利用函数凹凸性质证明不等式

时间:2019-05-13 21:41:51下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《利用函数凹凸性质证明不等式》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《利用函数凹凸性质证明不等式》。

第一篇:利用函数凹凸性质证明不等式

利用函数的凹凸性质证明不等式

内蒙古包头市第一中学张巧霞

摘要:本文主要利用函数的凹凸性来推导和证明几个不等式.首先介绍了凹凸函数的定义,描述了判定一个函数具有凹凸性质的充要条件,并且给出了凸函数的一个重要性质——琴生不等式.通过巧妙构造常见的基本初等函数,利用这些函数的凹凸性推导几个重要不等式,如柯西不等式,均值不等式,柯西赫勒德尔不等式,然后再借助这些函数的凹凸性及其推导出来的重要不等式证明一些初等不等式和函数不等式.关键词:凸函数;凹函数;不等式.一. 引言

在数学分析和高等数学中,利用导数来讨论函数的性态时,经常会遇到一类特殊的函数——凹凸函数.凹凸函数具有一些特殊的性质,对于某些不等式的证明问题如果灵活地运用函数的凹凸性质就可以简洁巧妙地得到证明.二. 凹凸函数的定义及判定定理

(1)定义 设f(x)是定义在区间I上的函数,若对于I上的任意两点x1,x2及实数0,1总有

f(x11x2)fx11fx2

则称f(x)为I上的凸函数(下凸函数);反之,如果总有不等式

f(x11x2)fx11fx2

则称f(x)为I上的凹函数(上凸函数).特别地,取xx2fx1fx21).,则有f(1

222

若上述中不等式改为严格不等式,则相应的函数称为严格凸函数或严格凹函数.(2)判定定理 若函数f(x)在区间 I上是二阶可微的,则函数f(x)是凸函数的充要条件是f“(x)0,函数f(x)是凹函数的冲要条件是f”(x)0.三.关于凸函数的一个重要不等式——琴生不等式

设f(x)是定义在区间I上的一个凸函数,则对xiI,i1,2,,n,i0,

i1ni1有

f(ixi)ifxi.i1

i1

nn

特别地,当i

i1,2,,n,有 n

f(x1x2xnfx1fx2fxn).22

琴生不等式是凸函数的一个重要性质,因为每个凸函数都有一个琴生不等式,因此它

在一些不等式的证明中有着广泛的应用.四. 应用凸函数和琴生不等式证明几个重要不等式.(1)(调和——几何——算术平均不等式)设ai0,i1,2,,n,则有

n

nain

1i1i1ain

当且仅当a1a2an时,等号成立.证明 设f(x)lnx,因为f“(x)

a

i1

n

i

n

0,x0,, 2x

所以f(x)是0,上的凸函数,那么就有f(x)fx.ii

i

i

i1

i1

nn

现取xiai,i,i1,2,,n, n

n1n1n1

则有lnailnailnain, 

i1ni1ni1n1n1

得lnailnain,ni1i1

由lnx的递增性可得

n

1

(1)aii

i1ni1

同理,我们取xi

nn

0,就有 ai

n11lnna

ii1n11lnaii1n

n

n

n

1ln1i1ani

, 

ai(2)n

1i1i1ain

n

由(1),(2)两式可得

n

ain

1i1i1ain

(2)柯西——赫勒德尔不等式

p

1n

a

i1

i

n

pqababiiii i1i1i1

其中ai,bi,i1,2,,n是正数,又p0,p1,p与q共轭,即

nnn

q

1.pq

证明 首先构造函数fxxp,p1时,f”x0,x0 所以fxx是0,上的凸函数,则有

p

n

np

f(ixi)ixiixi i1i1i1

n

p

令 i

pi

p

i1

n,这里pi0,i1,2,,n,i

n

pixi

则i1

n

pii1

p



p

px

ii1

n

pi

p

i1

n

i

n

nnp即pixipixipii1i1i1

p1

由题设知

11p

1,得q,p1pq

所以

1p

1q

ppxpxpiiiii,i1i1i1

nn

p

n

1q

现取aipixi,bipi,i1,2,,n 则aibipixipi

1p

1q

pixi,pixiai,代入上式得

pp

pqababiiii i1i1i1

命题得证.在柯西赫勒德尔不等式中,若令pq2时,即得到著名的不等式——柯西不等式

nn

p

n

1q

22ababiiii i1i1i1

nn

n

n2n2

(aibi)aibii1i1i1

n

这里ai,bi,i1,2,,n为两组正实数,当且仅当aibi时等号成立.五.凸函数及重要不等式在证明初等不等式和函数不等式中的应用.例1.求证在圆的内接n边形中,以正变形的面积最大.证明 设圆的半径为r,内接n边形的面积为S,各边所对的圆心角分别为1,2,,n,则

S

rsin1sin2sinn,因为f“xsinx0,2

所以fxsinx是0,上的凹函数,由琴生不等式可得

f(

i1

n

i)fi.ni1n

n

n

即sin



i1

i

n

sin

i1

n

i

n

sininsin

i1

2

n

上式只有在12n时等号才成立,也即正n边形的面积最大.特别地,若A,B,C为三角形的三个内角时,由上式可得sinAsinBsinC

.2xy

例2 求证对任意的x0,y0,下面的不等式xlnxylny(xy)ln成立.证明 我们根据所要证明的不等式构造相应的函数,令fttlnt,t0,因f”t所以有

0.故fttlnt是0,上的凸函数,t

xyfxfyf,x,y0,, 

22

xyxy1lnxlnxylny, 222

xy

(xy)lnxlnxylny,所以在利用凸函数证明不等式时,关键是如何巧妙地构造出能够解决问题的函数,然后列出琴生不等式就可以简洁,巧妙地得到证明.nnnn

n4444

例3 设ai,bi,ci,di都是正实数,证明aibicidiaibicidi.i1i1i1i1i1

分析 本题所要证明的结论看上去接近于柯西不等式,但是这里是4次方的情形,所以想办

法将其变成标准形式。

nn

证明aibicidiaibicidi

i1i1

aibi

i1

n

n2

cidi

i12

n

n2222=aibicidi i1i1

n

n

n

n





ai

i1

bi

i1

ci

i1

di

i1

通过以上例子我们可得出结论,运用柯西不等式的关键是对照柯西不等式的标准形式,构造

出两组适当的数列,然后列出式子.例4 设a,b,c,d都是正实数,且cdab

证明 首先由均值不等式得

a3b3

1..证明

cd

a3b3acb3bda344

 acbdabcddc

a2abb

=a2b2再由柯西不等式得



2122

acbdab

c

d

d

ab=a2b2

122

c

322



a3b322

ab即cd



a3b3

cdacbd 

a2b2



a3b31 所以cd

六.总结

由上面的分析我们看到,虽然利用函数的凹凸性来证明不等式有它的局限性,但是往

往是其它方法不可代替的,我们可以充分感受到利用函数的凹凸性解决问题的方便和快捷,丰富了不等式的常规证法,开阔了解题思路.参考文献

【1】 【2】 【3】 【4】

谢惠民.数学分析习题课讲义【M】.高等教育出版社,2003.王仁发.高观点下的中学数学代数学【M】.高等教育出版社,1999.席博彦.不等式的引论【M】.内蒙古教育出版社,2000.华东师范大学数学系.数学分析【M】.高等教育出版社,1991.

第二篇:应用凹凸函数的性质证明不等式解读

应用凹(凸函数的性质证明不等式 435000 湖北省黄石市第二中学 王碧纯

不等式的证明是高中数学中的一个重要内容.由于证题方法多、技巧性强,所以是一个难点.本文介绍应用凹(或凸函数的性质证明不等式的方式,希望给读者以启迪,并起到抛砖引玉的作用.定义 已知函数y =f(x 在给定区间[a ,b ]上,若x 1,x 2∈[a ,b ]恒有f(x 1+ f(x 2≤2f(x 1+x 2 2(当且仅当x 1=x 2时取等号,则称f(x 在[a ,b ]上是凸函数;若恒 有f(x 1+f(x 2≥2f(x 1+x 2 2(当且仅当x 1=x 2时取等号,则称f(x 在[a ,b ]上是凹函数.应用数学归纳法,我们可以证明下面的凹(或凸函数的性质.定理 若函数f(x 在某区间内是凹(或凸函数,则对变数在这区间内的任意值x 1,x 2,x 3,…x n 有以下不等式成立:

f(x 1+x 2+…+x n n ≤f(x 1+f(x 2+…+f(x n n , 当且仅当x 1=x 2=…,=x n 时取等号(对于凸函数不等式方向相反.由凹函数的 定义可知y =x 2(x ∈R ,y = 1 x(x >0为凹函数.事实上,任给x 1,x 2∈R ,都有 x 21+x 22≥12(x 21+2x 1x 2+x 2 2=2(x 1+x 22 2 ,∴ y =x 2(x ∈R 是凹函数.对于任意x 1,x 2∈R +, 1x 1

+ 1x 2 =x 1+x 2x 1 x 2≥ 2x 1 x 2 x 1 x 1 = 2x 1 x 2 ≥ 2 x 1+x 2 2 , 故 y = 1x , x ∈R +是凹函数.利用定义我们还可以证明 y =sin x , x ∈(0,Π是凸函数.下面我们应用凹(或凸 函数的性质,给出某些不等式的证明.例1 已知Α为锐角,求证:

(1+1sin Α(1+1 co s Α ≥3+2 2.证明 ∵ Α为锐角, ∴ sin Α>0, co s Α>0.又 y = 1 x(x ∈R +为凹函数,∴(1+ 1sin Α(1+1 co s Α

=1+1sin Αco s Α+1sin Α+ 1 co s Α ≥1+2sin2Α+ 2 sin Α+co s Α 2 =1+2sin2Α+ 4

2sin(Α+ Π

4≥1+2+4 2 =3+2 2.例2 已知A 1,A 2,A 3,…,A n 是凸n 边形的n 个内角.求证: sin A 1+sin A 2+…+sin A n ≤n sin(n-2Π n.证明 由平面几何知识可知 A i ∈(0,Π,i =1,2,3,…,n ,且A 1+A 2+…+A n =(n-2Π.又y =sin x ,x ∈(0,Π 是凸函数.∴ sin A 1+sin A 2+…+sin A n ≤n sin A 1+A 2+…+A n n =n sin(n-2Πn.而已知A、B、C 为△A B C 的内角, 则 sin A +sin B +sin C ≤

2 是上

述命题中n =3时的特例.例3 已知a +b +c =1,且a、b、c ∈R +,求证:(a +1a 2+(b +1b 2+(c +1c 2≥102 3.证明(a + 1a 2+(b +1b 2+(c +1c 2 ≥3[(a + 1a +(b + 1b +(c +1c ]2 =3[(a +b +c +(1a +1b + 1c 3 ]2 ≥3(1 3 +13 3 1 a + b +c 3 2=3×(13+32=102.应用上题方法可以得到下面的结 7 42004年第11期

中学数学 概率小议

——兼谈广东省2004年高考第13题510631 华南师范大学数学系 孙道椿 1概率的统计定义:记某个随机事件为A,若在u次彼此无关的试验(或观察中出现了v次,则称F u(A=v u 为随

机事件A在u次独立试验中出现的频率.事件 A发生的频率v u 会在某一常数P附近摆动, 且当u越大时,这种摆动幅度越小,则称常数P为事件A的概率,记为P(A.概率的统计定义是一种最基础的定义.它说明了事件的概率是客观存在的.也给出了概率的最原始的求法.从定义可以看出,我们指的随机现象应具有二个条件: ①不确定性:每次实验的结果(事件具有多个可能性,且不能确定每次试验会出现哪种结果.②可重复性:在相同的条件下,试验可重复进行;或者可以同时进行多次的相同试验.平常,人们对第一个条件——不确定性映象很深.对第二个条件——可重复性,往往容易忽视.从定义可以看出,概率论是一门实践性很强的科学.忽视了可重复性,就忽视了它的重要基础.有些事情:比如美国的总统选举.虽然选举前不能确定它的结果,但它不满足可重复性.所以它不是数学中所指的随机现象.因此也不存在“概率”的问题,实际生活中也很少有人问它的概率大小.如果有四人预测美国的选举结果: 甲说“布什有95◊的可能当选.” 乙说“布什有50◊的可能当选.” 丙说“布什有5◊的可能当选.” 丁说“布什肯定不会当选.”

若结果是布什当选了,上面仅有丁一人说错,若布什没有当选,上面四人全没有错,由于美国的选举不可重复.实际上,前面三人说的话是不可验证的,它只是反映了说话人的主观态度及认识,在概率论中是无意义的.一般的随机事件,用统计定义求出它的概率,需要做多次实验(而且还不能找出精确值.为此,对实验合理的设计,数据的处

论: 当x1,x2,…,x n∈R+,且x1+x2+…+ x n=1时,则有(x1+1 x12+(x2+1

x2 2+…+(x n+1 x n 2 ≥(n2+12 n.例4 设a、b、c为△A B C的三边,S是 △A B C的面积.求证: a2+b2+c2≥43S.(第三届国际中学生竞赛题证明 a2+b2+c2≥ab+bc+ca =ab sin C sin C + bc sin A sin A + ca sin B sin B

=2S(1 sin A + 1 sin B + 1 sin C.① 又 y=1 x(x>0为凹函数, ∴ 2S(1 sin A + 1 sin B + 1

sin C ≥2S3

sin A+sin B+sin C 3 =2S 9 sin A+sin B+sin C.②

即 y=sin x, x∈(0,Π为凸函数, 又

sin A+sin B+sin C ≤3sin A+B+C 3 = 33 2 ,③

由①②③可得 a2+b2+c2≥2S 9

2 =43S.通过以上几个不等式的证明,对比常见 的证明方法,显然利用凹(或凸函数的性质 证明不等式要简捷得多.同时我们还可以看 到应用函数的凹凸性证明不等式,不仅可以 巩固有关基础知识,使得某些复杂问题简单 化,而且可以培养学生的解题技巧,发展学生 的思维能力.(收稿日期:20040910 84中学数学

2004年第11期

第三篇:凹凸函数的性质

凹凸函数的性质

12文丽琼 营山中学

四川营山 637700 2营山骆市中学

四川营山

638150

摘要:若函数f(x)为凹函数,则f(xx112xnnxnn)f(x1)f(x2)f(xn)nf(x1)f(x2)f(xn)n

xx

若函数f(x)为凸函数,则f(2)

从而使一些重要不等式的证明更简明。

中图分类号:

文献标识号:

文章编号:

高二数学不等式,教材上只要求学生掌握两个数的均值不等式,教材上的阅读材料中,证明了三个数的均值不等式,从而推广到多个数的情形。学有余力的学生,会去证多个数的情形。仿照书上去证,几乎不可能。下面介绍凹凸函数的性质,并用来证明之,较简便易行。

凹函数定义 若函数f(x)上每一点的切线都在函数图像的下方,则函数f(x)叫做凹函数。如图

(一)凸函数定义 若函数f(x)上每一点的切线都在函数图像的上方,则函数f(x)叫做凸函数。如图

(二)性质定理 若函数f(x)是凹函数,则

f(x1x2xnnxnn)f(x1)f(x2)f(xn)nf(x1)f(x2)f(xn)n

若函数f(x)是凸函数,则

xxf(12)

证明:若函数f(x)是凹函数,如下图

xx点P(12

xnnxx,f(12xnn))在f(x)上

设过P点的切线方程为:y=ax+b 则

f(x1x2xnn)ax1x2xnnb

(1)

∵f(x)是凹函数,切线在函数图像下方

∴f(x1)ax1b;f(x2)ax2b;…;f(xn)axnb ∴f(x1)f(x2)f(xn)nxnnax1x2xnnb

(2)由(1),(2)得

xxf(12)f(x1)f(x2)f(xn)n

若函数f(x)为凸函数,如下图

xx

点P(12

xnnxx,f(12xnn))在f(x)上

设过P点的切线方程为:y=ax+b 则

f(x1x2xnn)ax1x2xnnb

(1)

∵f(x)是凸函数,切线在函数图像上方

∴f(x1)ax1b;f(x2)ax2b;…;f(xn)axnb ∴f(x1)f(x2)f(xn)nax1x2xnnb

(2)由(1),(2)得

xxf(12xnn)f(x1)f(x2)f(xn)n

定理证明过程要结合图像形象理解,也便于掌握。下面证明均值不等式和高斯不等式。

xx均值不等式:12xnnnxx12xn

(x1,x2,,xn>0)

证明:∵ y=lgx 是凸函数

∴lg(x1x2xnn2)lg(x1)lg(x2)lg(xn)n

xx

∴lg(1xnn)lgnxx12xn

xx12xnnnxx12xn

(x1,x2,,xn>0)

高斯不等式:证明:∵ yxx1n22xn11xx121xn

(x1,x2,,xn>0)

1(x>0)是凹函数 x11

2∴

1(x1x2xn)/nxx1n1xn

x1x2xnn211xx121xn

(x1,x2,,xn>0)

以上两个不等式的证明,非常简明,下面再举几个性质定理应用的例子。例1 A、B、C为三角形三内角,求证sinA+sinB+sinC≤

证明:∵A、B、C为三角形三内角 ∴A+B+C=π

A>0 B>0 C>0 又∵ y=sinx(0

3333 2

∴sinAsinBsinCπsin

SinA+sinB+sinC≤

222222n1xx2xn)xxx例2 求证(1nn

证明:∵ yx 为凹函数

xx2xn)xxx

∴(1nnxxxxxx12n例3 求证((k∈N))nn

证明:∵ yx

(k∈N)为凹函数

2222n12k2k2k22kn12k2xx2xn)

∴(1n2kx2k1x2xnn2k2k

通过以上例子,可以看出,关键在于找到合适的凹函数或凸函数,再用性质定理,问题可得解决。

第四篇:数列----利用函数证明数列不等式

数列已知数列{an}的前n项和为Sn,且a2anS2Sn对一切正整数n都成立。(Ⅰ)求a1,a2的值;(Ⅱ)设a10,数列{lg大值。

2已知数列{an}的前n项和Sn

(1)确定常数k,求an;

(2)求数列{

3在等差数列an中,a3a4a584,a973.(Ⅰ)求数列an的通项公式;(Ⅱ)对任意mN*,将数列an中落入区间(9,9)内的项的个数记为bm,求数列m2m10a1的前n项和为Tn,当n为何值时,Tn最大?并求出Tn的最an12nkn,kN*,且Sn的最大值为8.292an的前n项和Tn。n2bm的前m项和Sm.

第五篇:凹凸函数在不等式证明中的巧用

凹凸函数在不等式证明中的巧用

唐才祯1莫玉忠2李金继

3摘要:本文从凹凸函数原始定义出发,导出其等价的解析不等式.同时从凹凸函数的几何特征导出另一个与凹凸函数原始定义等价的解析不等式.然后利用所得不等式来推导一些常用的不等式,提供了一种不等式证明的技巧.关键词:凹函数;凸函数;不等式;几何特征

不等式在数学问题中是经常碰到的,常用的不等式证明方法有初等数学中的综合法、分析法、比较法和数学归纳法[1],高等数学中常用的方法是利用函数的单调性、极大、极小值法和泰勒展式等方法[2].本文介绍利用凹凸函数的定义及其几何特征在不等式证明中的应用.一. 凹凸函数定义及几何特征

凹凸函数是区分函数增减方式的两种不同类型的函数,即:虽然函数单调增加,但却可有如图1中的两种方式增加,把形如f1(x)的增长方式的函数称为凸函数,而形如f2(x)的增长方式的函数称为凹函数,其精确定义为

1.定义[3]设函数f(x)在区间I有定义,若x1,x2I,t(0,1)有

……(1)f(tx1(1t)x2)tf(x1)(1t)f(x2)

(f(tx1(1t)x2)tf(x1)(1t)f(x2))

则称f(x)在区间I是凸函数(凹函数).根据函数的凸凹定义,不难证明,若函数f(x)在区间I是凹的,则函数一f(x)在区间I就是凸的,从而,我们从凸函数特征的讨论可在凹函数上适用.为了便于使用,通常把不等式(1)改写成如下等价形式:

如:设q1t,q21t,有q1q21.(q1,q2(0,1))

则(1)式可改写为

f(q1x2q2x2)q1f(x1)q2(x2)……(2)

2. 凸函数的几何特征:

如图,设A1,A2是凸函数y=f(x)曲线上两点,它们对应的横坐标x1x2,x(x1,x2),则存在q1,q20,q1q21,使得

12作者简介: 唐才祯(1963-),男,广西灵川人,中教一级,广西医科大学附中.作者简介: 莫玉忠(1969-),女,广西金秀人,讲师,柳州师专数学系.3作者简介: 李金继(1963-),男,广西灵川人,灵川化肥厂

.xq1x1q2x2,过点x作ox轴的垂线交函数于A,交A1A2于B,则(2)式左端即为A点纵坐标,右端即为B点纵坐标,因此,凸函数的几何意义就是:其函数曲线任意两点A1与A2之间的部分位于弦A1A2的下方或曲线在任一点切线上方.根据以上几何特征,下面推导一个关于凸函数的直接不等式,设yf(x)为函数,A1A2为f(x)上的任一弦,设A1(x1,f(x1)),A2(x2,f(x2),不妨设x1x2,则直线 A1A2的方程为

yf(x1)f(x2)f(x1)(xx1),x(x1,x2)x2x1

从而由上所述凸函数几何性质有

f(x1)f(x2)f(x1)(xx1)f(x),x(x1,x2)……(3)x2x1

3. 凸函数的判断

凸函数的判别准则在一般教材均有述及,下面是[4]中的一个判别凸函数准则: 定理 设f(x)在(a,b)上二阶可导,则f(x)在(a,b)上是凸函数的充要条件是f(x)0

下面我们将从不等式(2)、(3)出发,适当选取q1,q2,x1,x2来证明一些不等式.二. 等式(2)的应用

不等式(2)是凸函数定义的一个等价形式,所以不等式(2)的应用实际上是凸函数定义的直接应用,(2)式的一个直接结果是出詹生(Jenson)不等式.命题若函数f(x)在区间I 是凸的,则有不等式

f(q1x1q2x2qnxn)q1f(x1)q2f(x2)qnf(xn)(4)其中xiI,qi0,i1,2,,n,且q1q2qn1,其证明可参见[3],在此略.如在(2)及(4)式中,适当选取f(x)的表达式,将可巧妙地证明一些不等式.xx2xnxx2xn例1. 证明不等式1其中 1

nn

q11;x1,x2,xn0.证明:设f(x)x,x0,则f''(x)p(p1)xpp2pppp,由条件可知f''(x)0.从而f(x)xp为凸函数.取q1q2qn

p1,再由Jenson不等式(4)有 npppxx2xnx1x2xn 1

nn

例2.证明不等式(xy)lnxyxlnxylnyx,y0.2

10,x0.如取x证明:取f(x)xlnx,x0.f'(x)lnx1,f''(x)

1.由Jenson不等式有 2

xyxylnxlnxylny即有 22

xy(xy)lnxlnxylny2

三. 不等式(3)的应用 n2,q1q2

不等式(3)是由凸函数的几何特征得到的,要得到所要证的不等式,需据所给出的不等式形式适当选取x1,x2的值,所以这种方法具有一定的构造性,灵活性,难度相对大些.例3. 证明杨格(young)不等式:

apbq11ab,a,b0,1.pqpq

证明:取f(x)lnx.显然其为凹函数,直线AB的方程为

ylnx1lnx2lnx1(xx1),取xp'x1(1p')x2(x1,x2),p'(0,1)则 x2x1

lnx2lnx1((p'1)x1(1p')x2)p'lnx1(1p')lnx2 x2x1

pqylnx1如取x1a,x2b,p'111,1p'1.ppq

由(3)式ln(1p1q11ab)lnaplnbq

pqpq

ln(1p1qab)lna.bpq

又因为lnx在定义域上为严格增函数,所以有

a.b1p1qab.pq

abnanbn),a,b0 例4 证明不等式(22

证明:此例是例1的特例,下面用不等式(3)的方法给予证明.取yf(x)x,x0,则f(x)为凸函数,由(3)式有 n

f(x)f(x1)f(x2)f(x1)ab11(xx1),取x1,x2,x(x1x2)x2x1abab22

从而有

bnan)()1nan1a()()(),化简后得: ba2ab2ababab

abn1n()(abn).22(结语:综上所述,利用凸函数定义及几何特性证明不等式,关键是要根据所要证不等式,选取相关的函数及适当的x1,x2选取,此法虽具有一定的构造性,但证明的过程却相对简洁.参考文献:

[1].梁永固,等,初等代数研究,广东高等教育出版社,1989

[2].纪乐刚,等,数学分析,华东师范大学出版社,1993

[3].刘玉琏,等,数学分析讲义,高等教育出版社,1996

[4].朱来义,等,微积分,高等教育出版社,2000

下载利用函数凹凸性质证明不等式word格式文档
下载利用函数凹凸性质证明不等式.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    构造函数,利用导数证明不等式

    构造函数,利用导数证明不等式湖北省天门中学薛德斌2010年10月例1、设当xa,b时,f/(x)g/(x),求证:当xa,b时,f(x)f(a)g(x)g(a).例2、设f(x)是R上的可导函数,且当x1时(x1)f/(x)0.求证:(1)f(......

    利用函数的单调性证明不等式

    龙源期刊网 http://.cn 利用函数的单调性证明不等式 作者:胡锦秀 来源:《数理化学习·高一二版》2013年第04期 函数的单调性是函数的重要性质之一,在不等式证明中扮演着重要角......

    利用函数的单调性证明不等式

    利用函数的单调性证明不等式单调函数是一个重要的函数类, 函数的单调性应用广泛, 可利用它解方程、求最值、证明等式与不等式、求取值范围等, 并且可使许多问题的求解简单明......

    函数凹凸性的性质判定及应用(模版)

    函数凹凸性的判定性质及应用 曹阳 数学计算机科学学院 摘要:函数的凹凸性在数学研究中具有重要的意义。本文从凸函数的多种定义入手,引出凹凸函数的性质,介绍了凹凸函数的性质......

    构造函数证明不等式

    在含有两个或两个以上字母的不等式中,若使用其它方法不能解决,可将一边整理为零,而另一边为某个字母的二次式,这时可考虑用判别式法。一般对与一元二次函数有关或能通过等价转化......

    构造函数证明不等式

    构造函数证明不等式构造函数证明:>e的(4n-4)/6n+3)次方不等式两边取自然对数(严格递增)有:ln(2^2/2^2-1)+ln(3^2/3^2-1)+...+ln(n^2/n^2-1)>(4n-4)/(6n+3)不等式左边=2ln2-l......

    函数法证明不等式[大全]

    函数法证明不等式已知函数f(x)=x-sinx,数列{an}满足0证明0证明an+1g(0)=0,故不等式①成立因此an+1a>b>0,求证:p19第9题:已知三角形三边的长是a,b,c,且m是正数,求证:p12例题2:已知......

    构造函数证明不等式

    在含有两个或两个以上字母的不等式中,若使用其它方法不能解决,可将一边整理为零,而另一边为某个字母的二次式,这时可考虑用判别式法。一般对与一元二次函数有关或能通过等价转化......