基本不等式与不等式基本证明

时间:2019-05-13 21:42:12下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《基本不等式与不等式基本证明》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《基本不等式与不等式基本证明》。

第一篇:基本不等式与不等式基本证明

课时九 基本不等式与不等式基本证明

第一部分:基本不等式变形技巧的应用

基本不等式在求解最值、值域等方面有着重要的应用,利用基本不等式时,关键在对已知条件的灵活变形,使问题出现积(或和)为定值,以便解决问题,现就常用技巧给以归纳。

技巧一:加减常数

1、求函数yx

点评:当各项符号不确定时,必须分类讨论,要保证代数式中的各项均为正。

技巧二:巧变常数

2、已知0x

点评:形如f(x)x(1ax)或f(x)x2(1ax2)等可有两种变形方法:一是巧乘常数;二是巧提常数,应用时要注意活用。

技巧

三、分离常数

3、已知x

5452121x1(x1)的值域。,求函数y=x(1-2x)的最大值。,则f(x)x3x32x4542有()32A、最大值B、最小值C、最大值D、最小值

32点评:通过加减常数,分离出一个常数是分式函数求值域常用的方法,这里一定要加减好“常数”,以利于问题的解决。

技巧

四、活用常数

4、若x,yR且满足

点评:通过配凑“1”并进行“1”的代换,整理后得到基本不等式的形式,减少了使用基本不等式的次数,有效地避免了等号不能同时取到的麻烦。

技巧

五、统一形式

例

5、已知a,b,cR,求(abc)(4x16y1,求x+y的最小值。1

ab1

c)的最小值。

点评:根据分母的特点,进行结构调整为统一的形式,这样便能快速求解。含有根号的问题也要注意形式的统一(如求函数yxx2(0x1)可变形为y第二部分:均值定理证明不等式的方法技巧

。x(1x)等)

1.轮换对称型

例1 若a,b,c是互不相等的实数,求

证:abc

222

abbcac.点评:分段应用基本等式,然后整体相加(乘)得结论,是证明轮换对称不等式的常用技

巧。

2.利用“1”的代换型

111

已知a,b,cR,且 abc1,求证 9.abc例2

点评:做“1”的代换。

.3.逆向运用公式型

a,bR,ab1求证: a

b

2.例3已知

点评:依据求证式的结构,凑出常数因子,是解决此类问题的关键。为脱去左边的根号,a

12,b

11

转换成 1a,1b,然后逆向运222

用均值不等式: 若

a,bR则 ab

ab2

.4.挖掘隐含条件证明不等式

111

a,bR,ab1求证:11.ab9 例4 已知

a,bR,ab1

12

ab说明a,bR,ab1的背后隐含ab

4ab

2点评:由于

着一个不等式ab

.5.用均值不等式的变式形式证明不等式

ab例5已知a,b,cR,求证:

bc

ca

2abc.点评:本题的关键在于对ab,bc,ca的处理,如果能找出

ab与ab间的关系,问题就可以

222222

解决,注意到

ab2ab2ab



ab2

2ab

ab 其中a,b,cR即可。解题时要注意a

b2ab的ab

变式应用。常用

ab2

(其中a,bR)来解决有关根式不等式的问题.

第二篇:基本不等式的证明

课题:基本不等式及其应用

一、教学目的(1)认知:使学生掌握基本不等式a2+b2≥2ab(a、b∈R,当且仅当a=b时取“=”号)和

abab(a、b∈R+,当且仅当a=b时取“=”号),并能应用它们证明一些不等

2式.

(2)情感:通过对定理及其推论的证明与应用,培养学生运用综合法进行推理的能力.

二、教学重难点

重点:两个基本不等式的掌握;

难点:基本不等式的应用。

三、教材、学生分析

教材分析:两个基本不等式为以后学习不等式的证明和求函数的最大值或最小值提供了一种

方法,基本不等式的理解和掌握对以后的解题是很有帮助的。

学生分析:学生在上新课之前都预习了本节内容,对上课内容有一定的理解。所以根据这一

情况多补充了一些内容,增加了课堂容量。

四、教学过程

(一)引入新课

客观世界中,有些不等式关系是永远成立的。例如,在周长相等时,圆的面积比正方形的面积大,正方形的面积又比非正方形的任意矩形的面积大。对这些不等关系的证明,常常会归结为一些基本不等式。今天,我们学习两个最常用的基本不等式。

(二)推导公式

1.奠基

如果a、b∈R,那么有(a-b)2≥0①

把①左边展开,得

a2-2ab+b2≥0,∴a2+b2≥2ab.

②式表明两个实数的平方和不小于它们的积的2倍.这就是课本中介绍的定理1,也就是基本不等式1,对任何两实数a、b都成立.由于取“=”号这种特殊情况,在以后有广泛的应用,因此通常要指出“=”号成立的充要条件.②式中取等号的充要条件是什么呢?

学生回答:a=b,因为a=ba+b=2ab 2

2充要条件通常用“当且仅当”来表达.“当”表示条件是充分的,“仅当”表示条件是必要的.所以②式可表述为:如果a、b∈R,那么a2+b2≥2ab(当且仅当a=b时取“=”号).

以公式①为基础,运用不等式的性质推导公式②,这种由已知推出未知(或要求证的不等式)的证明方法通常叫做综合法.以公式②为基础,用综合法可以推出更多的不等式.现在让我们共同来探索.

2.探索

公式②反映了两个实数平方和的性质,下面我们研究两个以上的实数的平方和,探索可能得到的结果.先考查三个实数.设a、b、c∈R,依次对其中的两个运用公式②,有

a2+b2≥2ab;

b2+c2≥2bc;

c2+a2≥2ca.

把以上三式叠加,得

a2+b2+c2≥ab+bc+ca

(当且仅当a=b=c时取“=”号).

以此类推:如果ai∈R,i=1,2,„,n,那么有

22a12a2ana1a2a2a3ana

1④

(当且仅当a1=a2=„=an时取“=”号).

④式是②式的一种推广式,②式就是④式中n=2时的特殊情况.③和④式不必当作公式去记,但从它们的推导过程中可以学到一种处理两项以上的和式问题的数学思想与方法——迭代与叠加.

3.练习

222求证:a+b+c+3≥2(a+b+c)

4.基本不等式

2直接应用基本不等式1可以得到基本不等式2

如果a、b、∈R,那么abR,在公式②中用a替换a,用替换b,立即得+到

22a))2ab 即ab2ab ∴abab⑤

2(当且仅当a=b时取“=”号).

这就是课本中基本不等式2 我们把ab和ab分别叫做正数a、b的算术平均数和几何平均数。

25、公式小结

(1)我们从公式①出发,运用综合法,得到许多不等式公式,其中要求同学熟练掌握的是公式①、②、③、⑤.它们之间的关系可图示如下: 展开 迭代、叠加①

配方

② ③ 降换

次元

(2)上述公式的证法不止综合法一种.比如公式②,在课本上是用比较法证明的.但是不论哪种推导系统,其理论基础都是实数的平方是非负数.

(3)四个公式中,②、⑤是基础,最重要.它们还可以用几何法证明.

+222几何法:构造直角三角形ABC,使∠C=90°,BC=a,AC=b(a、b∈R),则a+b=c表

示以斜边c为边的正方形的面积.而

2ab4ab4SABC 2

如上左图所示,显然有c421ab 2

∴a+b≥2ab 22

(当且仅当a=b时取“=”号,这时Rt△ABC等腰,如上右图).这个图是我国古代数学家赵爽证明勾股定理时所用过的“勾股方圆图”,同学们在初中已经见过. 公式

示:

abab也可以用几何法证明,它的几何意义是半径大于等于半弦,如下图所2

(三)例题

1、已知x,y∈R,证明:+xy2,并指出等号成立的条件。yx2、已知a,b∈R,并且ab=4,求证:ab8,并指出等号成立的条件。223、已知x,y∈R,并且x+y=1,求证:xy≤+1 4

(其中一题作为练习)

(四)应用

下面我们来解决开始上课时所提到的:在周长相等时,正方形的面积又比非正方形的任意矩形的面积大。

求证:在周长相等的矩形中,正方形的面积最大。

证明:设矩形的长和宽分别a,b(a,b为正数,且a≠b),同样周长的正方形的边长为ab,2

'可计算得矩形的面积S=ab,正方形的面积S(ab2),2

由基本不等式2,得abab0(因为a≠b等号不成立)。2

ab2)(ab)2,即S′>S.2又由不等式性质,得((五)作业

练习册P10/6

第三篇:基本不等式的证明

重要不等式及其应用教案

教学目的

(1)使学生掌握基本不等式a2+b2≥2ab(a、b∈R,当且仅当a=b时取“=”号)和a3+b3+c3≥3abc(a、b、c∈R+,当且仅当a=b=c时取“=”号)及其推论,并能应用它们证明一些不等式.

(2)通过对定理及其推论的证明与应用,培养学生运用综合法进行推理的能力.

教学过程

一、引入新课

师:上节课我们学过证明不等式的哪一种方法?它的理论依据是什么?

生:求差比较法,即

师:由于不等式复杂多样,仅有比较法是不够的.我们还需要学习一些有关不等式的定理及证明不等式的方法.

如果a、b∈R,那么(a-b)2属于什么数集?为什么?

生:当a≠b时,(a-b)2>0,当a=b时,(a-b)2=0,所以(a-b)2≥0.即(a-b)2∈

R+∪{0}.

师:下面我们根据(a-b)2∈R+∪{0}这一性质,来推导一些重要的不等式,同时学习一些证明不等式的方法.

二、推导公式

1.奠基

师:如果a、b∈R,那么有

(a-b)2≥0.

把①左边展开,得

a2-2ab+b2≥0,∴a2+b2≥2ab.

②式表明两个实数的平方和不小于它们的积的2倍.这就是课本中介绍的定理1,它是一个很重要的绝对不等式,对任何两实数a、b都成立.由于取“=”号这种特殊情况,在以后有广泛的应用,因此通常要指出“=”号成立的充要条件.②式中取等号的充要条件是什么呢?

师:充要条件通常用“当且仅当”来表达.“当”表示条件是充分的,“仅当”表示条件是必要的.所以②式可表述为:如果a、b∈R,那么a2+b2≥2ab(当且仅当a=b时取“=”号).

以公式①为基础,运用不等式的性质推导公式②,这种由已知推出未知(或要求证的不等式)的证明方法通常叫做综合法.以公式②为基础,用综合法可以推出更多的不等式.现在让我们共同来探索.

2.探索

师:公式②反映了两个实数平方和的性质,下面我们研究两个以上的实数的平方和,探索可能得到的结果.先考查三个实数.设a、b、c∈R,依次对其中的两个运用公式②,有

a2+b2≥2ab; b2+c2≥2bc; c2+a2≥2ca.

把以上三式叠加,得

a2+b2+c2≥ab+bc+ca

(当且仅当a=b=c时取“=”号).

以此类推:如果ai∈R,i=1,2,„,n,那么有

(当且仅当a1=a2=„=an时取“=”号).

④式是②式的一种推广式,②式就是④式中n=2时的特殊情况.③和④式不必当作公式去记,但从它们的推导过程中可以学到一种处理两项以上的和式问题的数学思想与方法——迭代与叠加.

3.再探索

师:考察两个以上实数的更高次幂的和,又能得到什么有趣的结果呢?先考查两个实数的立方和.由于

a3+b3=(a+b)(a2-ab+b2),启示我们把②式变成

a2-ab+b2≥ab,两边同乘以a+b,为了得到同向不等式,这里要求a、b∈R+,得到

a3+b3≥a2b+ab2.

考查三个正实数的立方和又具有什么性质呢?

生:由③式的推导方法,再增加一个正实数c,对b、c,c、a迭代⑤式,得到

b3+c3≥b2c+bc2,c3+a3≥c2a+ca2.

三式叠加,并应用公式②,得

2(a3+b3+c3)≥a(b2+c2)+b(c2+a2)+c(a2+b2)

≥a·2bc+b·2ca+c·2ab=6abc.

∴a3+b3+c3≥3abc

(当且仅当a=b=c时取“=”号).

师:这是课本中的不等式定理2,即三个正实数的立方和不小于它们的积的3倍.同学们可能想到n个正实数的立方和会有什么结果,进一步还会想到4个正数的4次方的和会有什么结果,直至n个正数的n次方的和会有什么结果.这些问题留给同学们课外去研究.

4.推论

师:直接应用公式②和⑥可以得到两个重要的不等式.

(当且仅当a=b时取“=”号).

这就是课本中定理1的推论.

(当且仅当a=b=c时取“=”号).这就是课本中定理2的推论.

当ai∈R+(i=1,2,„,n)时,有下面的推广公式(在中学不讲它的证明)

(当且仅当a1=a2=„=an时取“=”号).

何平均数.⑨式表明:n个正数的算术平均数不小于它们的几何平均数.这是一个著名的平均数不等式定理.现在只要求同学掌握n=2、3时的两个公式,即⑦和⑧.

三、小结

(1)我们从公式①出发,运用综合法,得到许多不等式公式,其中要求同学熟练掌握的是公式②、⑥、⑦、⑧.它们之间的关系可图示如下:

(2)上述公式的证法不止综合法一种.比如公式②和⑥,在课本上是用比较法证明的.又如公式⑦也可以由①推出;用⑦还可以推出⑧;由⑦、⑧也可以推出②、⑥.但是不论哪种推导系统,其理论基础都是实数的平方是非负数.

四个公式中,②、⑦是基础,最重要.它们还可以用几何法或三角法证明.

几何法:构造直角三角形ABC,使∠C=90°,BC=a,AC=b(a、b∈R),222则a+b=c表示以斜边c为边的正方形的面积.而

+

如上左图所示,显然有

(当且仅当a=b时取“=”号,这时Rt△ABC等腰,如上右图).这个图是我国古代数学家赵爽证明勾股定理时所用过的“勾股方圆图”,同学们在初中已经见过.

三角法:在Rt△ABC中,令∠C=90°,AB=c,BC=a,AC=b,则

2ab=2·c sin A· c sin B=2c2sinAcos A=c2·sin2A≤c2

=a2+b2(∵sin2A≤1)

(当且仅当sinA=1,A=45°,即 a=b时取“=”号).

2三、应用公式练习

1.判断正误:下列问题的解法对吗?为什么?如果不对请予以改正.

a、b∈R+.若tgα、ctgα∈R+.解法就对了.这时需令α是第一、三象限的角.]

改条件使a、b∈R+;②改变证法.a2+ab+b2≥2ab+ab=3ab.]

师:解题时,要根据题目的条件选用公式,特别注意公式中字母应满足的条件.只有公式①、②对任何实数都成立,公式⑥、⑦、⑧都要求字母是正实数(事实上对非负实数也成立).

2.填空:

(1)当a________时,an+a-n≥________;

(3)当x________时,lg2x+1≥_________;

(5)tg2α+ctg2α≥________;

(6)sinxcosx≤________;

师:从上述解题中,我们可以看到:(1)对公式中的字母应作广义的理解,可以代表数,也可以代表式子.公式可以顺用,也可以逆用.总之要灵活运用公式.(2)上述题目中右边是常数的,说明左边的式子有最大或最小值.因此,在一定条件下应用重要不等式也可以求一些函数的最大(小)值.(3)重要不等式还可以用于数值估计.如

表明任何自然数的算术平方根不大于该数加1之半.

四、布置作业

略.

教案说明

1.知识容量问题

这一节课安排的内容是比较多的,有些是补充内容.这是我教重点中学程度比较好的班级时的一份教案.实践证明是可行的,效果也比较好.对于普通班级则应另当别论.补充内容(一般式,几何、三角证法等)可以不讲,例题和练习也须压缩.但讲完两个定理及其推论,实现教学的基本要求仍是可以做到的.还应看到学生接受知识的能力也非一成不变的.同是一节课,讲课重点突出,深入浅出,富有启发性,学生就有可能举一反

三、触类旁通,获取更多的知识.知识容量增加了,并未增加学生的负担.从整个单元来看,由于压缩了讲课时间,相应的就增加了课堂练习的时间.反之,如果学生被动听讲,目标不清,不得要领,内容讲得再少,学生也是难以接受的.由此可见,知识容量的多少,既与学生的程度有关,与教学是否得法也很有关系.我们应当尽可能采用最优教法,扩大学生头脑中的信息容量,以求可能的最佳效果.

2.教学目的问题

近年来,随着教改的深入,教师在确定教学目的和要求时,开始追求传授知识和培养能力并举的课堂教学效果.在培养学生的能力方面,不仅要求学生能够运用知识,更重要的是通过自己的思考来获取知识.据此,本节课确定如下的教学目的:一是在知识内容上要求学生掌握四个公式;二是培养学生用综合法进行推理的能力.当然,学生能力的形成和发展,绝不是一节课所能“立竿见影”的.它比掌握知识来得慢,它是长期潜移默化的教学结果.考虑到中学数学的基本知识,大量的是公式和定理,如能在每一个公式、定理的教学中,都重视把传授知识与开拓思维、培养能力结合起来,天长日久,肯定会收到深远的效果.

3.教材组织与教法选用问题

实现上述教学目的,关键在于组织好教材,努力把传授知识与开拓思维、培养能力结合起来.教材中对定理1和定理2的安排,可能是为了与前面讲的比较法和配方法相呼应.但这容易使人感到这两个定理之间没有什么内在联系,又似乎在应用定理时才能用综合法.事实上,可以用比较法证明两个数的平方和或三个数的立方和的不等式,但当n>3,特别对n是奇数时,用比较法就困难了(因为这时难以配方与分解因式).因此不具有一般性.而对综合法,学生在初中证几何题时已多次用过了(只是课本上没有提到这个名称).现行课本中两个不等式定理及其推论,是著名的平均值不等式:

和它的等价形式当

n=2,3时的特殊情况(当n=2时,ai的取值有所变化).在中学不讲一般形式,只讲特殊情况是符合大纲要求的.由于普遍性总是寓于特殊性之中,因此,这两个特例应是一般式的基础.同时,这两个特例之间应有紧密的联系,在推导方法上也应该与一般式的证明有共性.这就是本教案的设计思想,因而改变了现行课本的证法.

这里,我们用由定理1先推出一个辅助不等式

a3+b3≥a2b+ab2,然后经迭代、叠加,推出不等式

a3+b3+c3≥3abc,这种方法具有一般性.事实上,引入一个一般的辅助不等式

an+bn≥an-1b+abn-1(n>1),由迭代、叠加,再应用数学归纳法就可以证出公式

正因为上述证法具有一般性,即揭示了证法的本质(共性),就必然有利于递推与探索.又由(a-b)2≥0非常容易推出a2+b2≥2ab,所以它是“天然”的奠基式.于

2ab,因此,凡能用配方法证明的问题,必能用基本不等式证明,反之亦真.可见配方法的重要作用.它的重要性应在上一节比较法中就予以强调.

当学生在教师的指导下和教师一起探索问题时,这个探索本身就是培养学生今后独立去获取知识的过程.

第四篇:基本不等式练习题

基本不等式练习题

一、选择题,本大题共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若aR,下列不等式恒成立的是()

A.a21aB121C.a296aD.lg(a1)lg|2a| 2a

12.若0ab且ab1,则下列四个数中最大的是()

A.1B.

2xa2b2C.2abD.a3.设x>0,则y33x的最大值为()

A.3B

.3 C.

3D.-1

4.设x,yR,且xy5,则3x3y的最小值是()

A.10

B.C.D.5.若x, y是正数,且141,则xyxy有()

A.最大值16 B.最小值11 C.最小值16 D.最大值 1616

6.若a, b, c∈R,且ab+bc+ca=1, 则下列不等式成立的是()

A.a2b2c22B.(abc)23

C

.1

a1

b1

cD

.abc7.若x>0, y>0,且x+y4,则下列不等式中恒成立的是()

A.11111B.1C

2D.1 xy4xyxy

8.a,b是正数,则

ab,22ab三个数的大小顺序是()ab ab2abab2abB

.2ab2ab

2ababD

.ab22ababab2C

.9.某产品的产量第一年的增长率为p,第二年的增长率为q,设这两年平均增长率为x,则有()

A.xpqpqpqpqB.xC.xD.x 2222

10.下列函数中,最小值为4的是()

A.yxB.ysinx

x

C.yex4eD.

x

4(0x)sinx

ylog3x4loxg 3

二、填空题, 本大题共4小题,每小题3分,满分12分,把正确的答案写在题中横线上.11.函

数y的最大值为12.建造一个容积为18m3, 深为2m的长方形无盖水池,如果池底和

池壁每m2 的造价为200元和150元,那么池的最低造价为_________元.13.若直角三角形斜边长是1,则其内切圆半径的最大值是.14.判断下列不等式的证明过程中的正误,并指出错因。(1)若a、b∈R,则

baba

+≥2=2()abab

(2)若x,yR,则lgx+lgy≥2lgxlgy()

(3)若x0,则x+

4≥-2x=-4()xx

(4)若x∈R,则2x+2x≥22x2x=2()

三、解答题, 本大题共4小题,每小题12分,共48分,解答应写出

必要的文字说明、证明过程和演算步骤.15..16.设a, b, c(0,),且a+b+c=1,求证:(1)(1)(1)8.a

1b

1c

17.已知正数a, b满足a+b=1(1)求ab的取值范围;的最小值.18.2)求ab

ab

(基本不等式

1.若a,bR,则aba

b2

2(当且仅当ab时取“=”)

2.若a,bR*,则ab2ab(当且仅当ab时取“=”)

3.若

x0,则

x

2(当且仅当x

x1时取“=”);若x0,则x12(当且仅当

x

x1时取“=”)

注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植

时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.

(2)求最值的条件“一正,二定,三取等”。

应用一:求最值

例1:求下列函数的值域

(1)y=3x+

12x

(2)y=x+

x

解:(1)y=3x+

2≥22x

3x·

2=2x

6∴值域为[6,+∞)

(2)当x>0时,y=x+ ≥2

x

1x· =2;

x

x· =-2

x

当x<0时,y=x+ = -(- x-)≤-2

xx

∴值域为(-∞,-2]∪[2,+∞)

1.已知2.当3.若

4已知

时,求

x,求函数y4x2

1的最大值 4x

5yx(82x)的最大值。

x,yR且2xy1,求

11的最小值 xy

a,b,x,yR且

ab

1,求xy

xy的最小值

应用二:利用均值不等式证明不等式

5.已知

6.正数a,b,c满足a+b+c=1,求证:(1-a)(1-b)(1-c)≥8abc

7.已知a、b、cR,且

a,b,c为两两不相等的实数,求证:a2b2c2abbcca

111

abc1。求证:1118

abc

应用三:均值不等式与恒成立问题

8.已知

x0,y0且

1,求使不等式xym恒成立的实数m的取值范围。xy

应用四:实际应用题及比较大小

1ab),则P,Q,R的大小关系是例:若ab1,Palgb,Q(lgalgb),Rlg(22

分析:∵ab1 ∴lga0,lgb0Q(lgalgb)algbp

ab1Rlg()lgablgabQ∴R>Q>P。

9.建造一个容积为18m, 深为2m的长方形无盖水池,如果池底和池壁每m 的造价为200元和150元,那么池的最低造价为多少元.

第五篇:基本不等式说课稿

基本不等式是主要应用于求某些函数的最值及证明的不等式。以下是小编整理的基本不等式说课稿,希望对大家有帮助!

基本不等式说课稿1

尊敬的各位考官大家好,我是今天的X号考生,今天我说课的题目是《基本不等式》。

接下来我将从教材分析、学情分析、教学重难点、教学方法、教学过程等几个方面展开我的说课。

一、说教材

我认为要真正的教好一节课,首先就是要对教材熟悉,那么我就先来说一说我对本节课教材的理解。《基本不等式》在人教A版高中数学必修五第三章第四节,本节课的内容是基本不等式的形式以及推导和证明过程。本章一直在研究不等式的相关问题,对于本节课的知识点有了很好的铺垫作用。同时本节课的内容也是之后基本不等式应用的必要基础。

二、说学情

教材是我们教学的工具,是载体。但我们的教学是要面向学生的,高中学生本身身心已经趋于成熟,管理与教学难度较大,那么为了能够成为一个合格的高中教师,深入了解所面对的学生可以说是必修课。本阶段的学生思维能力已经非常成熟,能够有自己独立的思考,所以应该积极发挥这种优势,让学生独立思考探索。

三、说教学目标

根据以上对教材的分析以及对学情的把握,结合本节课的知识内容以及课标要求,我制定了如下的三维教学目标:

(一)知识与技能

掌握基本不等式的形式以及推导过程,会用基本不等式解决简单问题。

(二)过程与方法

经历基本不等式的推导与证明过程,提升逻辑推理能力。

(三)情感态度价值观

在猜想论证的过程中,体会数学的严谨性。

四、说教学重难点

并且我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点是:基本不等式的形式以及推导过程。而作为高中内容,命题的严谨性是必要的,所以本节课的教学难点是:基本不等式的推导以及证明过程。

五、说教法和学法

那么想要很好的呈现以上的想法,就需要教师合理设计教法和学法。根据本节课的内容特点,我认为应该选择讲授法,练习法,学生自主思考探索等教学方法。

六、说教学过程

而教学方法的具象化就是教学过程,基于新课标提出的教学过程是师生积极参与、交往互动、共同发展的过程。我试图通过我的教学过程,打造一个充满生命力的课堂。

(一)新课导入

教学过程的第一步是新课导入环节。

我先PPT出示的是北京召开的第24届国际数学家大会的会标,会标是根据我国古代数学家赵爽的弦图设计的。

提问:你能在这个图中找到不等关系么?

引出课题。

通过展示会标并提问的形式,一方面可以引发学生的好奇心和求知欲,激发学生的学习兴趣;另一方面直入课题,可以很好的过渡到今天的主题内容:推导基本不等式。

(二)新知探索

接下来是教学中最重要的新知探索环节。

1.通过导入的问题,学生思考:通过赵爽弦图推可以发现哪些不等关系呢?

学生小组探究:利用赵爽弦图推导出基本不等式。

之后请学生把证明过程进行板书:

(2)“探究”,几何证明。

分析法是从结果入手,由果索因;几何法是由几何中的不等关系,进行证明。此类不等式的证明分析法理解简单,几何法稍难。学生通过两种证明过程,加深基本不等式的理解,还练习了证明方法。

至此本节课的主要教学内容已经完成,学生在我层次性问题的引导下,一步步通过自己的思考和探索,发现基本不等式,通过不同的方法证明了基本不等式。重点得以突出,难点得以突破。

(三)课堂练习

当然一节课只得出结论还是不够的,作为一节数学课要及时对知识进行应用。所以我设计了如下两道课堂练习:

(2)一段长为36m的篱笆围成矩形菜园,问这个矩形的长、宽各为多少时菜园面积最大?最大面积是多少?

这样的问题能够兼顾到本节课的所有主要内容,并且问题具有层次性,能让学生初步感知基本不等式应用中“积定和最小,和定积最大”的规律,为后续基本不等式的应用做好了铺垫,利于学生的思维发展。

(四)小结作业

在课程的最后我会提问:今天有什么收获?

引导学生回顾:基本不等式以及推导证明过程。

本节课的课后作业我设计为开放性问题:思考还有什么方法能够证明基本不等式?可以利用书本资料,也可以上网查阅资料。

这样的作业设置能够有效激发学生思考,不限制学生的思维,真正做到以学生为主体,让学生学会自主学习。

基本不等式说课稿2

各位评委老师,上午好!我是来应聘高中数学的一号考生,我今天说课的题目是《基本不等式》,下面我将从说教材,说学情,说教法,说学法,说教学过程,说板书设计六个方面展开我的说课,下面开始我的说课!

一、说教材。

1教材的地位和作用:

《基本不等式》是人教版高中数学必修五第三章第四节的内容。本节主要内容是基本不等式的证明和简单应用。它是在学完不等式性质,不等式的解法及线性规划等知识的基础上,对不等式的进一步研究,在不等式的证明和求最值的过程中有着广泛的应用。

2教学目标:

(1)知识与技能:学生能写出基本不等式,会应用基本不等式解决相关问题。

(2)过程与方法:学生通过观察图形,推导、证明等过程,培养观察、分析、归纳、总结的能力。

(3)情感态度与价值观:学生领略数学的实际应用价值,感受数学学习的乐趣。

3教学重难点:

重点:理解基本不等式的本质并会解决实际问题。

难点:基本不等式几何意义的理解。

二、说学情。

为了更好地实现教学目标,我将对学生情况进行一下简要分析。对于高一年级的学生来说,他们对不等式的知识有了一定的了解,但对基本不等式的理解运用能力不足。这一阶段的学生正处在由抽象思维到逻辑思维的过渡期,对图形的观察、分析、总结可能会感到比较困难。这都将成为我组织教学的考虑因素。

三、说教法。

科学合理的教学方法能使教学效果事半功倍,达到教育学的和谐完美与统一。根据本节课的特点并结合新课改的要求,在本节课中,我将采用讲授法、演示法、引导启发法等教学方法。

四、说学法。

教师的教是为了学生更好地学,结合本节内容,我将学法确定为自主探究法、分析归纳

法。充分调动学生的眼、手、脑等多种感官参与学习,既培养了他们的学习兴趣,又使他们感受到了学习的乐趣。

五、说教学过程。

首先,我将利用多媒体战士2002年国际数学家大会的会标,让同学们边观察边思考:图上有哪些相等或不等关系?通过展示来激发学生的学习兴趣。接下来是新授环节。

我将会标抽象成几何图形,正方形ABCD 中有4个全等的直角三角形,让学生自主探究,比较三角形面积之和与正方形面积的大小,从而让学生自主推导出不等式a 2+b 2>2ab,再通过引导启发,让学生自己将结论补充完整。接下来,我会提问:你们能给出它的证明吗?给两分钟的时间让学生自主探究。然后用讲授法给出基本不等式的常用形式ab≤a+b(a>0,b>0),并给出具体的证明过程,强调等号成立的条件。基本不2

等式的证明是本节课的重点,先通过学生的自主探究,再通过我的讲授,学生可以更快地理解这一知识点。接下来是探究基本不等式的几何意义。先由学生自主思考两分钟的时间,然后通过我的讲授,让学生理解基本不等式的几何意义,最后通过几何画板动态演示,让学生更直观地感受基本不等式的几何意义。这样就突破了基本不等式的几何意义这一难点。接下来是巩固练习环节。

这个环节,我将利用两个例题对刚才所讲的知识进行巩固练习。

例1:证明(1)x +1≥2(x >0)x

(2)a +1≥2a(a ≥0)

例2:(1)用篱笆围一个面积为100m的矩形菜园。问矩形长宽各为多少时,所用篱笆最短?

(2)一段长为36m的篱笆围成一个矩形菜园,问长宽各为多少时面积最大?第一个例题不是课本例题,它比课本例题简单,这样循序渐进,有利于学生理解不等式的内涵,此处a、b不仅仅是一个字母,而是一个符号,可以是具体数字,也可以是一个多项式。对于这个例题,多数学生会仿照课本上的思路用分析法进行证明。

第二个例题是利用基本不等式求最值进而解决实际问题,体现了基本不等式的应用价值,而且例题包含了公式的正向应用和逆向应用,锻炼了学生的灵活使用能力。

下面是小结环节。我将让学生用两分钟的时间回顾本节课所学习的内容,并自己总结出本节的知识点。这样不但能巩固本节所学知识,而且能培养学生分析、归纳、总结的能力。22

然后是布置作业。为了在课后对所学的知识进行巩固,我将布置课后习题第2题,第4题作为练习题。

下载基本不等式与不等式基本证明word格式文档
下载基本不等式与不等式基本证明.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    基本不等式教案

    基本不等式 【教学目标】 1、掌握基本不等式,能正确应用基本不等式的方法解决最值问题 2、用易错问题引入要研究的课题,通过实践让同学对基本不等式应用的二个条件有进一步的......

    基本不等式练习题

    3.4基本不等式 重难点:了解基本不等式的证明过程;会用基本不等式解决简单的最大(小)值问题. 考纲要求:①了解基本不等式的证明过程. ②会用基本不等式解决简单的最大(小)值问题. 经典......

    基本不等式的证明 教案

    课题:基本不等式的证明(1)斜桥中学肖剑一、教材分析不等式是高中的重点也是难点,而本节内容又是该章的重中之重,是《考试说明》中八个C级考点之一。基本不等式的证明方法(比较......

    3.4.1 基本不等式的证明[模版]

    a+b§3.4 基本不等式ab≤a≥0,b≥0) 23.4.1 基本不等式的证明一、基础过关111.已知a>0,b>0+ab的最小值是________. ab2.若a,b∈R,且ab>0,则下列不等式中,恒成立的是________.112ba①a2+b2>......

    证明不等式的基本方法

    证明不等式的基本方法一、比较法(1)作差比较法3322【例1】已知a,b都是正数,且ab,求证:ababab【1-1】 已知ab,求证:a3b3ab(ab)【1-2】已知ab,求证:a46a2b2b44ab(a2b2)(2)作商比较法a......

    不等式证明的基本依据

    不等式证明的基本依据·例题 例5-2-1 求证: (1)若x≠1,则x4+6x2+1>4x(x2+1); (2)若a≠1,b≠1,则a2+b2+ab+3>3(a+b); (3)若a<b≤0,则a3-b3<ab2-a2b. 解 (1)采用比差法: (x4+6x2+1)-4x(x2+1......

    不等式3(基本不等式应用与证明)(合集五篇)

    学习要求大成培训教案(不等式3基本不等式证明与应用) 基本不等式1.理解算术平均数与几何平均数的定义及它们的关系.2.探究并了解基本不等式的证明过程, 会用多种方法证明基本......

    3.4.1 基本不等式的证明(五篇)

    凤凰高中数学教学参考书配套教学软件_教学设计3.4.1 基本不等式的证明(1)江苏省靖江高级中学杨喜霞教学目标:一、知识与技能1.探索并了解基本不等式的证明过程,体会证明不等式的......