2014夯实基础训练之一一元二次不等式(5篇)

时间:2019-05-13 21:42:04下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《2014夯实基础训练之一一元二次不等式》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《2014夯实基础训练之一一元二次不等式》。

第一篇:2014夯实基础训练之一一元二次不等式

2014届高三基础夯实训练一

一元二次不等式解法

一、解下列一元二次不等式:

1、x25x602、x25x603、x27x1204、x27x605、x2x1206、x2x1207、x28x120810、3x216x12013、2x211x1201416、10x233x2001719、x22x302022、3x27x202325、2x211x602628、5x214x302931、8x22x303234、2x2x2103537、5x217x1203840、16x28x3041、x24x120、3x237x12012、3x27x1015、x24x5018、6x2x2021、6x2x1024、3x211x4027、12x27x12030、8x210x3033、4x28x21036、10x211x6039、10x27x12042、3x25x120、2x215x70、2x26x50、x24x40、x23x50、4x24x30、x240、2x211x210、4x215x40、4x28x50、16x28x30、10x2x2091143、4x229x24044、4x221x18045、9x26x8046、12x216x3047、4x29048、12x220x3049、6x225x14050、20x241x9051、(x2)(x3)6 二填空题

1、不等式(x1)(12x)0的解集是;

2.不等式6x5x4的解集为____________.23、不等式3x2x10的解集是;

4、不等式x22x10的解集是;

5、不等式4xx25的解集是;

9、已知集合M{x|x24},N{x|x22x30},则集合MN;

10、不等式mxmx20的解集为R,则实数m的取值范围为; 211、不等式(2x1)29的解集为___________________________。

12、不等式0<x2+x-2≤4的解集是_______________.13、若不等式(a2)x2(a2)x40对一切xR恒成立,则a的取值范围是______________.

2三、典型例题:

1、已知对于任意实数x,kx22xk恒为正数,求实数k的取值范围.

2(1)x2ax3a0(2)x(1a)xa0 22

第二篇:一元二次不等式习题[

一元二次不等式基础的练习题一、十字相乘法练习:

1、x2+5x+6=

2、x2-5x+6=

3、x2+7x+12=

4、x2-7x+6=

5、x2-x-12=

6、x2+x-12=

7、x2+7x+12=

8、x2-8x+12=

9、x2-4x-12=10、3x+5x-12=11、3x+16x-12=12、3x2-37x+12=13、2x2+15x+7=14、2x2-7x-15=15、2x2+11x+12=16、2x2+2x-12= 22

练习:

1、解下列不等式:

(1)3x2-7x>10;(2)-2x26x50;

(3)x24x50 ;(4)10x233x200;

(5)-x24x40;(6)x2(2m1)x+m2+m<0;

(7)(x5)(3x)0;(8)(5-x)(3-x)<0;

x--4(9)(5+2x)(3-x)<0;(100;x+3

2x(11)0;4x2、(1)解关于x的不等式x22ax3a20

(2)解关于x的不等式x(1a)xa0.3、(1)若不等式ax2bxc0的解集是{x-3

(2)已知一元二次不等式ax2+bx+2>0的解集为{x|-2

A.a<0;B.-20a<0;C.-20a0;........D.-20

(3)对任意实数x,不等式x2+x+k>0恒成立,则k的取值范围是___________

第三篇:一元二次不等式教案

§2.2.4一元二次不等式

【授课班级】10级微机化工班 【授 课 人】相福香

【授课时间】2011年1月11日

一、教学目标 1.知识目标:

(1)使学生了解一元二次不等式的概念;(2)使学生掌握用配方法解一元二次不等式。2.能力目标:

培养学生动手、观察分析、抽象概括、归纳总结等系统的逻辑思维能力,以及良好的思维方法和思维品质。3.情感目标:

渗透抽象与具体、特殊与一般等辩证唯物主义的观点和方法,培养学生的自信心理。

二、教学分析 1.知识结构

本节课主要内容是用配方法解一元二次不等式。首先介绍了一元二次不等式的概念,然后由对特殊形式的讨论推广到一般的情形,从而总结出用配方法解不等式的一般步骤。2.重点、难点分析

本节课的重点是掌握一元二次不等式的解法;难点是将一元二次不等

(1)(x2)24

(2)(x1)29 例9 解下列不等式:

(1)x22x30(2)2x25x30 4.反馈演练,巩固新知 练习1 解下列不等式:

(1)(x1)264

(2)(x2)2100 练习2 解下列不等式:

(1)x23x20

(2)3x2x20 5.课堂小结

(1)使学生了解一元二次不等式的概念;(2)使学生掌握用配方法解一元二次不等式。6.作业布置

课后练习:课本习题 第8题和第9题 作业: 课本练习2-5 第3题和第5题

第四篇:一元二次不等式基础练习题

一元二次不等式强化一、十字相乘法练习:

1、x2+5x+6=

2、x2-5x+6=

3、x2+7x+12=

4、x2-7x+6=

5、x2-x-12=

6、x2+x-12=

7、x2+7x+12=

8、x2-8x+12=

9、x2-4x-12=10、3x+5x-12=11、3x+16x-12=12、3x2-37x+12=13、2x2+15x+7=14、2x2-7x-15=15、2x2+11x+12=16、2x2+2x-12=二、一元二次不等式 22

解一元二次不等式时

化为一般格式:ax2+bx+c>0(a>0)或ax2+bx+c<0(a>0);

练习:

1、解下列不等式:

(1)3x2-7x>10;(2)-2x26x50;

(3)x24x50 ;(4)10x233x200;

(5)-x24x40;(6)x2(2m1)x+m2+m<0;

(7)(x5)(3x)0;(8)(5-x)(3-x)<0;

x--4(9)(5+2x)(3-x)<0;(100;x+3

2x(11)0;4x2、(1)解关于x的不等式x22ax3a20

(2)解关于x的不等式x(1a)xa0.3、(1)若不等式ax2bxc0的解集是{x-3

(2)已知一元二次不等式ax2+bx+2>0的解集为{x|-2

A.a<0;B.-20a<0;C.-20a0;........D.-20

(3)对任意实数x,不等式x2+x+k>0恒成立,则k的取值范围是___________

第五篇:高中数学一元二次不等式练习题

一、解下列一元二次不等式:

1、x25x602、x25x603、x27x120

4、x27x605、x2x1206、x2x120

7、x28x1208、x24x1209、3x25x120 10、3x216x12011、3x237x12012、2x215x70 13、2x211x12014、3x27x1015、2x26x50 16、10x233x2001719、x22x3022、3x27x202325、2x211x602628、5x214x302931、8x22x303234、2x2x2103537、5x217x1203840、16x28x304143、4x229x2404446、12x216x304749、6x225x14050、x24x5018、6x2x20、6x2x1024、3x211x4027、12x27x12030、8x210x3033、4x28x21036、10x211x6039、10x27x12042、4x221x18045、4x29048、20x241x9051、x24x40

21、x23x50、4x24x30、x240、2x211x210、4x215x40、4x28x50、16x28x30、10x2x20、9x26x80、12x220x30、(x2)(x3)620

下载2014夯实基础训练之一一元二次不等式(5篇)word格式文档
下载2014夯实基础训练之一一元二次不等式(5篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    一元二次不等式综合练习题

    一元二次不等式综合练习题 解答题 1.已知集合Ax|x2x20,Bx|axa3,且AB,求实数a的取值范围是2.若不等式ax2bxc0的解集为x|2x5,解不等式cx2bxa03.解关于x的不等式2x24ax2a04.已知函......

    优质课一元二次不等式教案

    一元二次不等式及其解法 一、教学目标: 1、 知识目标:理解“三个二次”的关系,从而 熟悉掌握看图象找一元二次不等式的解集。 2、 能力目标:通过图像找解集,培养学生从“形到数”......

    一元二次不等式及其解法教学设计

    《一元二次不等式及其解法》 教 学 设 计 说 明 《一元二次不等式及其解法》教学设计说明 一.教学内容分析: 1.本节课内容在整个教材中的地位和作用. 必修五第三章不等式第二节......

    一元二次不等式及其解法 教学设计

    《一元二次不等式及其解法(第1课时)》教学设计 Eric 一 内容分析 本节课内容的地位体现在它的基础性,作用体现在它的工具性。一元二次不等式的解法是初中一元一次不等式或一元......

    一元二次不等式及其解法_教学设计

    《一元二次不等式及其解法(第1课时)》教学设计 梁晓凤 一 内容分析 本节课内容的地位体现在它的基础性,作用体现在它的工具性。一元二次不等式的解法是初中一元一次不等式或一......

    一元二次不等式及其解法教学设计

    一元二次不等式及其解法教学设计 姓名:郑尚运 单位:金沙中学 邮编:551800 本节课是人民教育出版社A版必修数学5第三章不等式第二大节3.2一元二次不等式及其解法的第一节课。一......

    一元二次不等式及其解法教学反思

    一元二次不等式及其解法教学反思 塘沽中专-----戚卫民 我在13级电子班教室上了一节课,由此我进行了深刻的反思: 我教的是一个普通中专的班,学生基础比较差。因此,第一,课前组织......

    3.2一元二次不等式及其解法教案

    3.2一元二次不等式及其解法(3课时) (一)教学目标 1.知识与技能:从实际问题中建立一元二次不等式,解一元二次不等式;应用一元二次不等式解决日常生活中的实际问题;能用一个程序框图......