第一篇:一元二次不等式及其解法公开课教案(精)
公开课教案
课题:3.2一元二次不等式及其解法 授课时间: 年月日(星期第节授课班级: 执教者: 指导教师:项目内容
一、学习目标1.会通过函数图像知道一元二次不等式与相应的二次函数、一元二次方程的联系;2.会解一元二次不等式;
二、重点与难点重点:解一元二次不等式;难点:对一元二次不等式与相应的二次函数、一元二次方程的联系的理解。
三、教学过程教学导航与学生平台 设计意 图
(一板书课题(二出示目标(三自学指导
(四先学(一板书课题:3.2一元二次不等式及其解法(二通过投影揭示本节课的学习目标以及学习重难点。(三自学指导(四先学
自学课本76-77页内容,并完成自学指导。1.一元二次不等式的定义
一般地,只含有,并且未知数的最高次数是的整式不等式,叫做一元二次不等式.2.一元二次不等式的解集的定义
一般地,使某个一元二次不等式成立的x的值叫做这个不等式的解,一元二次不等式的所有解组成的集合叫做这个一元二次不等式的解集。
3.一元二次不等式的一般形式: 20 ax bx c ++>(0 a>或20 ax bx c ++<(0 a> 4.探究一元二次不等式2760 x x-+>的解集
(1一元二次方程2760 x x
-+=的根与二次函数276 y x x =-+的零点的关系: ①求解方程2760 x x-+=的根 ②画出函数276 y x x =-+的图像并求出该函数的零点
结论:一元二次方程的 就是所对应的一元二次函数的。当x 取 时,y>0? 当x 取 时,y<0?(3由图象得: 不等式2 760x x-+> 的解集为;不等式2760x x-+< 的解集为;5.根据上述方法,请将下表填充完整。24b ac ∆=-0∆> 0∆= 0∆< 2y ax bx c
当x 取 时,y=0?(2
=++(0a >的图像 20 ax bx c ++=(0a >的根 没有实数根 20 ax bx c ++>(0a >的解集 2 ax bx c ++<(0a >的解集 20 ax bx c ++≥(0a >的解集 20 ax bx c ++≤(0a >的解集 思考:对于一元二次不等式
20ax bx c ++>(0a ≠或20ax bx c ++<(0a ≠ 当二次项系数0a <时应如何求解? 总结:解一元二次不等式的一般步骤是: 一看:看二次项系数是否为正,若为负化为正。
二算:算△及对应方程的根。
三写:由对应方程的根,结合不等号的方向,根据函数图象写出不等式的解集。
自学检测: 解不等式:(12x 2-3x-2>0;(2-x 2+3x-2>0;(34x 2-4x+1≤0;(4x 2-2x+2>0.(五后教
1.帮助学生解决自学过程中存在的问题,以及本节的重、难点及注意事项.2.更正当堂检测存在的问题(先由学生检查更正,更正时用红色粉笔把认为错误的部分用斜线画掉,在旁边更正,保留原有答案,最后师再针对存在的问题进行讲解
过渡:下面我们一起看板演的内容。3.新知延伸 解下列不等式 1.一元二次不等式的定义 2.一元二次不等式的解集的定义 3.一元二次不等式的一般形式: 20ax bx c ++>(0a >或20ax bx c ++<(0a > 4.解一元二次不等式的一般步骤 课后作业: 课本p80 练习1.(1、(2、(3、(5 课时训练16(五后教(六、课堂总结(七、作业布置
四、板书设计
1.一元二次不等式的定义 2.一元二次不等式的解集的定义 3.一元二次不等式的一般形式: 20 ax bx c ++>(0 a>或20 ax bx c ++<(0 a> 4.解一元二次不等式的一般步骤
五、教后记(教学反思)
第二篇:3.2一元二次不等式及其解法教案
3.2一元二次不等式及其解法(3课时)
(一)教学目标
1.知识与技能:从实际问题中建立一元二次不等式,解一元二次不等式;应用一元二次不等式解决日常生活中的实际问题;能用一个程序框图把求解一般一元二次不等式的过程表示出来;
2.过程与方法:通过学生感兴趣的上网问题引入一元二次不等式的有关概念,通过让学生比较两种不同的收费方式,抽象出不等关系;利用计算机将数学知识用程序表示出来;
3.情态与价值:培养学生通过日常生活中的例子,找到数学知识规率,从而在实际生活问题中数形结合的应用以及计算机在数学中的应用。
(二)教学重、难点
重点:从实际问题中抽象出一元二次不等式模型,围绕一元二次不等式的解法展开,突出体现数形结合的思想;
难点:理解二次函数、一元二次方程与一元二次不等式解集的关系。
(四)教学设想
[创设情景] 通过让学生阅读第84页的上网问题,得出一个关于x的一元二次不等式,即
x25x0
[探索研究] 首先考察不等式x5x0与二次函数yx25x以及一元二次方程x5x0的 关系。
容易知道,方程x5x0有两个实根:x10,x25
由二次函数的零点与相应的一元二次方程根的关系,知x10,x25是二次函数222yx25x的两个零点。通过学生画出的二次函数yx25x的图象,观察而知,当x0,x5时,函数图象位于x轴上方,此时y0,即x5x0;
2当0x5时,函数图象位于x轴下方,此时y0,即x5x0。
22所以,一元二次不等式x5x0的解集是x0x5
从而解决了以上的上网问题。
[总结归纳] 上述方法可以推广到求一般的一元二次不等式axbxc0或
2ax2bxc0(a0)的解集:可分0,0,0三种情况来讨论。
引导学生将第86页的表格填充完整。
[例题分析]:
一.分析、讲解例2和例3,练习:第89页1.(1)、(3)、(5);2.(1)、(3)二.分析、讲解例1和例4 练习:第90页(A组)第5题,(B组)第4题。[知识拓展]:
下面利用计算器,用一个程序框图把求解一般一元二次不等式的过程表示出来:
下面是具有一般形式axbxc0(a0)对应的一元二次方程
2ax2bxc0(a0)的求根程序:
input “a,b,c=”;a,b,c d=b*b-4*a*c p=-b/(2*a)q=sqr(abs(d))/(2*a)if d<0 then print “the result is R” else x1=p-q x2=p+q if x1=x2 then print “the result is {x/x<> “;p,”}” else print “the result is {x/x> “;x2, “or x<”;x1,”}” endif endif end 练习:(B组)第3题。[新知小结]:
1.从实际问题中建立一元二次不等式,解一元二次不等式; 2.应用一元二次不等式解决日常生活中的实际问题;
3.能用一个程序框图把求解一般一元二次不等式的过程表示出来:
[课后作业]:习题3.2(A组)第1、2、6题;(B组)第1、2题。
第三篇:含参数的一元二次不等式及其解法教案(本站推荐)
含参数的一元二次不等式及其解法教案
三维目标: 1.知识与技能
掌握一元二次不等式的解法,在此基础上理解含有字母参数的一元二次不等式的解法.2.过程与方法
通过体验解题的过程,提高学生的逻辑分析能力.3.情感态度价值观
通过分类讨论的过程培养学生思维的严密性.教学重点: 含有参数一元二次不等式的解法.教学难点: 分类讨论标准的划分.教学过程: 一.知识回顾
1.完成一元二次方程、一元二次函数、一元二次不等式间的关系表 2.检测学生一元二次不等式的解法掌握情况。
二、探索研究 例1
解关于x的不等式ax25ax6a0(aR)分析:对于含有参数的不等式,教师引导学生从以下几个方面探究,教给学生探究的方法和方向。
探究1:这个不等式是一元二次不等式吗?
探究2:当a取何值时为二次不等式;a取何值时为非二次不等式? 探究3:是二次不等式时,它所对应的二次函数的开口方向是? 探究4:由上可知,我们应该分哪几类去解这个不等式? 探究5:a<0时,该不等式的解集是? 探究6:a=0时,该不等式的解集是? 探究7:a>0时该不等式的解集是?
223例2 解关于x的不等式x(aa)xa0(aR)解析:先让学生自主探索,写出解决这种问题的常规方法。若不等式对应方程的根x1,x2中含有参数,则须按x1,x2的大小来分类,即分x1
例3 已知aR,解关于x的不等式ax2(a1)x10引导学生用通法解含参数的不等式,把总结的规律推广到一般情形。
三、探究总结(板书内容)解含有参数的二次不等式 1.数学思想:分类讨论 2.解题步骤
(1)分类(二次项系数a=0、判别式△=0(x1=x2)(2)画图,写解集(3)整合解集
四、成果验收
1.解关于x的不等式x2 (a1)x10 a
五、作业布置
已知常数aR,解关于x的不等式:ax22xa0
第四篇:一元二次不等式及其解法教学设计
《一元二次不等式及其解法》
教 学 设 计 说 明
《一元二次不等式及其解法》教学设计说明
一.教学内容分析:
1.本节课内容在整个教材中的地位和作用.
必修五第三章不等式第二节一元二次不等式及其解法共有三个课时,本节课是第一课时,教学内容的地位体现在它的基础性,作用体现在它的工具性.一元二次不等式的解法是初中一元一次不等式或一元一次不等式组的延续和深化,对已学习过的集合知识的巩固和运用具有重要的作用.许多问题的解决都会借助一元二次不等式的解法.因此,一元二次不等式的解法在整个高中数学教学中具有很强的基础性,体现出很大的工具作用. 2.教学目标定位.
根据教学大纲要求、高考考试大纲说明、新课程标准精神、高一学生已有的知识储备状况和学生心理认知特征,我确定了四个层面的教学目标.第一层面是面向全体学生的知识目标:熟练掌握一元二次不等式的解法,正确理解一元二次方程、一元二次不等式和二次函数三者的关系.第二层面是能力目标,培养学生运用数形结合与分类讨论等数学思想方法解决问题的能力,提高运算和作图能力.第三层面是德育目标,通过对解不等式过程中等与不等对立统一关系的认识,向学生逐步渗透辨证唯物主义思想.第四层面是情感目标,在教师的启发引导下,学生自主探究,交流讨论,培养学生的合作意识和创新精神. 3.教学重点、难点确定.
本节课是在复习了一元二次方程和二次函数之后,利用二次函数的图象研究一元二次不等式的解法.只要学生能够理解一元二次方程、一元二次不等式和二次函数三者的关系,并利用其关系解不等式即可.因此,我确定本节课的教学重点为一元二次不等式的解法,关键是一元二次方程、一元二次不等式和二次函数三者的关系. 二.教法学法分析:
数学是发展学生思维、培养学生良好意志品质和美好情感的重要学科,在教学中,我们不仅要使学生获得知识、提高解题能力,还要让学生在教师的启发引导下学会学习、乐于学习,感受数学学科的人文思想,使学生在学习中培养坚强的意志品质、形成良好的道德情感.为了更好地体现课堂教学中“教师为主导,学生为主体”的教学关系和“以人为本,以学定教”的教学理念,在本节课的教学过程中,将紧紧围绕教师组织——启发引导,学生探究——交流发现,组织开展教学活动.我设计了①回忆旧知,服务新知,②创设情境,提出问题,③合作交流,探究新知,④数学运用,深化认知,⑤练习检测,反馈新知,⑥谈谈收获,强化思想,⑦布置作业,实践新知,环环相扣、层层深入的教学环节,在教学中注意关注整个过程和全体学生,充分调动学生积极参与教学过程的每个环节. 三.教学过程分析:
(一)联系旧知,构建新知
设置一系列的问题唤起学生对旧知识的回忆. 问题1:一元二次方程的解法有哪些呢?
(意图:让学生回顾一元二次方程的解法,为解一元二次不等式做准备.)
问题2:同学们还记得二次函数吗?二次函数的形式是怎样的?你记得二次函数的性质吗?
(意图:引导学生从图象的角度出发,并启发学生二次函数的图象是一条抛物线,其开口方向由二次项系数决定,为突出重点做准备)
(二)创设情景,提出问题
1、让学生动手画直角坐标系,然后沿x轴方向上下对折这张纸,观察它们的值有什么特点?
22、请在刚才的坐标系中画出y=x-7x+6的图像 问题1:
(1)x轴上方有无图像?若有请用红线描出。这部分图像对应的y值如何?(2)x轴下方有无图像?若有请用蓝线描出。这部分图像对应的y值如何?(3)红线与蓝线有无交点?若有请用绿色标出。
(4)你能找出上述各种情况的x的取值范围吗?请在图中写出。
问题2:你能说一说这两个不等式有何共同特点么?(1)含有一个未知数x;
(2)未知数的最高次数为2。通过两问题得出一元二次不等式的概念:一般地,只含有一个未知数,且未知数的最高次数为2的不等式,叫做一元二次不等式。
问题3:判断下列式子是不是一元二次不等式?
问题4:一元二次函数、一元二次方程之间有何联系呢?
一元二次方程的解即一元二次函数图象与x轴交点的横坐标,也就是说方程的解即对应函数的零点。
问题5:一元二次不等式如何求解呢?
(三)合作交流,探究新知
1. 探究一元二次不等式x2x20的解.
容易知道:一元二次方程x2x20的有两个实数根:x11或x22. 二次函数yx2x2与x轴有两个交点:1,0和2,0. 思考1:观察图象一元二次方程的根与二次函数之间有什么关系? 思考2:观察图象,当x为何值时,y0;
当x为何值时,y0; 当x为何值时,y0.
(设计意图 : ①体现学生的主体性;②有利于加强对图象的认识,从而加强数形结合的数学思想 ;③有利于加强学生理解一元二次不等式的解相关的三个因素;④为归纳解一元二次不等式做好准备.根据前面探讨的问题引导学生归纳一元二次不等式的解.)
2. 探究一元二次不等式ax2bxc0或ax2bxc0a0的解法. 组织讨论:从上面的例子出发,综合学生的意见,可以归纳出确定一元二次不等式的解集,关键要考虑:
2抛物线yaxbxc与x轴的相关位置的情况,也就是一元二次方程2ax2bxc=0的根的情况,而一元二次方程根的情况是由判别式b4ac三 3 种取值情况(0,0,0)来确定.
(设计意图:这里我将运用多媒体图标的形式来展现出其解法思路,学生有一个完整的逻辑思维,让学生在探究中建立知识间的联系,体会数形结合,强调突出本节的难点.)
(四)数学运用,深化认知.
2例1.求不等式2x3x20的解集. 2变式为:求不等式2x3x20的解集.
2例2.解不等式x2x30.
(设计意图:先让学生来解答例题,若教师巡视、指导,讲评学生完成情况,寻找学生中的闪光点,给予热情表扬.)总结:
解一元二次不等式的步骤:
一化:化二次项前的系数为正(a>0).二判:判断对应方程的根.三求:求对应方程的根.四画:画出对应函数的图象.五解集:根据图象写出不等式的解集.(五)练习检测,巩固收获
(设计意图:为了巩固和加深一元二次不等式的解法,让学生学以致用,接下来及时组织学生进行课堂练习.然后就学生在解题中出现的问题共同纠正.)
(六)归纳小结,强化思想
设计意图:梳理本节课的知识点,总结一元二次不等式解法的步骤:“一化,二判,三求根,四画图,五写解集”的口诀来帮助学生记忆和归纳,让学生掌握严谨的做题方法,知晓本节课的重难点.
(七)布置作业,拓展延伸
必做题:课本第80页习题A组 1,2.选做题:(1)若关于m的一元二次方程x
2(m1)xm0有两个不相 等的实数根,求m的取值范围.2(2)已知不等式xaxb0的解集为x2x3,求a,b的
值.(设计意图:以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的反馈,选做题是对本节课知识的延伸,整体的设计意图是反馈教学,巩固提高.)四.教学总结
本节课的所有内容以习题的形式展现给学生,学生始终在解题中探究,在解题中发现,学生参与教学的全过程,成为课堂教学的主体和学习的主人,而老师只须时刻关注学生的活动过程,不时给予引导,及时纠正.
第五篇:一元二次不等式及其解法 教学设计
《一元二次不等式及其解法(第1课时)》教学设计
Eric 一 内容分析
本节课内容的地位体现在它的基础性,作用体现在它的工具性。一元二次不等式的解法是初中一元一次不等式或一元一次不等式组的延续和深化,对已学习过的集合知识的巩固和运用具有重要的作用,也与后面的函数、数列、三角函数、线形规划、直线与圆锥曲线以及导数等内容密切相关。许多问题的解决都会借助一元二次不等式的解法。因此,一元二次不等式的解法在整个高中数学教学中具有很强的基础性,体现出很大的工具作用。
二 学情分析
学生已经掌握了高中所学的基本初等函数的图象及其性质, 能利用函数的图象及其性质解决一些问题。学生知道不等关系, 掌握了不等式的性质, 通过这部分内容的学习, 学生将学会利用二次函数的图象, 通过数形结合的思想, 掌握一元二次不等式的解法。
三 教学目标
1.知识与技能目标:(1)熟练应用二次函数图象解一元二次不等式的方法(2)了解一元二次不等式与相应函数, 方程的联系 2.过程与方法:(1)通过学生已学过的一元一次不等式为例引入一元二次不等式的有关概及解法(2)让学生观察二次函数,在此基础上, 找到一元二次不等式的解法并掌握此解法(3)在学生寻找一元二次不等式的过中程中培养学生数形结合的数学思想 3.情感与价值目标:(1)通过新旧知识的联系获取新知,使学生体会温故而知新的道理
(2)通过对解不等式过程中等与不等对立统一关系的认识,向学生逐步渗透辨证唯物主义思想。
(3)在教师的启发引导下,学生自主探究,交流讨论,培养学生的合作意识和创新精神。
四 教学重点、难点 1.重点
一元二次不等式的解法 2.难点
理解元二次方程与一元二次不等式解集的关系
五 教学方法
启发式教学法,讨论法,讲授法
六 教学过程
1.创设情景,提出问题(约10分钟)
师:在初中,我们解过一元一次不等式,如解不等式x – 1 > 0,现在请同学们先画出函数y = x – 1 的图象,并通过观察图象回答以下问题: 1)x 为何值时,y = 0;2)x 为何值时,y > 0;3)x 为何值时,y < 0;4)一元一次方程x – 1 = 0的根能从函数y = x – 1上看出来吗? 5)一元一次不等式 x – 1 > 0的解集能从函数y = x – 1上看出来吗?
学生画图,思考。先把问题交给学生自主探究,过一段时间,再小组交流,此间教师巡视并指导。提问学生代表。
通过对上述问题的探究,学生得出以下结论:
因为上述方程x – 1 = 0以及不等式x – 1 > 0的左边恰好是上述函数y = x3x – 2 > 0;2)4x23x – 2 = 0的解是x1 =-1/2, x2 = 2.所以2x24x + 1 = 0 的解是x1 = x2 = 1/2, 所以不等式4x22x + 3 < 0, 因为Δ < 0,方程x22x + 3 < 0的解集为空集,即原不等式的解集为空集。
练习:课本80页练习第1题(1)-(3)【灵活掌握】.师:今天我们这节课的内容有两个: 1)会一元二次不等式的解法 2)理解三个“二次”的关系
作业:课本第80页习题3.2 A
4.板书设计
§3.2 一元二次不等式及其解法
解不等式x2 – x – 6 > 0, 请先画出二次函数 y = x2 – x – 6的图像,并回答以下问题: 1)x 为何值时,y = 0;y > 0;y < 0;2)一元二次方程x2 – x – 6 = 0的根能从函数 y = x2 – x – 6上看出来吗?一元二次不等式 x2 – x – 6 > 0的解集呢?
七 教学反思
组1、2题 例,解不等式:
1)2x24x + 1 > 0;3)-x2 + 2x – 3 < 0;
解:1)因为Δ =(-3)2 – 4×2×(-2)= 25 > 0, 方程的2x23x – 2 > 0的解集是{x| x1 <-1/2, 或x2 > 2}.2)因为Δ = 0,方程4x24x + 1 > 0的解集是{x|x ≠ 1/2}.