第一篇:4.2数学归纳法证明不等式
二用数学归纳法证明不等式
教学要求:了解数学归纳法的原理,并能以递推思想作指导,理解数学归纳法的操作步骤,能用数学归纳法证明一些简单的数学命题,并能严格按照数学归纳法证明问题的格式书写.教学重点:能用数学归纳法证明几个经典不等式.教学难点:理解经典不等式的证明思路.教学过程:
一、复习回顾:
1、数学归纳法是高考考查的重点内容之一,在数列推理能力的考查中占有重要的地位;
2、复习数学归纳法的定义和数学归纳法证题的基本步骤;
二、本节主要内容是用数学归纳法证明不等式;
在用数学归纳法证明不等式的具体过程中,要注意以下几点:
(1)在从n=k到n=k+1的过程中,应分析清楚不等式两端(一般是左端)的变化,要认清不等式的结构
特征;
(2)瞄准当n=k+1时的递推目标,有目的地进行放缩、分析;
(3)活用起点的位置;
(4)有的题目需要先作等价变换。
三、例题
例1:比较n2与2n的大小,试证明你的结论.分析:将n1,2,3,4,5,6代入比较后猜想结论,而后用数学归纳法加以证明
证明:见书P50 ;要点:(k1)2k22k1k22kkk23kk2k2….例2:证明不等式|sinn|n|sin|(nN).证明:(1)当n=1时,不等式显然成立;
(2)假设当n=k时不等式成立,即有:|sink|k|sin|,则当n=k+1时,|sin(k1)||sinkcoscosksin||sinkcos||cosksin|
|sink||cos||cosk||sin||sink||sin|k|sin||sin|(k1)|sin|即当n=k+1时,原不等式也成立;
由(1)(2)知,不等式对一切正整数n均成立;
例3:证明贝努利(Bernoulli)不等式:(1x)n1nx(x1,x0,nN,n1)
22证明:(1)当n=2时,由x0得(1x)12xx12x,即不等式成立;
(2)假设当n=k(k≥2)时不等式成立,即有(1x)1kx:,则当n=k+1时,(1x)k1k(1x)(1x)k(1x)(1kx)1xkxkx21(k1)x,所以当n=k+1时,原不等式也成立;
由(1)(2)知,贝努利不等式成立;
注:事实上,把贝努利不等式中的正整数n改为实数仍有类似不等式成立.当是实数,且或0时,有(1x)≥1x(x1)
当是实数,且01时,有(1x)≤1x(x1)
例
4、证明:如果n(n为正整数)个正数a1,a2,a3,an的乘积a1a2a3an1,那么它们的和
a1a2a3ann;
证明:(1)当n=1时,a1=1,命题显然成立;
(2)假设当n=k时命题成立,即若k个正数a1,a2,a3,ak的乘积a1a2a3ak1,那么他们的和
a1a2a3akk,则当n=k+1时,有k+1个正数a1,a2,a3,ak,ak1满足乘积a1a2a3akak11,若这k+1个正数相等,则它们都是1,其和为k+1,命题成立;
若这k+1个正数不全相等,则其中必有大于1的数,也有小于1的数,不妨设a1>1,a2<1, 则由归纳假设可得:a1a2a3akak1k(*),又由a1>1,a2<1可得:(a11)(a21)0a1a2a1a210a1a2a1a21与(*)式相加即得:
a1a2a3akak1k1,即当n=k+1时,命题也成立;
由(1)(2)知,如果n(n为正整数)个正数a1,a2,a3,an的乘积a1a2a3an1,那么它们的和
a1a2a3ann;
思考:课本P53的探究
课堂练习:当n≥2时,求证
:1
2
证明:(1)当n2时,左式1
1
1.7
2右式,当n2时,不等式成立
(2)假设当nk(2)时,不等式成立,即1
则当nk
1时,左式1
右式
当nk1时,不等式成立。
由(1)(2)可知,对一切nN,且n2,不等式都成立。
四、作业:课本P53习题4.1中1,2,3,4,5,6
第二篇:不等式的证明2
●教学目标
1.进一步熟练掌握比较法证明不等式; 2.了解作商比较法证明不等式; 3.提高学生解题时应变能力.●教学重点比较法的应用 ●教学难点常见解题技巧 ●教学方法启发引导式 ●教具准备幻灯片 ●教学过程 Ⅰ复习回顾:
师:上一节,我们一起学习了证明不等式的最基本、最重要的方法:比较法,总结了比较法证明不等式的步骤:作差、变形、判断符号,这一节,我们进一步学习比较法证明不等式.Ⅱ.讲授新课:
例4甲、乙两人同时同地沿同一路线走到同一地点,甲有一半时间以速度m行走,另一半时间以速度n行走,;有一半路程乙以速度m行走,另一半路程以速度n行走,如果m≠n,问甲、乙两人谁先到达指定地点.分析:设从出发地点至指定地点的路程是S,甲、乙二人走完这段路程所用的时间分别为t1,t2,要回答题目中的问题,只要比较t1,t2的大小就可以了.解:设从出发地点至指定地点的路程是S,甲、乙两人走完这段路程所用的时间分别为t1,t2,依题意有:
t12m
t12nS,S2m
S2n
t
22Smn
S(mn)2mn
∴t1
2Smn,t2
S(mn)2mn,t1t2
=
S[4mn(mn)]
2(mn)mn
2其中S,m、n都是正数,且m≠n,于是 t1t20,即t1t
2从而知甲比乙首先到达指定地点.说明:此题体现了比较法证明不等式在实际中的应用,要求学生注意实际问题向数学问题的转化.例5证明函数f(x)x
1x
在x[1,]上是增函数.分析:证明函数增减性的基本步骤:假设、作差、变形、判断,主要应用的就是比较法.证明:设x1x2≥1,则 f(x1)f(x2)x1
1x1
(x2
1x2)(x1x2)
x1x2x1x2
=(x1x2)(1
1x1x2)(x1x2)
(x1x21)x1x2
∵x110,x2≥1>0,x1x2
∴x1x21,x1x20,x1x20 ∴(x1x2)(x1x11)x1x20
即f(x1)f(x2)所以f(x)x1
x
x在[1)上是增函数 说明:此例题一方面让学生熟悉比较法的应用,另一方面让学生了解利用函数单调性求最值,例如yx
yx1
x(x≥2),若利用基本不等式求最值,则“=”成立条件不存在;而在x≥2时是增函数,故x=2时,函数有最小值.Ⅲ.课堂练习
(1)课本P14练习4,5
(2)证明函数f(x)x
●课堂小结
师:通过本节学习,要求大家进一步掌握比较法证明不等式,并了解比较法证明不等式在证明函数单调性及实际问题中的应用.●课后作业
习题6.33,6
●板书设计
●教学后记
1x,(x(0,1]为减函数
第三篇:不等式证明
不等式证明
不等式是数学的基本内容之一,它是研究许多数学分支的重要工具,在数学中有重要的地位,也是高中数学的重要组成部分,在高考和竞赛中都有举足轻重的地位。不等式的证明变化大,技巧性强,它不仅能够检验学生数学基础知识的掌握程度,而且是衡量学生数学水平的一个重要标志,本文将着重介绍以下几种不等式的初等证明方法和部分方法的例题以便理解。
一、不等式的初等证明方法
1.综合法:由因导果。
2.分析法:执果索因。基本步骤:要证..只需证..,只需证..(1)“分析法”证题的理论依据:寻找结论成立的充分条件或者是充要条件。
(2)“分析法”证题是一个非常好的方法,但是书写不是太方便,所以我们可利用分析法寻找证题的途径,然后用“综合法”进行表达。
3.反证法:正难则反。
4.放缩法:将不等式一侧适当的放大或缩小以达证题目的。放缩法的方法有:
(1)添加或舍去一些项,如:
2)利用基本不等式,如:
(3)将分子或分母放大(或缩小):
5.换元法:换元的目的就是减少不等式中变量,以使问题
化难为易、化繁为简,常用的换元有三角换元和代数换元。
6.构造法:通过构造函数、方程、数列、向量或不等式来证明不等式。
证明不等式的方法灵活多样,但比较法、综合法、分析法和数学归纳法仍是证明不等式的最基本方法。
7.数学归纳法:数学归纳法证明不等式在数学归纳法中专门研究。
8.几何法:用数形结合来研究问题是数学中常用的方法,若求证的不等式是几何不等式或有较明显的几何意义时,可以考虑构造相关几何图形来完成,若运用得好,有时则有神奇的功效。
9.函数法:引入一个适当的函数,利用函数的性质达到证明不等式的目的。
10.判别式法:利用二次函数的判别式的特点来证明一些不等式的方法。当a>0时,f(x)=ax2+bx+c>0(或<0).△<0(或>0)。当a<0时,f(x)>0(或<0).△>0(或<0)。
二、部分方法的例题
1.换元法
换元法是数学中应用最广泛的解题方法之一。有些不等式通过变量替换可以改变问题的结构,便于进行比较、分析,从而起到化难为易、化繁为简、化隐蔽为外显的积极效果。
注意:在不等式的证明中运用换元法,能把高次变为低次,分式变为整式,无理式变为有理式,能简化证明过程。尤其对含有若干个变元的齐次轮换式或轮换对称式的不等式,通过换元变换形式以揭示内容的实质,可收到事半功倍之效。
2.放缩法
欲证A≥B,可将B适当放大,即B1≥B,只需证明A≥B1。相反,将A适当缩小,即A≥A1,只需证明A1≥B即可。
注意:用放缩法证明数列不等式,关键是要把握一个度,如果放得过大或缩得过小,就会导致解决失败。放缩方法灵活多样,要能想到一个恰到好处进行放缩的不等式,需要积累一定的不等式知识,同时要求我们具有相当的数学思维能力和一定的解题智慧。
3.几何法
数形结合来研究问题是数学中常用的方法,若求证的不等式是几何不等式或有较明显的几何意义时,可以考虑构造相关几何图形来完成,若运用得好,有时则有神奇的功效。
第四篇:不等式证明
不等式的证明
比较法证明不等式
a2b2ab1.设ab0,求证:2.ab2ab
2.(本小题满分10分)选修4—5:不等式选讲
(1)已知x、y都是正实数,求证:x3y3x2yxy2;
(2对满足xyz1的一切正实数 x,y,z恒成立,求实数a的取值范围
.,1综合法证明不等式(利用均值不等式)3.已知abc, 求证:1 114.abbcac
4.设a,b,c均为正数,且a+b+c=1,证明:
1(Ⅰ)ab+bc+ac3;
a2b2c2
1ca(Ⅱ)b
5.(1)求不等式x32x1的解集;
121225(a)(b)a,bR,ab1ab2.(2)已知,求证:
6.若a、b、c是不全相等的正数,求证:
分析法证明不等式
7.某同学在证明命题“7要证明732”时作了如下分析,请你补充完整.62,只需证明________________,只需证明___________,+292,展开得9即,只需证明1418,________________,所以原不等式:62成立.22263,(72)(63),因为1418成立。
abc8.已知a,b,cR。3
9.(本题满分10分)已知函数f(x)|x1|。
(Ⅰ)解不等式f(x)f(x4)8;{x|x≤-5,或x≥3}(Ⅱ)若|a|1,|b|1,且a0,求证:f(ab)|a|f().10.(本小题满分10分)当a,bMx|2x2时,证明:2|a+b|<|4+ab|.反证法证明不等式
11.已知a,b,c均为实数,且a=x2y+2baπππ22,b=y2z+,c=z2x+,236
求证:a,b,c中至少有一个大于0.12.(12分)若x,yR,x0,y0,且xy2。求证:1x和1y中至少有一个小于2.yx
放缩法证明不等式
13.证明不等式:1111121231
123n2
214.设各项均为正数的数列an的前n项和为Sn,满足4SnannN,且
14n1,a2,a5,a14构成等比数列.
(1)证明:a2
(2)求数列an的通项公式;an2n1
(3)证明:对一切正整数n,有11a1a2a2a311. anan12
15.设数列an的前n项和为Sn.已知a11,2Sn12an1n2n,nN*.n33
(Ⅰ)求a2的值;a24(Ⅱ)求数列an的通项公式;ann2(Ⅲ)证明:对一切正整数n,有数学归纳法证明不等式
16.(本小题满分12分)若不等式11
n1n21a对一切正整数n都成立,求正3n12411a1a217.an4
整数a的最大值,并证明结论.25
17.用数学归纳法证明不等式:
.
第五篇:不等式证明经典
金牌师资,笑傲高考
2013年数学VIP讲义
【例1】 设a,b∈R,求证:a2+b2≥ab+a+b-1。