高一函数与不等式试题

时间:2019-05-13 21:42:08下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高一函数与不等式试题》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高一函数与不等式试题》。

第一篇:高一函数与不等式试题

例1(1)已知0<x<

(2)求函数y=x+

1,求函数y=x(1-3x)的最大值;31的值域.x

x43x232求函数y=的最小值.2x

1当x<

3已知正数a,b,x,y满足a+b=10,38时,求函数y=x+的最大值.22x3ab=1,x+y的最小值为18,求a,b的值.xy

(2)不等式x4x3a对一切实数x恒成立,求实数a的取值范围_____

(3)若不等式2x1m(x21)对满足m2的所有m都成立,则x的取值范围_____

(1)n1

(4)若不等式(1)a2对于任意正整数n恒成立,则实数a的取n值范围是_____

(5)若不等式x22mx2m10对0x1的所有实数x都成立,求m的取值范围.n

13.已知y=f(x)是偶函数,y=g(x)是奇函数,x∈[0,] 上的图象如图,则不等式

14.已知向量(m,1)与b(1,n1)互相垂直,且点

(m, n)在第一象限内运动,则log2mlog2n的最大值是.

18.(12分)已知函数f(x)和g(x)的图象关于原点对称,且f(x)x2x.(Ⅰ)求函数g(x)的解析式;

(Ⅱ)解不等式g(x)f(x)|x1|.

19.(12分)某种商品的成本为5元/件,开始按8元/件销售,销售量为50件,为了获取最大

利润,商家先后采取了提价与降价两种措施进行试销。经试销发现:销售价每上涨1元每天销售量就减少10件;而降价后,日销售量Q(件)与实际销售价x(元)满足关系 2f(x)0的解集是 g(x)

39(2x229x107)(5x7)Q1986x(7x8)x

5(1)求总利润(利润=销售额-成本)y(元)与实际销售价x(件)的函数关系式;

(2)试问:当实际销售价为多少元时,总利润最大.

21.(12分)已知关于x的不等式(kxk4)(x4)0,其中kR.

(1)当k变化时,试求不等式的解集A;

(2)对于不等式的解集A,若满足AZB(其中Z为整数集). 试探究集合B能

否为有限集?若能,求出使得集合B中元素个数最少的k的所有取值,并用列举法表示集合B;若不能,请说明理由.

22.(14分)(1)已知:a,b,x均是正数,且ab,求证:1

(2)当a,b,x均是正数,且ab,对真分数2axa; bxba,给出类似上小题的结论,并予以证明; b

sinAsinBsinC2(可直接应(3)证明:△ABC中,sinBsinCsinCsinAsinAsinB

用第(1)、(2)小题结论)

17.(本小题满分12分)若函数f(x)=logax(其中a>0且a≠1)在x∈[2,+∞)上总有|f(x)|>1

成立,求a的取值范围。

18.(本小题满分12分)已知实数p满足不等式

有无实根,并给出证明.

2x1试判断方程z22z5p20 0,x2

19.(本小题满分12分)(1)已知a,b是正常数,ab,x,y(0,),求证:

a2b2(ab)2

,指出等号成立的条件; xyxy

(2)利用(1)的结论求函数f(x)

值时x的值.

20.(本小题满分12分)已知M是关于x的不等式2x2+(3a-7)x+3+a-2a2<0解集,且M中的一个元素是0,求实数a的取值范围,并用a表示出该不等式的解集.291(x(0,))的最小值,指出取最小x12x2

21.(本小题满分12分)已知二次函数f(x)的二次项系数为正且f(2-x)=f(2+x).求不等式f(2-2ax2)a和条件q:

条件的在满足q条件中。

10,请选取适当的实数a的值,满足p22x3x1

第二篇:复合函数不等式 2

复合函数不等式

一元二次不等式

16.E3、B6、B7[2013·安徽卷] 已知一元二次不等式f(x)<0的解集为{x|x<-1或x>},2

则f(10x)>0的解集为()

A.{x|x<-1或x>-lg 2}

B.{x|-1

C.{x|x>-lg 2}

D.{x|x<-lg 2}

6.D

2.[解析] 根据已知可得不等式f(x)>0的解是-1

第三篇:构造函数证明不等式

在含有两个或两个以上字母的不等式中,若使用其它方法不能解决,可将一边整理为零,而另一边为某个字母的二次式,这时可考虑用判别式法。一般对与一元二次函数有关或能通过等价转化为一元二次方程的,都可考虑使用判别式,但使用时要注意根的取值范围和题目本身条件的限制。

例1.设:a、b、c∈R,证明:a2acc23b(abc)0成立,并指出等号何时成立。

解析:令f(a)a2(3bc)ac23b23bc

⊿=(3bc)24(c23b23bc)3(bc)2 ∵b、c∈R,∴⊿≤0 即:f(a)0,∴a2acc23b(abc)0恒成立。

当⊿=0时,bc0,此时,f(a)a2acc23ab(ac)20,∴abc时,不等式取等号。

4例2.已知:a,b,cR且abc2,a2b2c22,求证: a,b,c0,。

3abc222解析:2 消去c得:此方程恒成立,a(b2)ab2b10,22abc2∴⊿=(b2)24(b22b1)3b24b0,即:0b4同理可求得a,c0,

34。3② 构造函数逆用判别式证明不等式

对某些不等式证明,若能根据其条件和结论,结合判别式的结构特征,通过构造二项平方和函数:f(x)(a1xb1)2(a2xb2)2(anxbn)2

由f(x)0,得⊿≤0,就可以使一些用一般方法处理较繁琐的问题,获得简捷明快的证明。

例3.设a,b,c,dR且abcd1,求证:4a14b14c14d1﹤6。解析:构造函数:

f(x)(4a1x1)2(4b1x1)2(4c1x1)2(4d1x1)

2=8x22(4a14b14c14d1)x4.(abcd1)由f(x)0,得⊿≤0,即⊿=4(4a14b14c14d1)21280.∴4a14b14c14d142﹤6.例4.设a,b,c,dR且abc1,求解析:构造函数f(x)(=(1axa)2(149的最小值。abc2bxb)2(3cxc)2

1492)x12x1,(abc1)abc111由f(x)0(当且仅当a,b,c时取等号),632149得⊿≤0,即⊿=144-4()≤0

abc111149

∴当a,b,c时,()min36 632abc

构造函数证明不等式

1、利用函数的单调性

+例

5、巳知a、b、c∈R,且a bmb[分析]本题可以用比较法、分析法等多种方法证明。若采用函数思想,构造出与所证不等式密切相关的函数,利用函数的单调性来比较函数值而证之,思路则更为清新。

ax+,其中x∈R,0

bxbx证明:令 f(x)= ∵b-a>0 ba+ 在R上为减函数 bxba+从而f(x)= 在R上为增函数

bx∴y= ∵m>0 ∴f(m)> f(0)

∴ama> bmb例

6、求证:ab1ab≤

ab1ab(a、b∈R)

[分析]本题若直接运用比较法或放缩法,很难寻其线索。若考虑构造函数,运用函数的单调性证明,问题将迎刃而解。

[证明]令 f(x)=

x,可证得f(x)在[0,∞)上是增函数(证略)1x 而 0<∣a+b∣≤∣a∣+∣b∣

得 f(∣a+b∣)≤ f(∣a∣+∣b∣)

即: ab1ab≤

ab1ab

[说明]要证明函数f(x)是增函数还是减函数,若用定义来证明,则证明过程是用比较法证明f(x1)与f(x2)的大小关系;反过来,证明不等式又可以利用函数的单调性。

2、利用函数的值域

7、若x为任意实数,求证:—

x11≤≤ 221x2[分析]本题可以直接使用分析法或比较法证明,但过程较繁。联想到函数的值域,于是构造函数f(x)= x11,从而只需证明f(x)的值域为[—,]即可。

1x222x2证明:设 y=,则yx-x+y=0 21x ∵x为任意实数 ∴上式中Δ≥0,即(-1)-4y≥0 1 411得:—≤y≤

22x11 ∴—≤≤

21x22 ∴y≤2[说明]应用判别式说明不等式,应特别注意函数的定义域。

另证:类比万能公式中的正弦公式构造三角函数更简单。

8、求证:必存在常数a,使得Lg(xy)≤ Lga.lg2xlg2y

对大于1的任意x与y恒成立。

[分析]此例即证a的存在性,可先分离参数,视参数为变元的函数,然后根据变元函数的值域来求解a,从而说明常数a的存在性。若s≥f(t)恒成立,则s的最小值为f(t)的最大值;若 s≤f(t)恒成立,则s的最大值为f(t)的最小值。

22证明:∵lgxlgy > 0(x>1,y>1)∴原不等式可变形为:Lga≥

lgxlgylgxlgy22

2(lgxlgy)2lgxlgy 令 f(x)= == 1222222lgxlgylgxlgylgxlgylgxlgy 而 lgx>0,lgy>0, ∴lgx+lgy ≥ 2lgxlgy > 0 ∴2lgxlgy≤1 22lgxlgy ∴ 1

从而要使原不等式对于大于1的任意x与y恒成立,只需Lga≥2即 a≥10

2即可。

故必存在常数a,使原不等式对大于1的任意x、y恒成立。

3、运用函数的奇偶性

xx<(x≠0)12x2xx 证明:设f(x)=-(x≠0)x122 例

9、证明不等式:

xxx2xx ∵f(-x)=-= x+ x122212xxx

[1-(1-2)]+ 12x2xx =-x+= f(x)x122 = ∴f(x)的图象关于y轴对称

x ∵当x>0时,1-2<0,故f(x)<0 当x<0时,根据图象的对称性知f(x)<0 故当 x≠0时,恒有f(x)<0 即:xx<(x≠0)x122 [小结]本题运用了比较法,实质是根据函数的奇偶性来证明的,本题也可以运用分类讨论思想。但利用偶函数的轴对称性和奇函数的中心对称性,常能使所求解的问题避免复杂的讨论。

第四篇:构造函数证明不等式

构造函数证明不等式

构造函数证明:>e的(4n-4)/6n+3)次方

不等式两边取自然对数(严格递增)有:

ln(2^2/2^2-1)+ln(3^2/3^2-1)+...+ln(n^2/n^2-1)>(4n-4)/(6n+3)

不等式左边=2ln2-ln1-ln3+2ln3-ln2-ln4+...+2lnn-ln(n-1)-ln(n+1)

=ln2-ln1+lnn-ln(n+1)=ln

构造函数f(x)=ln-(4x-4)/(6x+3)

对f(x)求导,有:f'(x)=+^

2当x>2时,有f'(x)>0有f(x)在x>2时严格递增从而有

f(n)>=f(2)=ln(4/3)-4/15=0.02>0

即有ln>(4n-4)/(6n+3)

原不等式等证

【解】:

∏{n^2/(n^2-1)}>e^((4n-4)/(6n+3))

∵n^2/(n^2-1)=n^2/(n+1)(n-1)

∴∏{n^2/(n^2-1)}=2n/(n+1)

原式可化简为:2n/(n+1)>e^((4n-4)/6n+3))

构建函数:F(n)=2n/(n+1)-e^((4n-4)/(6n+3))

其一阶导数F’(n)={2-4e^((4n-4)/(6n+3))}/(n+1)^2

∵e^((4n-4)/(6n+3))

∴F’(n)>0

而F=4/(2+1)-e^((8-4)/(12+3))=4/3-e^(4/15)>0

所以F(n)>0

即:2n/(n+1)>e^((4n-4)/6n+3))

故得证。

一、结合勘根定理,利用判别式“△”的特点构造函数证明不等式

例1若a,b,c∈R,且a≠0,又4a+6b+c>0,a-3b+c<0.求证:9b2>4ac.证明构造函数f(x),设f(x)=ax2+3bx+c(a≠0),由f(2)=4a+6b+c>0,f(-1)=a-3b+c<0,根据勘根定理可知:f(x)在区间(-1,2)内必有零点.又f(x)为二次函数,由勘根定理结合可知:

f(x)必有两个不同的零点.令ax2+3bx+c=0可知△=(3b)2-4ac>0,所以可得:9b2>4ac.命题得证.评析本题合理变换思维角度,抓住问题本质,通过构造二次函数,将所要证明的结论转化成判别式“△”的问题,再结合勘根定理和二次函数知识,从而使问题获得解决.二、结合构造函数的单调性证明不等式

例2(2005年人教A版《选修4-5不等式选讲》例题改编)已知a,b,c是实数,求证:

|a+b+c|1+|a+b+c|≤|a|1+|a|+|b|1+|b|+|c|1+|c|.证明构造函数f(x),设f(x)=x1+x(x≥0).由于f′(x)=1(1+x)2,所以结合导数知识可知f(x)在[0,+∞)上是增函数.∵0≤|a+b+c|≤|a|+|b|+|c|,∴f(|a+b+c|)≤f(|a|+|b|+|c|),即|a+b+c|1+|a+b+c|≤|a|+|b|+|c|1+|a|+|b|+|c|=|a|1+|a|+|b|+|c|+|b|1+|a|+|b|+|c|+|c|1+|a|+|b|+|c|≤|a|1+|a|+|b|1+|b|+|c|1+|c|.命题得证.三、结合构造函数在某个区间的最值证明不等式

例3(第36届IMO试题)

设a,b,c为正实数,且满足abc=1,求证:

1a3(b+c)+1b3(c+a)+1c3(a+b)≥32.证明构造函数,设f(a,b,c)=1a3(b+c)+1b3(c+a)+1c3(a+b),显然a=b=c=1时,f(a,b,c)=32≥32成立.又abc=1,a,b,c为正实数,则a,b,c中必有一个不大于1,不妨设0f(a,b,c)-f(a,1,c)=(1-b)1a3(b+c)(1+c)+1+b+b2b3(a+c)+1c3(a+b)(1+a)≥0,∴f(a,b,c)≥f(a,1,c),因此要证f(a,b,c)≥32,只要证f(a,1,c)≥32,此时ac=1,∴a,1,c成等比数列,令a=q-1,c=q(q>0).f(a,1,c)=q31+q+qq2+1+1q2(1+q)

=q5+1q2(1+q)+qq2+1

=(q4+1)-(q3+q)+q2q2+qq2+1

=(q2+q-2)-(q+q-1)+1q+q-1+1

=t2-t+1t-1.(其中t=q+q-1,且t≥2).由导数知识(方法同例

2、例3)可知函数

f(a,1,c)=t2-t+1t-1(t≥2)是增函数,当且仅当t=2q=1a=c=1时,(f(a,1,c))min=22-2+12-1=32成立,∴f(a,1,c)≥32.故f(a,b,c)≥f(a,1,c)≥32.命题得证。

第五篇:函数法证明不等式

函数法证明不等式

已知函数f(x)=x-sinx,数列{an}满足0

<1>证明0

<2>证明an+1<(1/6)×(an)^

3它提示是构造一个函数然后做差求导,确定单调性。可是还是一点思路都没有,各位能不能给出具体一点的解答过程啊?

(1)f(x)=x-sinx,f'(x)=1-cosx

00,f(x)是增函数,f(0)

因为0

且an+1=an-sinan

(2)求证不等式即(1/6)an^3-an+1=(1/6)an^3-an+sinan>0①

构造函数g(x)=(1/6)x^3-x+sinx(0

g''(x)=x-sinx,由(1)知g''(x)>0,所以g'(x)单增,g'(x)>g'(0)=0

所以g(x)单增且g(x)>g(0)=0,故不等式①成立

因此an+1<(1/6)×(an)^3成立。

证毕!

构造分式函数,利用分式函数的单调性证明不等式

【例1】证明不等式:≥(人教版教材p23T4)

证明:构造函数f(x)=(x≥0)

则f(x)==1-在上单调递增

∵f(|a|+|b|)=f(|a+b|)=且|a|+|b|≥|a+b|

∴f(|a|+|b|)≥f(|a+b|)即所证不等式正确。

点评:本题还可以继续推广。如:求证:≥。利用分式函数的单调性可以证明的教材中的习题还有很多,如:

p14第14题:已知c>a>b>0,求证:

p19第9题:已知三角形三边的长是a,b,c,且m是正数,求证:

p12例题2:已知a,b,m,都是正数,且a

二、利用分式函数的奇偶性证明不等式

【例2】证明不等式:(x≠0)

证明:构造函数f(x)=

∵f(-x)=

=f(x)

∴f(x)是偶函数,其图像关于y轴对称。

当x>0时,<0,f(x)<0;

当x<0时,-x>0,故f(x)=f(-x)<0

∴<0,即

三、构造一次函数,利用一次函数的单调性证明不等式

【例3】已知|a|<1,|b|<1,|c|<1,求证:a+b+c证明:构造函数f(c)=(1-ab)c+a+b-2

∵|a|<1,|b|<1

∴-10

∴f(c)的(-1,1)上是增函数

∵f(1)=1-ab+a+b-2=a+b–ab-1=a(1-b)-(1-b)=(1-b)(a-1)<0

∴f(1)<0,即(1-ab)c+a+b-2<0

∴a+b+c。

下载高一函数与不等式试题word格式文档
下载高一函数与不等式试题.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    构造函数证明不等式

    在含有两个或两个以上字母的不等式中,若使用其它方法不能解决,可将一边整理为零,而另一边为某个字母的二次式,这时可考虑用判别式法。一般对与一元二次函数有关或能通过等价转化......

    一道典型的抽象函数与抽象不等式问题

    一道典型的抽象函数问题 已知函数f(x)的定义域为(2,2),函数g(x)f(x1)f(32x). (1)求函数g(x)的定义域; (2)若f(x)为奇函数,并且在定义域上单调递减,求不等式g(x)0的解集。 2x121515解......

    高一不等式练习题

    不等式综合练习题 一、选择题 1.若a,b,c为任意实数,且a>b,则下列不等式恒成立的是 (A)ac>bc(B)|a+c|>|b+c|(C)a2>b2(D)a+c>b+c 2.设a>1>b>-1,则下列不等式中恒成立的是 A. 1a1b B.1a1 bC.a>b2D......

    高一函数教案

    高一函数教案 (注意:函数这一章是整个高中数学的重点,也是高考的高频考点,希望各位同学能够重视本章的学习。) 函数的六大知识点: (1)函数及其表示方法 (2)函数的定义与值域 (3)函数的......

    构造函数巧解不等式

    构造函数巧解不等式湖南 黄爱民函数与方程,不等式等联系比较紧密,如果从方程,不等式等问题中所提供的信息得知其本质与函数有关,该题就可考虑运用构造函数的方法求解。构造函数,......

    构造函数处理不等式问题

    构造函数处理不等式问题函数与方程,不等式等联系比较紧密,如果从方程,不等式等问题中所提供的信息得知其本质与函数有关,该题就可考虑运用构造函数的方法求解。构造函数,直接把握......

    构造函数,妙解不等式

    构不等式与函数是高中数学最重要的两部分内容。把作为高中数学重要工具的不等式与作为高中数学主线的函数联合起来,这样资源的优化配置将使学习内容在函数思想的指导下得到重......

    函数导数不等式测试题五篇

    昌乐二中 高三 数学自主检测题函数、导数、不等式综合检测题2009.03.20注意事项:1.本试题满分150分,考试时间为120分钟.2.使用答题卡时,必须使用0.5毫米的黑色墨水签字笔书写,作图......