第一篇:2.示范教案(3.2.1 一元二次不等式的概念和一元二次不等式解法)
http://www.xiexiebang.com 或http://www.xiexiebang.com
3.2 一元二次不等式及其解法
3.2.1 一元二次不等式的概念和一元二次不等式解法
从容说课
本节课是人民教育出版社A版必修数学5第三章不等式第二大节3.2一元二次不等式及其解法的第一节课.一元二次不等式及其解法教学分为三个学时,第一个学时先由师生共同分析日常生活中的实际问题来引出一元二次不等式及其解法中的一些基本概念、求解一元二次不等式的步骤、求解一元二次不等式的程序框图.确定一元二次不等式的概念和解法,以此激发学生对科学的探究精神和严肃认真的科学态度.通过具体例题的分析和求解,在这些例题中设置思考项,让学生探究,层层铺设,以便让学生深刻理解一元二次不等式的概念,有利于一元二次不等式的解法的教学.讲述完一元二次不等式的概念后,再回归到先前的具体事例,总结一元二次不等式解法与二次函数的关系和一元二次不等式解法的步骤,由学生用表格将一元二次不等式解法与二次函数的数形关系的对应关系用图表形式表示出来;然后用一个程序框图把求解一般一元二次不等式的过程表示出来,根据这些图表,得出一元二次不等式解法与二次函数的关系两者之间的区别与联系,再辅以新的例题巩固.整个教学过程,探究一元二次不等式的概念,揭示一元二次不等式解法与二次函数的关系本质,引出一元二次不等式解法的步骤和过程,并及时加以巩固,同时让学生体验数学的奥秘与数学美,激发学生的学习兴趣.
教学重点 1.从实际问题中抽象出一元二次不等式模型.
2.围绕一元二次不等式的解法展开,突出体现数形结合的思想. 教学难点 理解二次函数、一元二次方程与一元二次不等式的关系. 教具准备 多媒体及课件,幻灯片三张
三维目标
一、知识与技能
1.经历从实际情景中抽象出一元二次不等式模型的过程;
2.通过函数图象了解一元二次不等式与二次函数、一元二次方程的联系; 3.会解一次二次不等式,对给定的一元二次不等式,尝试设计求解的程序框图.
二、过程与方法
1.采用探究法,按照思考、交流、实验、观察、分析、得出结论的方法进行启发式教学; 2.发挥学生的主体作用,作好探究性实验; 3.理论联系实际,激发学生的学习积极性.
三、情感态度与价值观
1.通过利用二次函数的图象来求解一元二次不等式的解集,培养学生的数形结合的数学思想;
2.通过研究函数、方程与不等式之间的内在联系,使学生认识到事物是相互联系、相互转化的,树立辩证的世界观.
教学过程
导入新课
师 上网获取信息已经成为人们日常生活的重要组成部分,因特网服务公司(Internet Service Provider)的任务就是负责将用户的计算机接入因特网,同时收取一定的费用.
某同学要把自己的计算机接入因特网,现有两家ISP公司可供选择,公司A每小时收费1.5元;公司B的收费原则是在用户上网的第一小时内收费1.7元,第二小时内收费1.6元,以后每小时减少0.1元.(若用户一次上网时间超过17小时,按17小时计算) 一般来说,一次上网时间不会超过17小时,所以,不妨一次上网时间总小于17小时,那么,一次上网在多长时间以内能够保证选择公司A比选择公司B所需费用少?
中鸿智业信息技术有限公司
http://www.xiexiebang.com 或http://www.xiexiebang.com
假设一次上网x小时,则A公司收取的费用为1.5x,那么B公司收取的费用为多少?怎样得来? 生 结果是x(35x)20x(x1)x(35x)1.7x(0.1).
220x(35x)20元,因为是等差数列,其首项为1.7,公差为-0.1,项数为x的和,即师 如果能够保证选择A公司比选择B公司所需费用少,则如何列式? 生 由题设条件应列式为推进新课
师 因此这个问题实际就是解不等式:x-5x<0的问题.这样的不等式就叫做一元二次不等式,它的解法是我们下面要学习讨论的重点.
什么叫做一元二次不等式?
含有一个未知数并且未知数的最高次数是二次的不等式叫做一元二次不等式,它的一般形式是ax2+bx+c>0或ax2+bx+c<0(a≠0).例如2x2-3x-2>0,3x2-6x<-2,-2x2+3<0等都是一元二次不等式.
那么如何求解呢?
师 在初中,我们已经学习过一元一次方程和一元一次不等式的解法,以及一次函数的有关知识,那么一元一次方程、一元一次不等式以及一次函数三者之间有什么关系呢? 思考:对一次函数y=2x-7,当x为何值时,
y=0?当x为何值时,y<0?当x为何值时,y>0? 它的对应值表与图象如下:
2>1.5x(0<x<17),整理化简得不等式x-5x<0.
2x 2 2.5 3 y-3-2-1 由对应值表与图象(如上图)可知: 当x=3.5时,y=0,即2x-7=0; 当x<3.5时,y<0,即2x-7<0; 当x>3.5时,y>0,即2x-7>0.
3.5 0 1 4.5 2 5 3 师 一般地,设直线y=ax+b与x轴的交点是(x0,0),则有如下结果:(1)一元一次方程ax+b=0的解是x0;
(2)①当a>0时,一元一次不等式ax+b>0的解集是{x|x>x0};一元一次不等式ax+b<0的解集是{x|x<x0}.
②当a<0时,一元一次不等式ax+b>0的解集是{x|x<x0};一元一次不等式ax+b<0的解集是{x|x>x0}.
师 在解决上述问题的基础上分析,一次函数、一元一次方程、一元一次不等式之间的关系.能通过观察一次函数的图象求得一元一次不等式的解集吗? 生 函数图象与x轴的交点横坐标为方程的根,不等式的解集为函数图象落在x轴上方(下方)部分对应的横坐标.中鸿智业信息技术有限公司
http://www.xiexiebang.com 或http://www.xiexiebang.com
a<0
一次函数 y=ax+b(a≠0) 的图象
一元一次方程ax+b=0的解集 一元一次不等式ax+b>0的解集 一元一次不等式ax+b<0的解集
a>0
{x|x={x|x>{x|x<bababa
{x|x={x|x<{x|x>bababa} } }
} } } 师 在这里我们发现一元一次方程、一元一次不等式与一次函数三者之间有着密切的联系.利用这种联系(集中反映在相应一次函数的图象上)我们可以快速准确地求出一元一次不等式的解集,类似地,我们能不能将现在要求解的一元二次不等式与二次函数联系起来讨论找到其求解方法呢?
在初中学习二次函数时,我们曾解决过这样的问题:对二次函数y=x2-5x,当x为何值时,y=0?当x为何值时,y<0?当x为何值时,y>0?当时我们又是怎样解决的呢? 生 当时我们是通过作出函数的图象,找出图象与x轴的交点,通过观察来解决的. 二次函数y=x2-5x的对应值表与图象如下: x y-1 6
0 0-4-6-6-4 0 6
由对应值表与图象(如上图)可知: 当x=0或x=5时,y=0,即x2-5x=0;
2当0<x<5时,y<0,即x-5x<0; 当x<0或x>5时,y>0,即x2-5x>0.
这就是说,若抛物线y=x-5x与x轴的交点是(0,0)与(5,0), 则一元二次方程x2-5x=0的解就是x1=0,x2=5.
一元二次不等式x2-5x<0的解集是{x|0<x<5};一元二次不等式x2-5x>0的解集是{x|x<0或x>5}.
[教师精讲]
由一元二次不等式的一般形式知,任何一个一元二次不等式,最后都可以化为ax2+bx+c>0或ax2+bx+c<0(a>0)的形式,而且我们已经知道,一元二次不等式的解与其相应的一元二次方程的根及二次函数图象有关,即由抛物线与x轴的交点可以确定对应的一元二次方程的解和对应的一元二次不等式的解集.
如何讨论一元二次不等式的解集呢?
我们知道,对于一元二次方程ax2+bx+c=0(a>0),设其判别式为Δ=b2-4ac,它的解按照Δ>0,Δ=0,Δ<0分为三种情况,相应地,抛物线y=ax2+bx+c(a>0)与x轴的相关位置也分为三种情况(如下图),因此,对相应的一元二次不等式ax2+bx+c>0或ax2+bx+c<0(a>0)的解集我们也分这三种情况进行讨论.
2中鸿智业信息技术有限公司
http://www.xiexiebang.com 或http://www.xiexiebang.com
(1)若Δ>0,此时抛物线y=ax 2+bx+c(a>0)与x轴有两个交点〔图(1)〕,即方程ax 2+bx+c=0(a>0)有两个不相等的实根x1,x2(x1<x2),则不等式ax+bx+c>0(a>0)的解
2集是{x|x<x1,或x>x2};不等式ax+bx+c<0(a>0)的解集是{x|x1<x<x2}.
(2)若Δ=0,此时抛物线y=ax2+bx+c(a>0)与x轴只有一个交点〔图(2)〕,即方程ax2+bx+c=0(a>0)有两个相等的实根x1=x2={x|x≠b2ab2a
2,则不等式ax2+bx+c>0(a>0)的解集是};不等式ax2+bx+c<0(a>0)的解集是.
(3)若Δ<0,此时抛物线y=ax2+bx+c(a>0)与x轴没有交点〔图(3)〕,即方程ax2+bx+c=0(a>0)无实根,则不等式ax2+bx+c>0(a>0)的解集是R;不等式ax2+bx+c<0(a>0)的解集是.Δ=b2-4ac 二次函数y=ax+bx+c(a>0)的图象
ax2+bx+c=0的根
x1.22
Δ>0 Δ=0 Δ<0
x1=x2=b2ab2a
b2a
ax2+bx+c>0的解集
2{x|x<x1或x>x2}
{x|x≠}
R
ax+bx+c<0的解集 {x|x1<x<x2} 对于二次项系数是负数(即a<0)的不等式,可以先把二次项系数化成正数,再求解.
[知识拓展]
【例1】 解不等式2x 2-5x-3>0. 生 解:因为Δ>0,2x2-5x-3=0的解是x1=->3}.
【例2】 解不等式-3x 2+15x>12.
生 解:整理化简得3x 2-15x+12<0.因为Δ>0,方程3x2-15x+12=0的解是x 1=1,x2=4,所以不等式的解集是{x|1<x<4}.
【例3】 解不等式4x 2+4x+1>0.
生 解:因为Δ=0,方程4x +4x+1=0的解是x1=x 2=2
12,x 2=3.所以不等式的解集是{x|x<12,或x
12.所以不等式的解集是{x|x≠12}.
【例4】 解不等式-x 2+2x-3>0.
生 解:整理化简,得x2-2x+3<0.因为Δ<0,方程x 2-2x+3=0无实数解,所以不等式的解集是.
中鸿智业信息技术有限公司
http://www.xiexiebang.com 或http://www.xiexiebang.com
师 由上述讨论及例题,可归纳出解一元二次不等式的程序吗? 生 归纳如下:
(1)将二次项系数化为“+”:y=ax 2+bx+c>0(或<0)(a>0).(2)计算判别式Δ,分析不等式的解的情况: 若y>0,则xx1或x>x2;①Δ>0时,求根x1<x2,
若y<0,则x1<x<x2.若y>0,则xx0的一切实数;②Δ=0时,求根x 1=x 2=x 0,若y<0,则x;
若y0,则xx.0若y>0,则xR;③Δ<0时,方程无解,
若y0,则x.(3)写出解集.
师 说的很好.下面我们用一个程序框图把求解一元二次不等式的过程表示出来,请同学们将判断框和处理框中的空格填充完整. [学生活动过程]
[方法引导]
上述过程以学生自主探究为主,教师起引导作用,充分体现学生的主体作用与新课程的理念.该过程中的思考、观察、探究起到层层铺设的作用,激起学生学习的兴趣与勇于探索的精神.
课堂小结
1.一元二次不等式:含有一个未知数并且未知数的最高次数是二次的不等式叫做一元二次不等式,它的一般形式是ax2+bx+c>0或ax2+bx+c<0(a≠0). 2.求解一元二次不等式的步骤和解一元二次不等式的程序. 布置作业
中鸿智业信息技术有限公司
http://www.xiexiebang.com 或http://www.xiexiebang.com
1.完成第90页的练习.
2.完成第90页习题3.2第1题.
板书设计
一元二次不等式的概念和一元二次不等式解法
多媒体演示区
一元二次不等式概念
一元二次不等式解题步骤
例题
中鸿智业信息技术有限公司
第二篇:2.示范教案(3.2.1 一元二次不等式的概念和一元二次不等式解法)
3.2 一元二次不等式及其解法
3.2.1 一元二次不等式的概念和一元二次不等式解法
从容说课
本节课是人民教育出版社A版必修数学5第三章不等式第二大节3.2一元二次不等式及其解法的第一节课.一元二次不等式及其解法教学分为三个学时,第一个学时先由师生共同分析日常生活中的实际问题来引出一元二次不等式及其解法中的一些基本概念、求解一元二次不等式的步骤、求解一元二次不等式的程序框图.确定一元二次不等式的概念和解法,以此激发学生对科学的探究精神和严肃认真的科学态度.通过具体例题的分析和求解,在这些例题中设置思考项,让学生探究,层层铺设,以便让学生深刻理解一元二次不等式的概念,有利于一元二次不等式的解法的教学.讲述完一元二次不等式的概念后,再回归到先前的具体事例,总结一元二次不等式解法与二次函数的关系和一元二次不等式解法的步骤,由学生用表格将一元二次不等式解法与二次函数的数形关系的对应关系用图表形式表示出来;然后用一个程序框图把求解一般一元二次不等式的过程表示出来,根据这些图表,得出一元二次不等式解法与二次函数的关系两者之间的区别与联系,再辅以新的例题巩固.整个教学过程,探究一元二次不等式的概念,揭示一元二次不等式解法与二次函数的关系本质,引出一元二次不等式解法的步骤和过程,并及时加以巩固,同时让学生体验数学的奥秘与数学美,激发学生的学习兴趣.
教学重点 1.从实际问题中抽象出一元二次不等式模型.
2.围绕一元二次不等式的解法展开,突出体现数形结合的思想. 教学难点 理解二次函数、一元二次方程与一元二次不等式的关系. 教具准备 多媒体及课件,幻灯片三张
三维目标
一、知识与技能
1.经历从实际情景中抽象出一元二次不等式模型的过程;
2.通过函数图象了解一元二次不等式与二次函数、一元二次方程的联系; 3.会解一次二次不等式,对给定的一元二次不等式,尝试设计求解的程序框图.
二、过程与方法
1.采用探究法,按照思考、交流、实验、观察、分析、得出结论的方法进行启发式教学; 2.发挥学生的主体作用,作好探究性实验; 3.理论联系实际,激发学生的学习积极性.
三、情感态度与价值观
1.通过利用二次函数的图象来求解一元二次不等式的解集,培养学生的数形结合的数学思想;
2.通过研究函数、方程与不等式之间的内在联系,使学生认识到事物是相互联系、相互转化的,树立辩证的世界观.
教学过程
导入新课
师 上网获取信息已经成为人们日常生活的重要组成部分,因特网服务公司(Internet Service Provider)的任务就是负责将用户的计算机接入因特网,同时收取一定的费用.
某同学要把自己的计算机接入因特网,现有两家ISP公司可供选择,公司A每小时收费1.5元;公司B的收费原则是在用户上网的第一小时内收费1.7元,第二小时内收费1.6元,以后每小时减少0.1元.(若用户一次上网时间超过17小时,按17小时计算) 一般来说,一次上网时间不会超过17小时,所以,不妨一次上网时间总小于17小时,那么,一次上网在多长时间以内能够保证选择公司A比选择公司B所需费用少? 假设一次上网x小时,则A公司收取的费用为1.5x,那么B公司收取的费用为多少?怎样得来? 生 结果是x(35x)20x(x1)x(35x)1.7x(0.1).
220x(35x)20元,因为是等差数列,其首项为1.7,公差为-0.1,项数为x的和,即师 如果能够保证选择A公司比选择B公司所需费用少,则如何列式? 生 由题设条件应列式为推进新课
师 因此这个问题实际就是解不等式:x-5x<0的问题.这样的不等式就叫做一元二次不等式,它的解法是我们下面要学习讨论的重点.
什么叫做一元二次不等式?
含有一个未知数并且未知数的最高次数是二次的不等式叫做一元二次不等式,它的一般形式是ax2+bx+c>0或ax2+bx+c<0(a≠0).例如2x2-3x-2>0,3x2-6x<-2,-2x2+3<0等都是一元二次不等式.
那么如何求解呢?
师 在初中,我们已经学习过一元一次方程和一元一次不等式的解法,以及一次函数的有关知识,那么一元一次方程、一元一次不等式以及一次函数三者之间有什么关系呢? 思考:对一次函数y=2x-7,当x为何值时,
y=0?当x为何值时,y<0?当x为何值时,y>0? 它的对应值表与图象如下:
2>1.5x(0<x<17),整理化简得不等式x-5x<0.
2x 2 2.5 3 y-3-2-1 由对应值表与图象(如上图)可知: 当x=3.5时,y=0,即2x-7=0; 当x<3.5时,y<0,即2x-7<0; 当x>3.5时,y>0,即2x-7>0.
3.5 0 1 4.5 2 5 3 师 一般地,设直线y=ax+b与x轴的交点是(x0,0),则有如下结果:(1)一元一次方程ax+b=0的解是x0;
(2)①当a>0时,一元一次不等式ax+b>0的解集是{x|x>x0};一元一次不等式ax+b<0的解集是{x|x<x0}.
②当a<0时,一元一次不等式ax+b>0的解集是{x|x<x0};一元一次不等式ax+b<0的解集是{x|x>x0}.
师 在解决上述问题的基础上分析,一次函数、一元一次方程、一元一次不等式之间的关系.能通过观察一次函数的图象求得一元一次不等式的解集吗? 生 函数图象与x轴的交点横坐标为方程的根,不等式的解集为函数图象落在x轴上方(下方)部分对应的横坐标.一次函数 y=ax+b(a≠0) 的图象
一元一次方程ax+b=0的解集 一元一次不等式ax+b>0的解集 一元一次不等式ax+b<0的解集
a>0 a<0
{x|x={x|x>{x|x<bababa
{x|x={x|x<{x|x>bababa} } }
} } } 师 在这里我们发现一元一次方程、一元一次不等式与一次函数三者之间有着密切的联系.利用这种联系(集中反映在相应一次函数的图象上)我们可以快速准确地求出一元一次不等式的解集,类似地,我们能不能将现在要求解的一元二次不等式与二次函数联系起来讨论找到其求解方法呢?
在初中学习二次函数时,我们曾解决过这样的问题:对二次函数y=x2-5x,当x为何值时,y=0?当x为何值时,y<0?当x为何值时,y>0?当时我们又是怎样解决的呢? 生 当时我们是通过作出函数的图象,找出图象与x轴的交点,通过观察来解决的. 二次函数y=x2-5x的对应值表与图象如下: x y-1 6
0 0-4-6-6-4 0 6
由对应值表与图象(如上图)可知: 当x=0或x=5时,y=0,即x2-5x=0;
2当0<x<5时,y<0,即x-5x<0; 当x<0或x>5时,y>0,即x2-5x>0.
这就是说,若抛物线y=x-5x与x轴的交点是(0,0)与(5,0), 则一元二次方程x2-5x=0的解就是x1=0,x2=5.
一元二次不等式x2-5x<0的解集是{x|0<x<5};一元二次不等式x2-5x>0的解集是{x|x<0或x>5}.
[教师精讲]
由一元二次不等式的一般形式知,任何一个一元二次不等式,最后都可以化为ax2+bx+c>0或ax2+bx+c<0(a>0)的形式,而且我们已经知道,一元二次不等式的解与其相应的一元二次方程的根及二次函数图象有关,即由抛物线与x轴的交点可以确定对应的一元二次方程的解和对应的一元二次不等式的解集.
如何讨论一元二次不等式的解集呢?
我们知道,对于一元二次方程ax2+bx+c=0(a>0),设其判别式为Δ=b2-4ac,它的解按照Δ>0,Δ=0,Δ<0分为三种情况,相应地,抛物线y=ax2+bx+c(a>0)与x轴的相关位置也分为三种情况(如下图),因此,对相应的一元二次不等式ax2+bx+c>0或ax2+bx+c<0(a>0)的解集我们也分这三种情况进行讨论.
2(1)若Δ>0,此时抛物线y=ax 2+bx+c(a>0)与x轴有两个交点〔图(1)〕,即方程ax 2+bx+c=0(a>0)有两个不相等的实根x1,x2(x1<x2),则不等式ax+bx+c>0(a>0)的解
2集是{x|x<x1,或x>x2};不等式ax+bx+c<0(a>0)的解集是{x|x1<x<x2}.
(2)若Δ=0,此时抛物线y=ax2+bx+c(a>0)与x轴只有一个交点〔图(2)〕,即方程ax2+bx+c=0(a>0)有两个相等的实根x1=x2={x|x≠b2ab2a
2,则不等式ax2+bx+c>0(a>0)的解集是};不等式ax2+bx+c<0(a>0)的解集是.
(3)若Δ<0,此时抛物线y=ax2+bx+c(a>0)与x轴没有交点〔图(3)〕,即方程ax2+bx+c=0(a>0)无实根,则不等式ax2+bx+c>0(a>0)的解集是R;不等式ax2+bx+c<0(a>0)的解集是.Δ=b2-4ac 二次函数y=ax+bx+c(a>0)的图象
ax2+bx+c=0的根
x1.22
Δ>0 Δ=0 Δ<0
x1=x2=b2ab2a
b2a
ax2+bx+c>0的解集
2{x|x<x1或x>x2}
{x|x≠}
R
ax+bx+c<0的解集 {x|x1<x<x2} 对于二次项系数是负数(即a<0)的不等式,可以先把二次项系数化成正数,再求解.
[知识拓展]
【例1】 解不等式2x 2-5x-3>0. 生 解:因为Δ>0,2x2-5x-3=0的解是x1=->3}.
【例2】 解不等式-3x 2+15x>12.
生 解:整理化简得3x 2-15x+12<0.因为Δ>0,方程3x2-15x+12=0的解是x 1=1,x2=4,所以不等式的解集是{x|1<x<4}.
【例3】 解不等式4x 2+4x+1>0.
生 解:因为Δ=0,方程4x +4x+1=0的解是x1=x 2=2
12,x 2=3.所以不等式的解集是{x|x<12,或x
12.所以不等式的解集是{x|x≠12}.
【例4】 解不等式-x 2+2x-3>0.
生 解:整理化简,得x2-2x+3<0.因为Δ<0,方程x 2-2x+3=0无实数解,所以不等式的解集是. 师 由上述讨论及例题,可归纳出解一元二次不等式的程序吗? 生 归纳如下:
(1)将二次项系数化为“+”:y=ax 2+bx+c>0(或<0)(a>0).(2)计算判别式Δ,分析不等式的解的情况: 若y>0,则xx1或x>x2;①Δ>0时,求根x1<x2,
若y<0,则x1<x<x2.若y>0,则xx0的一切实数;②Δ=0时,求根x 1=x 2=x 0,若y<0,则x;
若y0,则xx.0若y>0,则xR;③Δ<0时,方程无解,
若y0,则x.(3)写出解集.
师 说的很好.下面我们用一个程序框图把求解一元二次不等式的过程表示出来,请同学们将判断框和处理框中的空格填充完整. [学生活动过程]
[方法引导]
上述过程以学生自主探究为主,教师起引导作用,充分体现学生的主体作用与新课程的理念.该过程中的思考、观察、探究起到层层铺设的作用,激起学生学习的兴趣与勇于探索的精神.
课堂小结
1.一元二次不等式:含有一个未知数并且未知数的最高次数是二次的不等式叫做一元二次不等式,它的一般形式是ax2+bx+c>0或ax2+bx+c<0(a≠0). 2.求解一元二次不等式的步骤和解一元二次不等式的程序. 布置作业 1.完成第90页的练习.
2.完成第90页习题3.2第1题.
板书设计
一元二次不等式的概念和一元二次不等式解法
多媒体演示区
一元二次不等式概念
一元二次不等式解题步骤
例题
第三篇:3.2一元二次不等式及其解法教案
3.2一元二次不等式及其解法(3课时)
(一)教学目标
1.知识与技能:从实际问题中建立一元二次不等式,解一元二次不等式;应用一元二次不等式解决日常生活中的实际问题;能用一个程序框图把求解一般一元二次不等式的过程表示出来;
2.过程与方法:通过学生感兴趣的上网问题引入一元二次不等式的有关概念,通过让学生比较两种不同的收费方式,抽象出不等关系;利用计算机将数学知识用程序表示出来;
3.情态与价值:培养学生通过日常生活中的例子,找到数学知识规率,从而在实际生活问题中数形结合的应用以及计算机在数学中的应用。
(二)教学重、难点
重点:从实际问题中抽象出一元二次不等式模型,围绕一元二次不等式的解法展开,突出体现数形结合的思想;
难点:理解二次函数、一元二次方程与一元二次不等式解集的关系。
(四)教学设想
[创设情景] 通过让学生阅读第84页的上网问题,得出一个关于x的一元二次不等式,即
x25x0
[探索研究] 首先考察不等式x5x0与二次函数yx25x以及一元二次方程x5x0的 关系。
容易知道,方程x5x0有两个实根:x10,x25
由二次函数的零点与相应的一元二次方程根的关系,知x10,x25是二次函数222yx25x的两个零点。通过学生画出的二次函数yx25x的图象,观察而知,当x0,x5时,函数图象位于x轴上方,此时y0,即x5x0;
2当0x5时,函数图象位于x轴下方,此时y0,即x5x0。
22所以,一元二次不等式x5x0的解集是x0x5
从而解决了以上的上网问题。
[总结归纳] 上述方法可以推广到求一般的一元二次不等式axbxc0或
2ax2bxc0(a0)的解集:可分0,0,0三种情况来讨论。
引导学生将第86页的表格填充完整。
[例题分析]:
一.分析、讲解例2和例3,练习:第89页1.(1)、(3)、(5);2.(1)、(3)二.分析、讲解例1和例4 练习:第90页(A组)第5题,(B组)第4题。[知识拓展]:
下面利用计算器,用一个程序框图把求解一般一元二次不等式的过程表示出来:
下面是具有一般形式axbxc0(a0)对应的一元二次方程
2ax2bxc0(a0)的求根程序:
input “a,b,c=”;a,b,c d=b*b-4*a*c p=-b/(2*a)q=sqr(abs(d))/(2*a)if d<0 then print “the result is R” else x1=p-q x2=p+q if x1=x2 then print “the result is {x/x<> “;p,”}” else print “the result is {x/x> “;x2, “or x<”;x1,”}” endif endif end 练习:(B组)第3题。[新知小结]:
1.从实际问题中建立一元二次不等式,解一元二次不等式; 2.应用一元二次不等式解决日常生活中的实际问题;
3.能用一个程序框图把求解一般一元二次不等式的过程表示出来:
[课后作业]:习题3.2(A组)第1、2、6题;(B组)第1、2题。
第四篇:一元二次不等式教案
§2.2.4一元二次不等式
【授课班级】10级微机化工班 【授 课 人】相福香
【授课时间】2011年1月11日
一、教学目标 1.知识目标:
(1)使学生了解一元二次不等式的概念;(2)使学生掌握用配方法解一元二次不等式。2.能力目标:
培养学生动手、观察分析、抽象概括、归纳总结等系统的逻辑思维能力,以及良好的思维方法和思维品质。3.情感目标:
渗透抽象与具体、特殊与一般等辩证唯物主义的观点和方法,培养学生的自信心理。
二、教学分析 1.知识结构
本节课主要内容是用配方法解一元二次不等式。首先介绍了一元二次不等式的概念,然后由对特殊形式的讨论推广到一般的情形,从而总结出用配方法解不等式的一般步骤。2.重点、难点分析
本节课的重点是掌握一元二次不等式的解法;难点是将一元二次不等
(1)(x2)24
(2)(x1)29 例9 解下列不等式:
(1)x22x30(2)2x25x30 4.反馈演练,巩固新知 练习1 解下列不等式:
(1)(x1)264
(2)(x2)2100 练习2 解下列不等式:
(1)x23x20
(2)3x2x20 5.课堂小结
(1)使学生了解一元二次不等式的概念;(2)使学生掌握用配方法解一元二次不等式。6.作业布置
课后练习:课本习题 第8题和第9题 作业: 课本练习2-5 第3题和第5题
第五篇:一元二次不等式及其解法教学设计
《一元二次不等式及其解法》
教 学 设 计 说 明
《一元二次不等式及其解法》教学设计说明
一.教学内容分析:
1.本节课内容在整个教材中的地位和作用.
必修五第三章不等式第二节一元二次不等式及其解法共有三个课时,本节课是第一课时,教学内容的地位体现在它的基础性,作用体现在它的工具性.一元二次不等式的解法是初中一元一次不等式或一元一次不等式组的延续和深化,对已学习过的集合知识的巩固和运用具有重要的作用.许多问题的解决都会借助一元二次不等式的解法.因此,一元二次不等式的解法在整个高中数学教学中具有很强的基础性,体现出很大的工具作用. 2.教学目标定位.
根据教学大纲要求、高考考试大纲说明、新课程标准精神、高一学生已有的知识储备状况和学生心理认知特征,我确定了四个层面的教学目标.第一层面是面向全体学生的知识目标:熟练掌握一元二次不等式的解法,正确理解一元二次方程、一元二次不等式和二次函数三者的关系.第二层面是能力目标,培养学生运用数形结合与分类讨论等数学思想方法解决问题的能力,提高运算和作图能力.第三层面是德育目标,通过对解不等式过程中等与不等对立统一关系的认识,向学生逐步渗透辨证唯物主义思想.第四层面是情感目标,在教师的启发引导下,学生自主探究,交流讨论,培养学生的合作意识和创新精神. 3.教学重点、难点确定.
本节课是在复习了一元二次方程和二次函数之后,利用二次函数的图象研究一元二次不等式的解法.只要学生能够理解一元二次方程、一元二次不等式和二次函数三者的关系,并利用其关系解不等式即可.因此,我确定本节课的教学重点为一元二次不等式的解法,关键是一元二次方程、一元二次不等式和二次函数三者的关系. 二.教法学法分析:
数学是发展学生思维、培养学生良好意志品质和美好情感的重要学科,在教学中,我们不仅要使学生获得知识、提高解题能力,还要让学生在教师的启发引导下学会学习、乐于学习,感受数学学科的人文思想,使学生在学习中培养坚强的意志品质、形成良好的道德情感.为了更好地体现课堂教学中“教师为主导,学生为主体”的教学关系和“以人为本,以学定教”的教学理念,在本节课的教学过程中,将紧紧围绕教师组织——启发引导,学生探究——交流发现,组织开展教学活动.我设计了①回忆旧知,服务新知,②创设情境,提出问题,③合作交流,探究新知,④数学运用,深化认知,⑤练习检测,反馈新知,⑥谈谈收获,强化思想,⑦布置作业,实践新知,环环相扣、层层深入的教学环节,在教学中注意关注整个过程和全体学生,充分调动学生积极参与教学过程的每个环节. 三.教学过程分析:
(一)联系旧知,构建新知
设置一系列的问题唤起学生对旧知识的回忆. 问题1:一元二次方程的解法有哪些呢?
(意图:让学生回顾一元二次方程的解法,为解一元二次不等式做准备.)
问题2:同学们还记得二次函数吗?二次函数的形式是怎样的?你记得二次函数的性质吗?
(意图:引导学生从图象的角度出发,并启发学生二次函数的图象是一条抛物线,其开口方向由二次项系数决定,为突出重点做准备)
(二)创设情景,提出问题
1、让学生动手画直角坐标系,然后沿x轴方向上下对折这张纸,观察它们的值有什么特点?
22、请在刚才的坐标系中画出y=x-7x+6的图像 问题1:
(1)x轴上方有无图像?若有请用红线描出。这部分图像对应的y值如何?(2)x轴下方有无图像?若有请用蓝线描出。这部分图像对应的y值如何?(3)红线与蓝线有无交点?若有请用绿色标出。
(4)你能找出上述各种情况的x的取值范围吗?请在图中写出。
问题2:你能说一说这两个不等式有何共同特点么?(1)含有一个未知数x;
(2)未知数的最高次数为2。通过两问题得出一元二次不等式的概念:一般地,只含有一个未知数,且未知数的最高次数为2的不等式,叫做一元二次不等式。
问题3:判断下列式子是不是一元二次不等式?
问题4:一元二次函数、一元二次方程之间有何联系呢?
一元二次方程的解即一元二次函数图象与x轴交点的横坐标,也就是说方程的解即对应函数的零点。
问题5:一元二次不等式如何求解呢?
(三)合作交流,探究新知
1. 探究一元二次不等式x2x20的解.
容易知道:一元二次方程x2x20的有两个实数根:x11或x22. 二次函数yx2x2与x轴有两个交点:1,0和2,0. 思考1:观察图象一元二次方程的根与二次函数之间有什么关系? 思考2:观察图象,当x为何值时,y0;
当x为何值时,y0; 当x为何值时,y0.
(设计意图 : ①体现学生的主体性;②有利于加强对图象的认识,从而加强数形结合的数学思想 ;③有利于加强学生理解一元二次不等式的解相关的三个因素;④为归纳解一元二次不等式做好准备.根据前面探讨的问题引导学生归纳一元二次不等式的解.)
2. 探究一元二次不等式ax2bxc0或ax2bxc0a0的解法. 组织讨论:从上面的例子出发,综合学生的意见,可以归纳出确定一元二次不等式的解集,关键要考虑:
2抛物线yaxbxc与x轴的相关位置的情况,也就是一元二次方程2ax2bxc=0的根的情况,而一元二次方程根的情况是由判别式b4ac三 3 种取值情况(0,0,0)来确定.
(设计意图:这里我将运用多媒体图标的形式来展现出其解法思路,学生有一个完整的逻辑思维,让学生在探究中建立知识间的联系,体会数形结合,强调突出本节的难点.)
(四)数学运用,深化认知.
2例1.求不等式2x3x20的解集. 2变式为:求不等式2x3x20的解集.
2例2.解不等式x2x30.
(设计意图:先让学生来解答例题,若教师巡视、指导,讲评学生完成情况,寻找学生中的闪光点,给予热情表扬.)总结:
解一元二次不等式的步骤:
一化:化二次项前的系数为正(a>0).二判:判断对应方程的根.三求:求对应方程的根.四画:画出对应函数的图象.五解集:根据图象写出不等式的解集.(五)练习检测,巩固收获
(设计意图:为了巩固和加深一元二次不等式的解法,让学生学以致用,接下来及时组织学生进行课堂练习.然后就学生在解题中出现的问题共同纠正.)
(六)归纳小结,强化思想
设计意图:梳理本节课的知识点,总结一元二次不等式解法的步骤:“一化,二判,三求根,四画图,五写解集”的口诀来帮助学生记忆和归纳,让学生掌握严谨的做题方法,知晓本节课的重难点.
(七)布置作业,拓展延伸
必做题:课本第80页习题A组 1,2.选做题:(1)若关于m的一元二次方程x
2(m1)xm0有两个不相 等的实数根,求m的取值范围.2(2)已知不等式xaxb0的解集为x2x3,求a,b的
值.(设计意图:以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的反馈,选做题是对本节课知识的延伸,整体的设计意图是反馈教学,巩固提高.)四.教学总结
本节课的所有内容以习题的形式展现给学生,学生始终在解题中探究,在解题中发现,学生参与教学的全过程,成为课堂教学的主体和学习的主人,而老师只须时刻关注学生的活动过程,不时给予引导,及时纠正.