第一篇:贝努利不等式的证明与应用
贝努利(Bernouli)不等式的证明及应用
xR且x>1,n为整数;有1x1nx(P51)
证法1:(数学归纳法)
(1)当n1时,等式显然成立
2当n2时,1x12xx1+2x 2n
(2)假设nk时,等式成立,(k2)有1x>1kx
当n=k+1时,1xk1k1x1x>1kx1x1xkxkx2>1k1x k
当nk1时不等式成立
综上可知不等式成立
nnn1n2n2n1xxy……xyy证法2:联想到xyxy
1x1nx1x
当x>0时,1x>1 knn11xn2……1
x1x
nn11xn2……1>nx n1x1>nx1x>1nx
当1 x1xn11xn2n……1>nx1x>1nx nn1x>0,1x>1nx成立 证法3:当1nx0时,1nxn1n1……1<1x当1nx>0,则1nx1 nn1 证法4:1x1x 2kk1n1xk1x>x 1x1x>x321x1x>x1xn1x>n1x1xn>1nx nn11x1x>x…… 证法5:只证1nx 1xn<1;设an1nx 1xn an1an 1n1x 1x n1 1nx 1x n 1n1x1nx1x 1x n1 nx2 1x n1 <0 an为单减数列,故an 应用举例 1. 已知i,m,nN且1 ii (1)证明:niAm (2)证明:1m>1n 证:(1)略 n nn >1;1mm>1m1n(2)1 nm 1m>1n 2.(07湖北21)已知m,nN (1)用数学归纳法证明:当x>1时,1x>1+nx n nm 11m1 (2)对于n6。已知1,求证:<1<,m1,2,3,…… n32n32 nn (3)求出满足等式34……n2n3的所有正整数n n n nnm 1m 证:(1)略(2)当n6,mn时;由(1)知11>0 n3n3 于是1 m m1 1 n3n3 n n nmn nm 111<,m1,2,3,……,n n32 m (3)由(2)知,当n6时,12n11111 11……1<……1<1 n 2n3n3n32222 n23n n2n13 ……<1 n3n3n3 nn 即34……n2<n3,即当n6时不存在满足该等式的正整数n,故只需 n n nnn 讨论n1,2,3,4,5的情况,经检验,可求n只有n2,3 推论 xnx n 1)xR,x>1且x011x >11x 2)xR,>1或<0有1x >1x,x>1xR,0<<1有1x 1x,x>1 3)nN,n>1,t>0;则有tn1nt1 4)设a,>0,nN,n>1,则annn1an1n当且仅当a时取到“=”n 证:annan1na1 nn1an1n x 3.(07四川理22)设函数fx1 1n,nN,xR,n>1 n (1)当n=6时,求1 1x的展开式中二项式系数最大的项 (2)xR,证明 f2xf22 >f' x n (3)是否存在aN,使得an<1 k 1<1an恒成立? k1k若存在,试证明你的结论,并求出a的值;若不存在,请说明理由? 解:给(3)一个全新的证法 m2m mN且m>1,11m11C21m1mm……Cmm >2 1 1m111 m,有贝努利不等式annn1an1n m1 mm1 m 可得1>m1111 1m1 1m1m1m1m 1 1m 11mm是单调增函数。从而 11m16m m<16m 6mm 6m5m16m1>1m6m116m1,tn >1nt1 16m1616 即1;两边6次方<<1<<3 6m5m156m5 1111<3;对k2,3,……,m有2<1<3,进而有2<1<3 m k m6m6 mk1n k 从而有2n<1 k1 1k<3n成立 综上存在a=2使得不等式恒成立。 m1 1m111m 11mm1 (后加:1m1m……11< m m111m+1 m) 应用导数证明不等式 常泽武指导教师:任天胜 (河西学院数学与统计学院 甘肃张掖 734000) 摘要: 不等式在初等数学和高等代数中有广泛的应用,证明方法很多,本文以函数的观点来认识不等式,以导数为工具来证明不等式。 关键字: 导数 不等式最值中值定理单调性泰勒公式 中图分类号: O13 Application derivative to testify inequality ChangZeWu teachers: RenTianSheng (HeXi institute of mathematics and statistics Gansu zhang ye 734000)Abstract: He inequality in elementary mathematics and higher algebra is widely used, proved many methods, based on the function point of view to know inequality to derivative tools to prove to inequality.Key words: The most value of derivative inequality value theorem monotonicity Taylor formula 1.利用微分中值定理来证明不等式 在数学分析中,我们学到了拉格朗日中值定理,其内容为: 定理1.如果函数fx在闭区间a,b上连续,在开区间a,b上可导,则至少存在一点a,b,使得f'() 拉格朗日中值定理是探讨可微函数的的几何特性及证明不等式的重要工具,我们可以根据以下两种方法来证明。 (1)首先,分析不等式通过变形,将其特殊化。其次,选取合适的函数和范围。第三,利用拉格朗日中值定理。最后,在根据函数的单调性和最大值和最小值。 (2)我们可根据其两种等价表述方式 ①f(b)f(a)f'(a(ba))(ba),01 ②fahfaf'ahh,01 我们可以的范围来证明不等式。f(b)f(a)。ba 11(x0)例1.1证明不等式ln(1)x1x 证明第一步变形1 ln(1)ln(1x)ln(x)x 第二步选取合适的函数和范围 令f(x)lnttx,1x 第三步应用拉格朗日中值定理 存在x,1x使得f'()f(1x)f(x)(1x)(x) 即ln(1x)ln(x)1 而 <1+x 1 1x 1x1)而0x 即ln(x1xln(1x)ln(x) 例 1.2证明:h>-1且h0都有不等式成立: hln(1h)h 1h 证明:令f(x)=ln(1+x),有拉格朗日中值定理,0,1使得 ln(1h)f(h)f(0)f'(h)h 当h>0时有 1h11h,当1h0时有 11h1h0,即h.1h1hh;1h1h1hh.1h1h 2.利用函数单调性证明不等式 我们在初等数学当中学习不等式的证明时用到了两种方法:一种是判断它们差的正负,另一种是判断它们的商大于1还是小于1.而我们今天所要讨论的是根据函数的导数的思想来判断大小。 定理:设函数f(x)在a,b上连续,在a,b可导,那么 (1)若在a,b内f'(x)0则f(x)在a,b内单调递增。 (2)若在a,b内f'(x)0则f(x)在a,b内单调递减。 使用定理:要证明区间a,b上的不等式f(x)g(x),只需令F(x)f(x)。g使在(x)a,b上F'(x)>0(F'(x)<0)且F(a)=0或(F(b)=0)例2.1 设x0证明不等式ln(1x)xex 证明:令F(x)ln(1x)xex(x>0) 显然F(0)0 1exx21xx(x>0)F'(x)exex1x(1x)e 现在来证明exx210 令f(x)exx21显然f(0)0 当x0时f'(x)ex2x0 于是得f(x)在x0上递增 故对x0有f(x)f(0)f(x)0 而(1x)ex0 所以F'(x)0故F(x)递增 又因为F(0)0 所以F(x)0 所以ln(1x)xex成立 3.利用函数的最大值和最小值证明不等式 当等式中含有“=”号时,不等式f(x)g(x)(或f(x)g(x)) g(x)f(x)0(或g(x)f(x)0),亦即等价于函数G(x)g(x)f(x)有最小值或F(x)f(x)g(有最大值。x) 证明思路:由待正不等式建立函数,通过导数求出极值并判断时极大值还是极小值,在求出最大值或最小值,从而证明不等式。 1例3.1证明若p>1,则对于0,1中的任意x有p1xp(1x)p1 2 证明:构造函数f(x)xp(1x)p(0x1) 则有f'(x)pxp1p(1x)p1p(xp1(1x)p1) 令f'(x)0,可得xp1(1x)p1,于是有x1x,从而求得x1。由于2 函数f(x)在闭区间0,1上连续,因而在闭区间0,1上有最小值和最大值。 由于函数f(x)内只有一个驻点,没有不可导点,又函数f(x)在驻点x1和2 111p1)p1,f(0)f(1),区间端点(x0和x1)的函数值为f())p(1所以2222 1f(x)在0,1的最小值为p1,最大值为1,从而对于0,1中的任意x有2 11f(x)1xp(1x)p1。,既有p1p122 4.利用函数的泰勒展式证明不等式 若函数f(x)在含有x0的某区间有定义,并且有直到(n1)阶的各阶导数,又在x0处有n阶导数f(n)(x0),则有展式: f'(x0)f''(x0)fn(x0)2(xx0)(xx0)(xx0)nRn(x)f(x)f(x0)1!2!n! 在泰勒公式中,取x0=0,变为麦克劳林公式 f'(0)f''(0)2fn(0)nf(x)f(0)(x)(x)(x)Rn(x)1!2!n! 在上述公式中若Rn(x)0(或0)则可得 f'(0)f''(0)2fn(0)nf(x)f(0)(x)(x)(x),1!2!n! f'(0)f''(0)2fn(0)n(x)(x)(x)。或f(x)f(0)1!2!n! 带有拉格朗日余项的泰勒公式的实质是拉格朗日微分中值定理的深化,他是一个定量估计式,该公式在不等式证明和微分不等式证明及较为复杂的极限计算中有广泛的应用。 用此公式证明不等式就是要把所证不等式化简,其中函数用此公式,在把公式右边放大或缩小得到所证不等式。 例4.1若函数f(x)满足:(1)在区间a,b上有二阶导函数f''(x),(2) f'(a)f'(b)0,则在区间a,b内至少存在一点c,使 f''(c)4f(b)f(a)。2(ba) 证明:由f(x)在xa和xb处的泰勒公式,并利用f'(a)f'(b)0,得f(x)f(a)f''()(xa)2 2!f''()f(x)f(b)(xb)2,于是2! abf''()(ba)2abf()f(a)(a),22!42 abf''()(ba)2abf()f(b)(a),22!42 f''()f''()(ba)2 相减,得f(b)-f(a)=,24 4f(b)f(a)1(ba)2 即f''()f(),(ba)224 当f''()f''()时,记c否则记c=,那么 f''(c)4f(b)f(a)(abc)(ba)2 参 考 文 献 《数学分析》上册,高等教育出版社,1990.1郑英元,毛羽辉,宋国栋编,2赵焕光,林长胜编《数学分析》上册,四川大学出版社,2006。3欧阳光中,姚允龙,周渊编《数学分析》上册,复旦大学出版社,2004.4华东师范大学数学系编《数学分析》上册,第三版,高等教育出版社2001. 学习要求大成培训教案(不等式3基本不等式证明与应用)基本不等式 1.理解算术平均数与几何平均数的定义及它们的关系.2.探究并了解基本不等式的证明过程, 会用多种方法证明基本不等式.3.理解基本不等式的意义, 并掌握基本不等式中取等号的条件是: 当且仅当这两个数相等.1. 算术平均数:几何平均数 2. 设a≥0,b≥0则a+ b 2【精典范例】 例1..设a、b为正数,求证明: a+b³ 2点评:1.不等式证明的方法:(1)作差比较法(2)分析法(3)综合法 2.本题对a≥0,b≥0时仍成立,且题中等号当且仅当a=b时成立. 3.把不等式a+b³2(a≥0,b≥0)称为基本不等式 4.由本题可知,两正数的算术平均数不小于它们的几何平均数,当两数相等时两者相等 5.基本不等式的几何解释:半径不小于半弦. 例2.利用基本不等式证明下列不等式: (1)已知a>0,求证 a+ (3).已知x , y , z是互不相等的正数, 且x+y+z=1 , 求证:(1³2(2).已知a, b, c∈R , 求证: a2+b2+c2≥ab+bc+ac.a111-1)(-1)(-1)>8 xyz 点评:1..基本不等式的变形公式: 2.学会多次运用和创造条件运用基本不等式证题,尤其是不等式两边均为三项,可将一边变成六项,分成三组.对每一组用基本不等式.3.注意严格不等式的证明方法. 思维点拔: 1.上面两例在于:(1)揭示基本不等式的内容与证法.(2)举例说明利用基本不等式证题的方法技巧,以让学生初步领会不等式证明的基本方法. 2.基本不等式的推广:n个(n>1)非负数的几何平均数不大于它们的算术平均数.即若ai≥0(i=1,2,„,n),则 追踪训练 1.设P为正数,求下列各组数的算术平均数与几何平均数.(1)2与8(2)3与12(3)P与9P(4)2与2 2.已知a>1求证a+ 3. 已知a , b , c不全相等的三个正数, 且abc=1 , 求证: 第2课时 p2 1≥33.已知a+b+c=1,求证a2+b2+c2≥ 3a-1 a. abc 学习要求 1.理解最值定理的使用条件:一正二定三相等. 2.运用基本不等式求解函数最值问题. 1. 最值定理:若x、y都是正数,(1)如果积xy是定值P , 那么当且仅当x=y时, 和x+y有最小值..(2)如果和x+y是定值S , 那么当且仅当x=y时, 积xy有最大值. 2.最值定理中隐含三个条件:. 【精典范例】 例1.(1).已知函数y=x+ 51(x>-2), 求此函数的最小值.(2)已知x<, 求y=4x-1+的最大值;x+244x-5 (3)已知x>0 , y>0 , 且5x+7y=20 , 求xy的最大值;(4)已知x , y∈R+ 且x+2y=1 , 求 +的最小值.xy 例2.(1)求 2(x∈R)的最小值..(2)已知x , y∈R+ 且x+4y=1,求 11+ xy的最小值. 思维点拔: 1.利用基本不等式求最值问题时,一定要交代等号何时成立,只有等号成立了,才能求最值,否则要用其它方法了.而在证明不等式时,不必要交代等号何时成立. 2.例2是常见典型错误,它违背了最值定理使用前提:“一正二定三相等”中的后两条。 追踪训练一 1.2.3.已知x>1 ,0 【选修延伸】 利用函数单调性求函数最值.例3:求函数 9求函数y=4x+ 2x 1+x2的最小值;已知x<0 , 求y= x的最大值; 已知x , y∈R, 且+ xy + -x2+ 3=1 , 求x+y的最小值;已知x>-2 , 求y=的最大值; x+2 yx (x4)的最小值.x2 思维点拔: 利用基本不等式求解时,等号不能成立,故改用函数单调性求解.追踪训练二 求函数 第3课时 y sin2x的最小值.2 sinx 学习要求 1.初步学会不等式证明的三种常用方法:比较法,综合法,分析法。 2.了解不等式证明的另三种方法:反证法,换元法,放缩法.【精典范例】 例1.(1)已知a,bÎR+,且a¹b,求证:a3+b3>a2b+ab2 (2)已知 a<1,b<1,求证: a+b <1 1+ab 追踪训练一 1. 已知a,b,mÎ R+,且a a+ma >. b+mb 2.已知a,b,cÎR,且a+b+c=1,求证:ab+bc+ca3 例2.(1)已知a,b,cÎ(0,1),求证:(1-a)b,(1-b)c,(1-c)a不能都大于 1.4(2)已知a +b2=1,x2+y2=1,求证:ax+by 1 (3)求证: a+b1+a+b ? a1+a b1+b 追踪训练二 1.求证:1+ 111+++<2 22223n 学习要求 1. 会用基本不等式解决简单的最大(小)值的实际问题。2.通过对实际问题的研究,体会数学建模的思想。3.开拓视野,认识数学的科学价值和人文价值. 【精典范例】 例1.用长为4a的铁丝围成一个矩形, 怎样才能使所围矩形的面积最大.(用基本不等式求解). 例2.某工厂建造一个无盖的长方体贮水池, 其容积为4800m3, 深度为3m , 如果池底每1m2的造价为150元, 池壁每1m2的造价为120元, 怎样设计水池能使总造价最低? 最低总造价为多少元? 例3.某商场预计全年分批购入每台价值为2000元的电视机共3600台, 每批都购入x台(x为正整数), 且每批需付运费400元, 储存购入的电视机全年所付保管费用与每批购入电视机的总价值(不含运费)成正比, 若每批购入400台, 则全年需用去运费和保管费43600元, 现在全年只有24000元资金可用于支付这笔费用, 能否恰好当地安排每批进货的数量, 使资金够用, 写出你的结论, 并说明理由.选修延伸: 先建目标函数,再用基本不等式求最值,这是一种很常见题型,加以理解和掌握. 追踪训练 1.建造一个容积为8m3, 深为2m的长方体无盖水池, 如果池底的造价为每平方米120元, 池壁的造价为每平方米80元, 求这个水池的最低造价.2.巨幅壁画画面与地面垂直, 且最高点离地面14米, 最低点离地面2米, 若从离地面1.5米处观赏此画, 问离墙多远时, 视角最大? 1.进一步会用基本不等式解决简单的最大(小)值的实际问题。2.通过对实际问题的研究,进一步体会数学建模的思想。.设x>0时, y=3-3x-的最大值为______________x 【精典范例】 例1.过点(1 , 2)的直线l与x轴的正半轴、y轴的正半轴分别交于A、B两点, 当△AOB的面积最小时, 求直线l的方程 例2.如图(见书P93), 一份印刷品的排版面积(矩形)为A , 它的两边都留有宽为a的空白, 顶部和底部都留有宽为b的空白, 如何选择纸张的尺寸, 才能使纸的用量最小? 练习1过第一象限内点P(a , b)的直线l与x轴的正半轴、y轴的正半轴分别交于A、B两点, 当直线l的方程.2汽车行驶中, 由于惯性作用, 刹车后还要向前滑行一段距离才能停住, 我们把这段距离叫做“刹车距离”, 在某公路上, “刹车距离”S(米)与汽车车速v(米/秒)之间有经验公式: S= PAPB 取最小值时, 求 325 v+v, 为保证安全行驶, 要求在这条公路上行驶着的两车之408 间保持的“安全距离”为“刹车距离”再加25米, 现假设行驶在这条公路上的汽车在平均车身长5米, 每辆车均以相同的速度v行驶, 并且每两辆之间的间隔均是“安全距离”.(1)试写出经过观测点A的每辆车之间的时间间隔T与速度v函数关系式;(2)问v为多少时, 经过观测点A的车流量(即单位时间通过的汽车数量)最大? 衡阳师范学院 毕业论文(设计) 题 目:积分不等式的证明及应用 所 在 系: 数学与计算科学系 专 业: 数学与应用数学 学 号: 08090233 作者姓名: 盛军宇 指导教师: 肖娟 2012年 4 月 27 日 积分不等式的证明及应用 数学与计算科学系 数学与应用数学专业 学号:08090233 姓名:盛军宇 指导老师:肖娟 摘要 本文主要研究了如何利用积分中值定理、辅助函数、以及一些特殊积分不等式等方法证明积分不等式,并通过若干实例总结有关积分不等式的证明方法及规律,讨论了一些特殊积分不等式的应用.关键词 积分不等式;中值定理;函数 0.引言 积分不等式是微积分学中的一类重要不等式,在数学分析中有着广泛的应用,且在考研试卷中会经常出现.对积分不等式证明方法的介绍,不仅解决了一些积分不等式的证明,而且可以把初等数学的知识与高等数学的知识结合起来,拓宽我们的视野,提高我们的发散思维能力和创新能力.目前国内外对该课题的研究比较普遍,主要研究了如何利用微积分相关知识来解决一些比较复杂的积分不等式的证明.积分不等式的常用证法有: 定积分的定义、定积分的性质、泰勒公式、分部积分法、线性变换等.本文主要从以下几个方面讨论和归纳了一系列积分不等式的证明方法:利用积分中值定理来证积分不等式、利用Schwarz不等式来证积分不等式、利用微分中值定理来证积分不等式、利用积分中值定理来证积分不等式、利用二重积分来证积分不等式等.1.积分不等式的证明方法 1.1 利用积分第一中值定理证明积分不等式 积分第一中值定理(定理1)若fx在a,b上连续, 则至少存在一点a,b,使得fxdxfba.ab积分第一中值定理在证明积分不等式中有着举足轻重的作用.例1 设fx在0,1上可微,而且对于任意x0,1,有|fx|M, 求证:对任意正整数n有 10fxdx1nn1ni1Mifnnn,其中M是一个与x无关的常数.分析 由于目标式中一个式子为 i11if,另一个式子为fxdx0n,故把fxdx按 01区间可加性写成一些定积分的和,并应用积分第一中值定理加以证明.证 由定积分的性质及积分中值定理,有 10fxdxnini1ni1fxdxni1fi1,,i1,2,,n.,innni1i又因为fx在0,1上可微,所以由微分中值定理可知,存在ii,,使得, niiffifii,i1,2,,n.nni 因此10fxdx1nni11ifnnni1fi1nni1ifn 1n1n1n1nni1niffiniffinifiinM1nMn i1n.i1ni1在抽象函数fx的积分不等式中,若出现和号、幂函数、对数函数等,一般可以利用定积分的定义或区间可加性,将区间a,bn等分,点i也可采用特殊的取法.1.2 利用拉格朗日中值定理证明积分不等式 拉格朗日中值定理(定理2)若函数f满足如下条件: if在a,b上连续;iif在a,b内可导, 则在a,b内至少存在一点,使得 ffbfaba.利用拉格朗日中值定理的关键是根据题意选取适当的函数f(x)和区间a,b,使它们满足拉格朗日定理条件,然后运用拉格朗日公式或等价形式来运算得出所要的结论.例2 设fx在a,b上连续.证明:若fafb0,则 fxdxabba24M,MMaxfx.xa,b分析 由条件fafb0,及fx与fx,故想到利用拉格朗日中值定理.证 由拉格朗日中值定理得: 对任意的xa,ab, 2fxfxfaf1xa,a1x.,b, 对任意的x2abfxfxfbf2xb,x2b.ababfxMxa,xa,fxMbx,x,b22,故 fxdxabab2afxdxbab2fxdx ab2afxdxbab2fxdx ab2aMxadxbab2Mbxdxba24M.注意到M是fx在a,b上的最大值,所以解题的关键是如何使fx与fx联系起来,因而不难想到拉格朗日中值定理来证明.1.3 构造变上限函数证明积分不等式 作辅助函数,将结论的积分上限或下限换成x,式中相同的字母也换成x,移项,使 得不等式的一端为零,则另一端为所作的辅助函数,这种方法在证明一些特定类型积分不等式时有重要作用.1例3 设函数fx在0,1上连续,证明不等式fxdx0210f2xdx.x分析 此例若令Fxftdt02x0f2tdt,则Fx的正负不易判断,需进一步的改进.证 由待证的积分不等式构造变上限定积分的辅助函数,令 xxFxftdtxf0022tdt显然,F00,且Fx可导,有 f2Fx2fxxftdt02xx0tdtxf2t fxftdt0,0则Fx在x0时单调减小,即有FxF00,x0,1特别地,F10,即证得不等式fxdx0210f2xdx.例4 设函数fx在0,1上可微,且当x0,1时,0fx1,f00, 1试证 fxdx0210f3xdx.2131证 问题在于证明fxdx00fxdx0, x令Fxftdt02x0fx3tdt,因为F00, Fx2fxftdt0f3xfx2x0ftdtf2x,x0已知f00,0fx1,故当x0,1时,fx0, 记gx2ftdtf2x, 则g00,gx2fx2fxfx=2fx1fx0,x0,1, 于是gx2ftdtf2xg00,x0,1,故Fx0,x0,1, 0x4 1所以F1F00,即fxdx0210f3xdx.通过上述两例,我们知道了构造变上限函数证明积分不等式,遇到特殊情况,不能按常规直接作辅助函数需要稍微变化一下,有时甚至要在一个题中构造两个辅助函数,以便判断所作函数的单调性.1.4 利用二重积分证明积分不等式 在积分不等式的证明中利用定积分与积分变量形式无关的这一性质,将定积分的平方项或者定积分之间的乘积转化为积分变量形式不同的定积分之积,把定积分化为二重积分,可以达到有效的作用.例5 若函数fx,px,gx在a,b上连续,px是正值函数,fx,gx是单调增加函数,则pxfxdxpxgxdxaabbpxdxpxfxgxdx.该不等式称为切贝谢 aabb夫不等式.分析 只要证bapxdxpxfxgxdxabbbapxfxdxpxgxdx0 abb即可,而上述式子又可视为累次积分,从而化为二重积分.证 因定积分的值与积分变量无关,故pxdxpydy,aapxgxdxpygydy.aabbbapydypxfxgxdxabbapxfxdxpygydy abpypxfxgxpxpyfxgydxdyD pxpyfxgxgydxdyD 1 其中,积分区域Daxb;ayb.因为定积分与积分变量的形式无关, 所以交换x与y的位置,得到 pypxfygygxdxdyD 2 将1式与2式相加,得12pxpyfxfygxgydxdy,由已知,D可知px是正值函数,fx,gx是单调增加函数,从而fxfy与gxgy同号,于是在D上pxpyfxfygxgy0,从而,0.即pxfxdxpxgxdxaabbpxdxpxfxgxdx.aa101bb例6 若函数fx在0,1上不恒为零且连续增加,则 ff3xdxxdx101xfxf3xdxxdx.2200证 由于在0,1上,结论式中的分母均为正值,所以结论等价于 10f2xdx10xff23xdx10xf10f3xdx10xf2xdx0, 而 10fff2xdx210xf3xdx130xdx2xdx Dxyf3ydxdyDfxxf3ydxdy D2xf3yyxdxdy 3 其中,积分区域D0x1;0y1因定积分的值与积分变量的形式无关,故又有 Df2yf3xxydxdy 4 22将3式与4式相加,得1xyfyfxfxfydxdy, 2D由已知,函数fx在0,1上连续增加,从而对任意的x,y0,1,有 xyfyfxfxfy0,故22101ff3xdxxdx101xfxf3xdxxdx.2200从以上的积分不等式证明中,可知把定积分化为重积分能巧妙地解决一些积分不等式的证明问题.1.5 借助于判别式来证明积分不等式 引入适当的参数,构造合适的函数,讨论参数的判别式,以便证明所求证的积分不等式.例7 设fx0,且在a,b上连续,试证fxdxabbdxfxaba.2分析 可构造多项式,利用多项式的性质来证明积分不等式.证 由题设对任意的,考察函数fx,因为fxfx0,有 fx2ba2bdxb2,即fx2dx02dxaafxfxfxdxab0, 不等式的左端可以看成的二次三项式,且对任意的上述不等式均成立, 故判别式2abdx4a2bdxfxbafxdx0,即fxdxabbdxfxaba.2用判别式解题的关键是要有一个函数值恒定(大于或小于零、大于或等于零、小于或等于零)的一元二次方程gx,而g2x0,于是我们构造g2xdx0这样一个方程,ab再结合这种情况下的判别式也是一个不等式,便可证明此题.1.6 利用对称性证明积分不等式 命题1 当积分区域关于直线yx对称时,被积函数的两个变量交换位置后,二重积分的值不变.这一条规律有助于解决一些特定类型的积分不等式的证明.例8 函数fx在a,b上取正值且fx在a,b上连续试证: fyhfxdxdyba,ha,b;a,b.2证 因为ha,b;a,b关于直线yx对称,从而Ifxfyhfxdxdyfxdxdyhfy, 所以Ifyhdxdy12hfxfydxdyfxfy1dxdybah2.由上例可知,在积分不等式的证明过程中,我们可以应用基本不等式,它可能起到重要作用.1.7 利用积分第二中值定理的推论证明积分不等式 积分第二中值定理的推论:设函数f在a,b上可积.若g为单调函数,则存在a,b,使得fxgxdxgafxdxgbfxdx.aabb应用这个推论可以较容易地解决某些恒等式与某些不等式的证明.babb例9 设函数fx在a,b上单调递增连续,则xfxdxfxdx.a2a证 假设函数gxxab2,显然gx在a,b上可积,又函数fx在a,b上递增连续,根据积分第二中值定理的推论知存在a,b,使得 fxgxdxababfagxdxfbgxdx ab且式又可变为fxgxdxfagxdxfbgxdx.由定积分的几何意义 ab知gxdxbgxdx,abaa,b,同时,fafb,于是,bfxgxdxfbfagxdx即xab0, bababb,故fxdx0xfxdxfxdxa22a.2.一些特殊积分不等式的应用 2.1 Chebyshew不等式及其应用 Chebyshew不等式 设fx,gx同为单调递减或当调递增函数,则有 bafxdxgxdxbafxgxdx.aabb若fx,gx中一个是增函数,另一个为减函数,则不等式变为 Chebyshewbafxdxgxdxbafxgxdx.aabb不等式有广泛应用,特别在证明一类积分不等式中发挥重要作用.例10 设gx是1,1上的下凸函数,fx为1,1上的偶函数且在0,1上递增,则, 1fxdx1gxdx112fxgxdx.11分析 从所证的不等式看,它有点类似于Chebyshew不等式,如果能够构造出一个单调函数满足Chebyshew不等式的条件,问题就容易解决了,为此构造辅助函数,令xgxgx.证 令xgxgx,显然x也为1,1上的偶函数,由于gx是1,1上的下凸函数,故当0x1x21,gx1gx2x1x2gx1gx2x1x2, 即gx1gx2gx2gx1,即x1x2,所以fx,x在0,1上为增函数, 由Chebyshew不等式知, 110fxdxxdx011101fxxdx21211fxdxxdx111211fxxdx, 可得fxdxgxdx2fxgxdx.1112.2 利用Schwarz不等式证明积分不等式 Schwarz不等式 若fx,gx在a,b上可积,则 Schwarzbafxgxdx2baf2xg2xdx.不等式是一个形式简单,使用方便的积分不等式,在证明某些含有乘积及 b平方项的积分不等式时颇为有效.例11 已知fx0,在a,b上连续,fxdx1, k为任意实数,求证: a abfxcoskxdxabfxsinkxdx1 5 22证 5式左端第一项应用Schwarz不等式得 bafxcoskxdx2abfxfxcoskxdxb2 同理afxsinkxdxb2fxdxfxcosaabkxdxfxcosab2kxdx6 bafxsin2kxdx 7 67即得5式.此题证明的关键在将fx写成2.3 Jensen不等式 fxfx的形式,以便应用Schwarz不等式.定理3 设fx在a,b上连续,且mfxM,又t是m,M上的连续凸函数(指下凸函数),则有积分不等式 ba1ba1fxdxbafxdx 8 ab注 若t是m,M上的连续凹函数,则8式中的不等式号反向.定理4 设fx,px在a,b上连续,且mfxM,px0axb,t是 m,M上的连续凸函数,则有bapxfxdxbapxdxpxfxdx 9 pxdxabab注 当t是m,M上的连续凹函数时,9式中的不等号反向.例12 设fx在a,b上连续,且fx0,则对任意的自然数n,有 1nlnbaba1fxdxba1t2banlnfxdx.证 令tnlnt,那么tn,tnt10,故t为凹函数, 显然fx在t的定义域内有意义,故由定理3知,结论成立.例13 设fx,px是a,b上的正值连续函数,则对任意的自然数n,有 banpxlnfxdxpxdxabnlnbapxfxdxbapxdx.证 令tnlnt由上例知t为凹函数,故由定理4知结论成立.2.4 Young不等式的应用 Young不等式 设fx是单调递增的,连续于0,a上,f00,a,b0,f1x表示fx的反函数,则abYounga0fxdxb0f1ydy,其中等号成立当且仅当fab.不等式是一个非常重要的不等式,灵活巧妙地应用它,可以使一些较为困难的问题迎刃而解.例14 证明:a,b1时,不等式abea1blnb成立.证 设fxex1,则fx单调并连续,f等式有,a1b11yln1y,因为a,b1,由Young不a1b10故abea1blnb.2.5 Steffensen不等式 Steffensenfxdx0f1ydyea1blnbab1, 不等式 设在区间a,b上,g1x ,g2x连续,fx一阶可导,任给 xaxa,b,成立不等式g1tdtxag2tdt,且g1xdxabbag2xdx.若fx在a,b上单调递减,则fxg1xdxabfxgxdx;若fx在上单调递增上述不等式变号.a2b例15 证明20sinx1x2dx20cosx1x2dx.证 对任意的x0,22,因为cosx1sinx,所以有sintdt0xx0costdt;此外,显然有2sinxdx00cosxdx1且函数 在0,上单调递减,从而根据Steffensen不21x21等式,知20sinx1x2dx20cosx1x2dx.结论 总之,以上讨论的积分不等式的主要证明方法都离不开积分的性质,主要是通过函数的可微性和函数的可积性,利用二重积分、拉格朗日中值定理和积分中值定理来证积分不等式;以及巧妙的利用Schwarz不等式和Jensen不等式等,在实际应用中需要结合各方面灵活使用题中条件或不等式,才会使问题得以正确解决.参考文献 [1]华东师范大学数学系.数学分析[M].北京:高等教育出版社,2001:223.[2]宋海涛.几个定积分不等式的证明[J].高等数学研究,2003,6(4):34-35.[3]陈兴荣,杜家安.关于积分不等式的证明[J].工科数学,1993,9(2):77.[4]孙清华,孙昊.数学分析内容、方法与技巧(上)[M].武汉:华中科技大学出版社,2003.[5]张瑞.定积分不等式证明方法的研究[J].内江科技,2001,(5):102.[6]丰刚.几个积分不等式及其应用[J].牡丹江大学报,2010,19(7):88-89.[7]刘玉记.再谈Young’s不等式的证明[J].齐齐哈尔师范高等专科学校学报,2009,(4):108.[8]舒阳春.高等数学中的若干问题解析[M].北京:科学出版社,2005:108-109.[9]杨和稳.积分不等式证明技巧解析[J].高等数学研究,2009,12(6):38.[10]裴礼文.数学分析中的典型问题与方法[M].北京:高等教育出版社,1993.The proof and application of integral inequality Department of Mathematics and Computational Science Mathematics and Application Mathematics specialty Number:08090233 Name:ShengJunyu Instructor:XiaoJuan Abstract: This paper studied to use the integral mean value theorem、the auxiliary function、some special integral inequality and other methods to prove integral inequality, and summarized some examples about proof methods and rules of integral inequality, and discussed the application of some special integral inequality.Key word: integral inequality;theorem of mean;function Cauchy-Schwarz不等式的证明和应用 摘要:Cauchy-Schwarz不等式有多种证明方法而且应用广泛.本文归纳了几种Cauchy-Schwarz不等式的典型证明方法,并探讨了Cauchy-Schwarz不等式的应用.关键词:Cauchy-Schwarz不等式;向量空间;内积 一、Cauchy-Schwarz不等式的几种证明方法 1.第一种证明方法 定理1对任意的向量α,β有|(α,β)|≤|α||β|.当且仅当α,β线性相关时,等号才成立.证明当β=0时,不等式成立.设β≠0.令t是一个实变数,作向量γ=α+tβ.不论t取何值,一定有 (γ,γ)=(α+tβ,α+tβ)≥0.即 (α,α)+2(α,β)t+(β,β)t2≥0(1) 取 t=.代入(1)式,得 (α,α)-≥0,即 (α,β)2≤(α,α)(β,β).两边开方便得 |(α,β)|≤|α||β|.当α,β线性相关时,等号显然成立.反过来,如果等号成立,由以上证明过程可以看出,或者β=0,或者 α-β=0,也就是说α,β线性相关.2.第二种证明方法 引理:设V是欧氏空间,ξ,η是V的单位向量,那么,|(ξ,η)|≤1.证明ξ,η既是单位向量,则有(ξ,ξ)=1,(η,η)=1,而|ξ,η|2≥0,即 |ξ,η|2=(ξ-η,ξ-η) =(ξ,ξ)+(η,η)-2(ξ,η) =2-2(ξ,η)≥0 所以,(ξ,η)≤1; 又|ξ,η|2≥0,即 |ξ,η|2=(ξ+η,ξ+η) =(ξ,ξ)+(η,η)+2(ξ,η) =2-2(ξ,η)≥0 所以,(ξ,η)≥-1.总之,|ξ,η|≤1.定理2设α,β是欧氏空间V中的任意两个向量,那么,|(α,β)|≤|α||β|,等号成立当且仅当α,β线性相关.证明10若α,β中有一个是零向量,则结论显然成立; 20设α,β都不为零,今将α,β单位化,令ξ=,η=,则由引理.知|(ξ,η)| ≤1,而(α,β)=(|α|ξ,|β|η)=|α||β|(ξ,η)所以,|(α,β)|≤|α||β|(ξ,η)≤1.再设ξ与η的夹角为θ,则θ的余弦为cosθ==(ξ,η)由此可知,|(α,β)| ≤|α||β|(ξ,η)=1cosθ=±1≤1ξ=±η,此即知α与β线性相关.3.第三种证明方法 定理3设α,β是欧氏空间V中的任意两个向量,那么,|(α,β)|≤|α||β|,等号成立当且仅当α,β线性相关.证明x1,x2∈R取,则(x1α+x2 β,x1α+ x2 β)≥0,即 (α,α)x12+2(α,β)x1x2+(β,β)x22≥0,而此式左端恰为关于x1,x2的半正定二次型,故其矩阵的行列式≥0,即 (α,α)(α,β)(α,β)(β,β)≥0 则得|(α,β)|≤|α|| β|,且等号成立 (α,α)(α,β)(α,β)(β,β)=0α,β线性相关.二、Cauchy-Schwarz不等式的应用 Cauchy-Schwarz不等式在不同的空间对应着不同的形式,下面是它在不同空间上的几种变形.母不等式:设V是欧氏空间,若ξ,η∈V,则 (ξ,η)2≤(ξ,ξ)(η,η)(2) 上式等号成立的充要条件是ξ,η线性相关.变形一:取V=Rn,令ξ=(a1,a2,…,an),η=(b1,b2,…,bn)则有 (a1b1+…+anbn)≤(a12+a22+…+an2)(b12+b12+…+bn2)(3) 等号成立的充要条件 bi=cai(i=1,2,…n),c是为常数.变形二:取V是定义在[a,b]上一切连续实函数所构成的实线性空间,设f(x), g(x)∈V,则有 [f(x)g(x)dx]2≤f 2(x)dxg2(x)dx(4) 变形三:取 V 为概率空间,对任意属于V 的随机变量 ξ与 η都有 |Eξη|2 ≤Eξ2Eη2(5) 等号成立的充要条件是P(η=t0 ξ)=1,t0是某一常数.例1若x1,x2,…,xn均为正数则有(x1+x2+…+xn)(++…+)≥n2(6) 证明由(2)式令a1=,a2=,…,an=.b1=,b2=,…,bn=,则有 (•+•+…+•)2=n2.而 (++…+)(++…+) =(x1+x2+…+xn)(++…+) 所以(x1+x2+…+xn)(++…+)≥n2.显然等号当且仅当x1=x2=…=xn时成立.例2已知a、b、c、x、y、z都是实数,并且a2+b2+c2=1,x2+y2+z2=1 求证:|ax+by+cz|≤1.证明由不等式(3)有 (ax+by+cz)2≤(a2+b2+c2)(x2+y2+z2) 所以,|ax+by+cz|2≤1,即|ax+by+cz|≤1.例3当2x+4y=1时,求证 x2+y2≥.证明由不等式(3)有 (2x+4y)2≤(22+42)(x2+y2),所以1≤20(x2+y2) 所以(x2+y2)≥ 例4已知a、b、c为正数,求证 a2+b2+c2≥ab+bc+ca.证明由不等式(3)有 (ab+bc+ca)2≤(a2+b2+c2)(b2+c2+a2),即(ab+bc+ca)2≤(a2+b2+c2)2.因为a、b、c为正数,所以a2+b2+c2≥ab+bc+ca.例5设ai≥0,i=1,2,…,n,则ai≤(ai2),且等号成立的充要条件是a1=a2=…=an.证明设二维离散型随机变量ξ,η的联合概率分布为 P(ξ=xi,η=yi)=P(ξ=xj,η=yj)=0(i≠j) i=1,2,…,n;j=1,2,…,n 则ξ、η的边际概率分布分别为 Pξ(ξ=xi)=,Pη(η=yj)= 令xi=ai≥0,yj=1有 Eξη=ai•=•ai Eξ2=ai2•=•ai2 Eη2=yi•=1=1 由不等式(5)有(ai)2≤ai2且等号成立的充要条件是==…= 开方得ai≤(ai2)且等号成立的充要条件是a1=a2=…=an.例6设a、x、y是同时大于1(或小于1)的正数,且logaxyj=9,求证: logxa+logya+logja≥1.证明左边=++.由不等式(6)有 (loga.x+loga y+loga j)(++)≥j2 即logaxyj•(++)≥9.有已知logaxyj≥9 所以(++)≥1 即logxa+logya+logja≥1 例7设a>0,b>0,且a+b=1,求证 (a+)2+(b+)2≥.证明由不等式(7)有 ≥ 所以≥ 所以(a+)2+(b+)2≥.又因为(a-b)2≥0,所以a2+b2-2ab≥0.所以(a+b)2-4ab≥0.所以1-4ab≥0.所以ab≤.所以(a+)2+(b+)2≥= 例8设α,β是欧氏空间V中的向量,则有|α|-|β|≤|α±β|≤|α|+|β|.证明由Cauchy-Schwarz不等式得 -|α||β|≤(α,β)≤|α||β|,|α|2+|β|2-2|α||β|≤|α|2+|β|2+2|(α,β)|≤ |α|2+|β|2+2|α||β|,则(|α|-|β|)2≤(α±β,α±β)≤(|α|+|β|)2,即得 |α|-|β|≤|α±β|≤|α|+|β| 例9设有n阶实对称矩阵A,若A≥0,则有trA≥0和(trA)E≥A.证明因为A≥0,所以A半正定,故存在n阶矩阵 Q=q11…q1n………qn1…qnn=a1…an 其中a1=(qi1,…,qin)是第i个行向量(i=1,2,…,n),使得A=Q'Q 于是trA=tr(Q'Q)=||Q||F2≥0.又n维列向量X=(x1,…,xn)∈Rn,有X'AX=X'Q'QX=(QX)'(QX)=||QX||22 于是QX=q11x1+…+q1nxn ………qn1x1+…+qnn xn=(a1,X)…(an,X) 由Cauchy-Schwarz不等式知,|(ai,X)|≤||ai||2||X||2 所以||QX||22=|(ai,X)|≤(||ai||22) ||X||22=||QX||F2||X||22 即||QX||22≤||QX||F2||X||22=(trA)||X||22=(trA)X'X 从而X'AX≤(trA)X'X=X'(trA)EX 故有(trA)E≥A.Cauchy-Schwarz不等式应用非常广泛,利用Cauchy-Schwarz不等式可以解决一些复杂不等式的证明.(作者单位:湖南女子职业大学)第二篇:应用导数证明不等式
第三篇:不等式3(基本不等式应用与证明)
第四篇:积分不等式的证明及应用
第五篇:Cauchy-Schwarz不等式的证明和应用