

2.探索作业:请以本节课所学知识,“测量”教室天花板的高度,写一测量方案。

九、板书设计

十、反思

下载添平行线、利用相似三角形证明(共五则)word格式文档
下载添平行线、利用相似三角形证明(共五则).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    相似三角形教案

    相似三角形 【基础知识精讲】 1.理解相似三角形的意义,会利用定理判定两个三角形相似,并能掌握相似三角形与全等三角形的关系. 2.进一步体会数学内容之间的内在联系,初步认识特殊......

    《相似三角形》说课稿

    《相似三角形》说课稿范文1 各位领导老师大家好:今天我说课的课题是华师版初中三年级数学 “相似三角形的性质”。下面,我分以下几个部分来汇报我对这节课的教学设计,“教材分......

    三角形相似说课稿

    相似三角形说课稿 一、说教材 从教材地位、学习目标、重点难点、学情分析、教学准备五个方面阐述 1、本课内容在教材中的地位 本节教学内容是本章的重要内容之一。本节内......

    三角形相似说课稿

    相似三角形说课稿 今天,我的说课将分三大部分进行:一、说教材;二、说教学策略;三、说教学程序。 一、说教材 从教材地位、学习目标、重点难点、学情分析、教学准备五个方面阐......

    《相似三角形的证明——K字型相似》教案

    课题:相似三角形的证明——K型相似(教案) 学校:茶陵思源实验学校 教师姓名:段中明 教学目标: 1、通过习题引入,了解“K型图”的特征与其中两个三角形相似的条件,并掌握其中两个相似......

    相似证明

    1、△ABC中AF∶FC=1∶2,G是BF的中点,AG的延长线交BC于E,求BE:ECE2、□ABCD中,E是AB的中点,AF=CB E A3、等腰梯形ABCD中,AD∥BC,AB=DC,过点D作AC的平行线交BA延长线于E, 求证:DEDCEABDD......

    相似三角形教学设计

    《相似三角形》教学设计 教者:廖德虎 一、知识结构 本节首先给出了相似三角形的定义和表示方法,在此基础上给出相似比的概念,并利用探究法得出三角形相似的预备定理。 二、重难......

    三角形相似教学设计

    三角形相似教学设计 一、学习目标 知识与技能方面: 探索相似三角形、相似多边形的性质,会运用相似三角形、相似多边形的性质解决有关问题; 过程与方法方面: 培养学生提出问题的......