2010年第五届卡西欧杯全国高中青年教师优秀课观摩与评比活动教案-《函数模型的应用》(湖南师大附中龚红玲)

时间:2019-05-13 21:41:41下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《2010年第五届卡西欧杯全国高中青年教师优秀课观摩与评比活动教案-《函数模型的应用》(湖南师大附中龚红玲)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《2010年第五届卡西欧杯全国高中青年教师优秀课观摩与评比活动教案-《函数模型的应用》(湖南师大附中龚红玲)》。

第一篇:2010年第五届卡西欧杯全国高中青年教师优秀课观摩与评比活动教案-《函数模型的应用》(湖南师大附中龚红玲)

二元一次不等式(组)表示的平面区域

教学设计

辽宁省实验中学李振江

二元一次不等式(组)表示的平面区域教学设计

辽宁省实验中学李振江

一.教学目标

1.知识与技能目标:

(1)理解“同侧同号”并掌握不等式区域的判断方法;(2)能作出二元一次不等式(组)表示的平面区域。2.过程与方法目标:

(1)增强学生数形结合的思想;

(2)理解数学的转化思想,提高分析问题、解决问题的能力。3.情感态度与价值观目标:

(1)通过学生的主动参与、学生的合作交流,培养学生的探索方法与精神;(2)体会数学的应用价值;

(3)体会由一般到特殊,由特殊到一般的思想。二.教学重、难点

重点:二元一次不等式(组)表示的平面区域 难点:寻求二元一次不等式(组)表示的平面区域 三.教法设计

本节课采用探究教学法,通过“猜想,验证,证明”来探究二元一次不等式(组)表示的平面区域,并通过讲练结合巩固所学的知识。使用多媒体辅助教学。四.学法设计

引导学生通过主动参与、合作探讨学习知识

二元一次不等式(组)表示的平面区域

同侧同号证明过程(图像)例1:

判断方法

第二篇:2010年第五届卡西欧杯全国高中青年教师优秀课观摩与评比活动教案-《曲线与方程》

2010年第五届全国高中数学青年教师观摩与评比活动精品教案

“曲线与方程”教学设计

一、教学内容:人教版选修2—1第二章第一节:曲线与方程

二、教材分析

曲线属于“形”的范畴,方程则属于“数”的范畴,它们通过直角坐标系而联系在一起,曲线的方程是曲线几何的一种代数表示,方程的曲线则是代数的一种几何表示。在直角坐标系中,点可由它的坐标来表示,而曲线是点的轨迹,所以曲线可用含x、y的方程来表示。“曲线和方程”这节教材,揭示了几何中的“形”与代数中的“数”的统一,为“依形判数”和“就数论形”的相互转化奠定了扎实的基础,对解析几何教学有着深远的影响,曲线与方程的相互转化,是数学方法论上的一次飞跃。

由于曲线和方程的概念是解析几何中最基本的内容,因而学生用解析法研究几何图形的性质时,只有透彻理解曲线和方程的意义,才能算是寻得了解析几何学习的入门之径。求曲线与方程的问题,也贯穿了这一章的始终,所以应该认识到,本节内容是解析几何的重点内容之一。本节中提出的曲线与方程的概念,它既是对以前学过的函数及其图象、直线的方程、圆的方程等数学知识的深化,又是学习圆锥曲线的理论基础,它贯穿于研究圆锥曲线的全过程,根据曲线与方程的对应关系,通过研究方程来研究曲线的几何性质,是几何的研究实现了代数化。数与形的有机结合,在本章中得到了充分体现。

●教学目标:

1.通过感受曲线的方程和方程的曲线这一概念的生成过程,初步理解曲线的方程和方程的曲线的概念。

2.理解曲线的方程与方程的曲线的概念和集合相等的关系、渗透转化与化归的思想与数形结合的思想。

3.培养学生实事求是、合情推理、合作交流及独立思考等良好的个性品质,以及主动参与、勇于探索、敢于创新的精神。

●教学重点

理解曲线的方程和方程的曲线的概念。

●教学难点

对曲线与方程对应关系的理解。

●学情分析

新课标强调返璞归真,努力揭示数学概念、结论的发展背景,过程和本质,揭示人们探索真理的道路。本节课在学生学习了集合和直线的方程、圆的方程知识的基础上,使学生理解数学概念、结论产生的背景和逐步形成的过程,体会孕育在其中的思想,把数学的学术形态转化为学生易于接受的教育形态。为突破曲线的方程与方程的曲线定义的难点,选择学生认知结构中与新知最邻近“直线的方程”,“ 圆的方程”入手,以集合相等,辅助理解 “曲线的方程”与“方程的曲线”,进一步强化了概念理解的深刻性。无论是判断、证明,还是求解曲线的方程,都要紧扣曲线方程的概念,即始终以是否满足概念中的两条为准则。

教学过程设计

第三篇:2010年第五届卡西欧杯全国高中青年教师优秀课观摩与评比活动教案-《独立性检验》(山西董凯)

新课标教材 人教A版《数学2-3》(选修)第三章 统计案例

《独立性检验》教学设计说明

大同一中董凯

一、内容与内容解析

《独立性检验》为新课标教材中新增加的内容.虽然本节是新增内容,理论比较复杂,教学时间也不

长(1-2课时),但由于它贴近实际生活,在整个高中数学中,地位不可小视.在近几年各省新课标高考试题中,本节内容

屡屡出现,而且多以解答题的形式呈现,其重要性可见一斑.该内容是前面学生在《数学3》(必修)中的统计知识的进一步应用,并与本册课本前面提到的事件的独立性一节关系紧密,此外还涉及到与《数学2-2》(选修)中讲到的“反证法”类似的思想.本小节的知识内容如右图。“独立性检验”是在考察两个分类变量之间是否具有相关性的背景下提出的,因此教材上首先提到了分类变量的概念,并给出了考察两个分类变量之间是否相关的一种简单的思路,即借助等高条形图的方法,随后引出相对更精确地解决办法——独立性检验。

独立性检验的思想,建立在统计思想、假设检验思想(小概

率事件在一次试验中几乎不可能发生)等基础之上,通常按照如下步骤对数据进行处理:明确问题→确定犯错误概率的上界及K的临界值k0→收集数据→整理数据→制列联表→计算统计量K的观测值k→比较观测值k与临界值k0并给出结论.本节的重点内容是通过实例让学生体会独立性检验的基本思想,掌握独立性检验的一般步骤.二、目标与目标解析

本节课的教学目标是主要有:

1.理解分类变量(也称属性变量或定性变量)的含义,体会两个分类变量之间可能具有相关性;

2.通过对典型案例(吸烟和患肺癌有关吗?)的探究,了解独立性检验(只要求2×2列联表)的基本思想、方法、步骤及应用。

3.鼓励学生体验用多种方法(等高条形图法与独立性检验法)解决同一问题,并对各种方法进行比较。

4.让学生对统计方法有更深刻的认识,体会统计方法应用的广泛性,进一步体会科学的严谨性(如统计可能犯错误,原因可能是收集的数据样本容量小或样本采集不合理,也可能是理论上的漏洞,如在一次实验中,我们假设小概率事件不发生,这一点本身就值得质疑).其中第2条是重点目标,也是《课程标准》中明确指出的教学要求之一.三、教学问题诊断分析

基于对学生已有数学水平的分析,在本节新学内容时,有以下几点是初学者不易理解或掌握的:

1.K的结构比较奇怪,来的也比较突然,学生可能会提出疑问

.22

2关于这个问题的处理,要首先利用好前面对“比例”或者两个分类变量“独立”的分析。借助两件事独立的定义以及样本容量较大时可以用频率近似表示概率,可以得到

aaaaaa,考虑到近似造成的误差,未必恰好为0,但不会太大,nabacnabac

aaa



nabac

于是这个值的平方占概率乘积的比例

abac

应该较小。由于

四B对事件的独立具有等价性,故加和之后A,B;A,A,aaabbb

nabacnbabd

aabbabacbabd

ccc



ncacd

cc

cacd

ddd

ndbdc

dd

dbdc

应该很

n(adbc)2

小,而将此式化简之后 即得K的表达式(这个推导过程是我借

(ab)(ac)(db)(dc)

鉴人教B版教材相应章节知识内容获悉的).另,由此可知K越小说明两件事越“独立”,因此当它小于临界值时有利于说明二者独立,大于或等于临界值时,有利于说明二者相关.2.如何理解独立性检验的基本思想? 这个问题需要和反证法做一个对比,学生可以通过完成表格(印在学案上)以对二者的基本思想作比较并加以区别。表格内容如下:

由于教材一边解决问题,一边做讲解,因此结题思路显得有点散。然而细心提炼则不难

总结出步骤,具体可大致分为4个阶段:①提出原假设H0:两个分类变量独立(无关),备择假设H1:两个分类变量有关,并假设H0成立;②确定允许犯错误的概率的上界,找到临界值k0;③在H0下,计算K的观测值k;④若kk0,此时小概率事件发生,我们认为在一次试验中,小概率事件是不可能发生,所以假设H0出错,从而接受H1;若kk0时,我们没有充分理由拒绝H0,也就没办法接受H1了.其中②③两个步骤属平级关系,可以调换次序.4.为什么在最后表达结论的时候要出现“在犯错误的概率不超过XX的前提下”这样的词.这也是初学者较难理解的问题,原因就在于独立性检验的过程中存在一个小小的漏洞,就是假设“在一次实验中,小概率事件不发生”,而事实上,小概率事件是可能发生的(用反证法,如果始终不发生,就是不可能事件了),而正是因为这一点点漏洞,导致独立性检验的结果可能是错误的,但是犯错误的概率不会太大,我们就把犯错误的最大概率等同于小概率事件发生的概率了。至于小概率事件所对应的临界值,则属于大学的研究范畴,在此不必做过多解释.四、教学特点与预期效果分析

1.教学特点

① 用学案辅助教学

由于本节内容较散,理论部分较难,故需教师精心设计学案,提前发放给学生,以提高学生的预习效率.② “问题串”为主,“讲授式”为辅的教学模式

在最初定夺本节课教学模式时比较为难,一方面,按照新课标的理念,注重学生自主探究为主,教师仅仅是引导者(实践证明这有利于学生学会“学习”,尤其是提高自学能力和合作学习能力),然而另一方面,本节内容理论难度较大,而且涉及到很多大学数学的内容,凭高中学生的数学水平难以完成自主探究.因此,在理论部分,还得需要教师讲,教师的“讲授”成为了无奈的选择.不过好在《课程标准》中,不要求学生掌握这部分深奥的理论,只要体会独立性检验的思想,掌握独立性检验的操作步骤.因此,最终定下来的教学模式是“‘问题串’为主,‘讲授式’为辅”的模式.在“问题串”的指引下,学生研究出解决问题所需要收集的数据,并自行研究课本上给出的解题过程,提炼出解决问题的操作步骤,然后再由教师讲解操作规程背后的理论依据.③ 游戏式导入

本节课采用“有奖竞猜”的游戏方式作为课堂导入,提高了学生的学习热情.奖品为本节课的录像光盘,也有一定的纪念意义.④ 充满生活气息的数学课堂 在《课程标准》理念下,“数学在生活中的应用”地位空前提高,教材中引入、例题甚至是课后习题的编写,都有大量生活的影子.而本节课《独立性检验》正是一个贴近生活的数学范畴,它可以解决两件扑朔迷离事情之间到底有关还是无关的问题.因此本课从引入(吸烟与患肺癌)到例题(秃顶与心脏病)到练习(经常上网与考试及格)再到课后作业题,全部都有着实际生活的影子.2.预期效果分析

通过本节课的教学,学生应能掌握独立性检验的操作步骤,并能够解决相关的实际问题,同时也可以初步体会到独立性检验的大致思想.而对独立性检验思想的更进一步认识和一些细节性的说法,则应该放在下一个课时,通过更多正面和反面的例子予以进行.

第四篇:2010年第五届卡西欧杯全国高中青年教师优秀课观摩与评比活动教案-《函数的概念》(重庆贺祠亮)

《函数的概念》教学设计

重庆市巴县中学贺祠亮

【三维目标】

了解:通过丰富实例让学生了解函数是非空数集到非空数集的一个对应;了解构成函数的三要素;

理解:函数概念的本质;抽象的函数符号f(x)的意义;f(a)(a为常数)与f(x)的区别

与联系;会求一些简单函数的定义域;

经历:让学生经历函数概念的形成过程,函数的辨析过程,函数定义域的求解过程以及求

函数值的过程;渗透归纳推理、发展学生的抽象思维能力;

体验:通过经历以上过程,让学生体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学会用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用,体验函数思想;通过师生互动、生生互动,让学生在民主、和谐的课堂氛围中,感受数学的抽象性和简洁美.

【教学重点】函数概念的形成,正确理解函数的概念.【教学难点】发展学生的抽象思维能力,对函数概念本质的理解.

【教法选择】问题式教学法:本堂课的特点是概念教学,根据学生的心理特征和认知规律,我采取问题式教学法;以问题串为主线,通过设置几个具体问题情景,发现问题中两个变量的关系,让学生归纳、概括出函数概念的本质,这也符合建构主义的教学理论.

【学法选择】探究式学法:新课程要求课堂教学的着力点是尊重学生的主体地位,发挥学生的主动精神,培养学生的创新能力,使学生真正成为学习的主体,结合本堂课的特点,我倡导的是探究式学法;让学生在探究问题的过程中,通过老师的引导归纳概括出函数的概念,通过问题的解决,达到熟练理解函数概念的目的,从而让学生由“被动学会”变成“主动会学”.

【教学媒体选择】教学中使用多媒体来辅助教学,其目的是充分发挥快捷、生动、形象的特点,为学生提供直观感性的材料,有助于适当增加课堂容量,提高课堂效率;同时与黑板板书相结合.

【教学过程设计】

(一).结构分析

为达到本节课的教学目标,突出重点,突破难点,我把教学过程设计为七个阶段:

(二).教学过程 课题引入

2010年9月5日0时14分,我国在西昌卫星发射中心用“长征三号乙”运载火箭,成功将“鑫诺六号”通信广播卫星送入太空.在“鑫诺六号”飞行期间,我们时刻关注着“鑫诺六号”离地面的距离随时间是如何变化的,数学上可以用来描述这种运动变化中的数量关系.(函数)

1.回忆旧知,引出困惑

问题一:请举出初中学过的一些函数.

y2x,yx2,y

等. x

问题二:请同学们回忆初中函数的定义是什么?

在一个变化过程中,有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值和它对应,那么就说y是x的函数,x叫自变量. 问题三:y0(xR)是函数吗?

学生活动:先由学生思考回答,对产生的两种意见展开小组讨论.

由于受认知能力的影响,利用初中所学函数知识很难回答这些问题,形成认知冲突,从而引出本堂课的课题(用幻灯片打出课题).让学生带着悬念、带着认知冲突学习后面的知识,这样有利于激发学生的学习欲望.

2.创设情境,形成概念

实例一:一枚炮弹发射后,经过26s落到地面击中目标.炮弹的射高为845m,且炮弹距地面的高度h(单位:m)随时间t(单位:s)变化的规律是:h130t5t. 问题四:1.t的范围是什么?h的范围是什么?

2.t和h有什么关系?这个关系有什么特点?(实例一由师生共同完成)

事实上生活中这样的实例有很多,随着改革开放的深入,我们的生活水平越来越高,需求越来越大,对环境的影响也越来越重,下面请同学们自学有关臭氧层空洞的问题和恩格尔系数的问题:

实例二:近几十年来,大气层中的臭氧迅速减少,因而出现了臭氧层空洞问题.图1.21中的曲线显示了南极上空臭氧层空洞的面积从1979~2001年的变化情况.

实例三:国际上常用恩格尔系数反映一个国家人民生活质量的高低,恩格尔系数越低,生活质量越高.表11中恩格尔系数随时间(年)变化的情况表明,“八五”计划以来,我国城镇居民的生活质量发生了显著变化.

通过先对两个实例的学生自学,然后请学生谈感受,老师提问,学生回答,师生共同完成.问题五:实例

一、实例

二、实例三的对应关系在呈现方式上有什么不同? 问题六:以上三个实例有什么相同的特征? 学生活动:让学生分组讨论交流,总结归纳出:

共同特点:①都有两个非空数集A、B;②两个数集之间都有一种确定的对应关系;③对于数集A中的每一个x,按照某种对应关系f,在数集B中都有唯一确定的y值和它对应.问题七:满足以上共同特点的两个数集的对应关系,我们把它叫做什么呢?(先让学生说,老师再做补充)

引导学生思考:在三个实例中,大家用集合与对应的语言分别描述了两个变量之间的依赖关系,其中一个变量都是另一个变量的函数.你能否用集合与对应的语言来刻画函数,抽象概括出函数的概念呢? 函数概念:

设A、B是非空的数集,如果按某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:AB为集合A到集合B的一个函数,记作yf(x),xA.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y的值叫做函数值,函数值的集合{f(x)xA}叫做函数的值域.显然,值域是集合B的子集. 问题八:请同学们根据现在函数的定义说说前面三个实例是否表示两个集合的函数关系? 问题九:y0(xR)是函数吗?

问题十:用几何画板在平面直角坐标系中画出一段弧,并作平移和旋转,同时让学生判断这

些平移和旋转中的弧是否表示函数图象.方法引导:如何判断给定的两个变量间是否具有函数关系?

可依据定义,依据定义中的哪几个要点?要注意函数概念中的哪些关键词?

3.质疑解惑,剖析概念

问题十一:请同学们勾画出概念中的关键词,并用简洁的语言说明. 通过交流得出以下几点: ① A、B都是非空的数集; ② 任意性与唯一性;

③ 确定的对应关系,对应关系f可以是解析式、图象、表格.

问题十二:函数由几部分组成?

三要素:定义域、值域、对应法则,缺一不可. 问题十三:怎样理解符号f(x)?

在法则f下,x所对应的函数值,并结合生活实例说明.

4.讨论研究,深化理解

【例1】已知函数f(x)(1)求函数的定义域;(2)求f(3),f()的值;

(3)当a0时,求f(a),f(a1)的值.

想一想:函数的定义域该怎么求?符号f(a)(a为常数)与f(x)有哪些区别与联系?(学生先思考、计算,老师提问,师生共同完成)

x3,x

35.即时训练,巩固新知

练习1.求函数f(x)x

x31的定义域:

练习2.已知函数f(x)3x32x,求f(2)f(a)的值.

学生活动:抽两位学生到讲台在黑板上分别完成(其他同学在下面完成),完成后,师生共同评价完善.

6.总结反思,提高认识

今天,我们在初中函数定义的基础上,运用集合与对应的语言重新刻画了函数,比较两个函数的定义,同学们有什么新的认识. 引导学生思考回答,老师作适当补充.

7.分层作业,自主探究

作业:

一、举出生活中函数的例子(两个以上),并用集合与对应的语言来描述函数;

二、A组学生做:P241、2、3、4;

B组学生做:必做A组学生所做,选做P251题.

附板书设计(提纲式)

各位专家,以上就是我对这节课的教学设想,不足之处恳请各位专家批评指正.

谢谢!

第五篇:2010年第五届卡西欧杯全国高中青年教师优秀课观摩与评比活动教案-《“杨辉三角”与二项式系数的性质》

2010年第五届全国高中数学青年教师观摩与评比活动精品教案

“杨辉三角”与二项式系数的性质

教学说明

1.内容和内容解析

《“杨辉三角”与二项式系数的性质》是全日制普通高级中学教科书人教A版选修2-3第1章第3节第2课时.教科书将二项式系数性质的讨论与“杨辉三角”结合起来,是因为“杨辉三角”蕴含了丰富的内容,由它可以直观看出二项式系数的性质,“杨辉三角”是我国古代数学重要成就之一,显示了我国古代人民的卓越智慧和才能,应抓住这一题材,对学生进行爱国主义教育,激励学生的民族自豪感.本节内容以前面学习的二项式定理为基础,由于二项式系数组成的数列就是一个离散函数,引导学生从函数的角度研究二项式系数的性质,便于建立知识的前后联系,使学生体会用函数知识研究问题的方法,可以画出它的图象,利用几何直观、数形结合、特殊到一般的数学思想方法进行思考,这对发现规律,形成证明思路等都有好处.这一过程不仅有利于培养学生的思维能力、理性精神和实践能力;也有利于学生理解数学知识,培养其数学应用意识.研究二项式系数这组特定的组合数的性质,对巩固二项式定理,建立相关知识之间的联系,进一步认识组合数、进行组合数的计算和变形都有重要的作用,对后续学习微分方程等也具有重要地位.根据以上对教材及学情的分析,特制定教学重点如下: 体会用函数知识研究问题的方法,理解二项式系数的性质.2.教学目标分析

“杨辉三角”是我国古代数学重要成就之一,蕴含了丰富的内容,显示了我国古代人民的卓越智慧和才能,了解我国古代数学成就之一的“杨辉三角”包含的规律,结合“杨辉三角”,运用函数的知识深化对二项式系数性质的理解,联系函数图象和性质、赋值法、两个计数原理等知识探究证明二项式系数的性质,体会用函数知识研究问题的方法,体验数形结合、特殊到一般进行归纳等数学思想的渗透和运用,体现教师引导、学生探究的教学方式,培养学生问题意识,提高数学思维能力,培育学生理性精神.根据以上分析特制定教学目标如下:

1.通过课前组织学生开展“了解杨辉三角、探究与发现杨辉三角包含的规律”的学习活动,让学生感受我国古代数学成就及其数学美,激发学生的民族自豪感.2010年第五届全国高中数学青年教师观摩与评比活动精品教案

2.通过学生从函数的角度研究二项式系数的性质,建立知识的前后联系,体会用函数知识研究问题的方法,培养学生的观察能力和归纳推理能力.3.通过体验“发现规律、寻找联系、探究证明、性质运用”的学习过程,使学生掌握二项式系数的一些性质,体会应用数形结合、特殊到一般进行归纳、赋值法等重要数学思想方法解决问题的“再创造”过程.4.通过恰时恰点的问题引入、引申,采用学生课前自主探究、课上合作探究、课下延伸探究的学习方式,培养学生问题意识,提高学生思维能力,孕育学生创新精神,激发学生探索、研究我国古代数学的热情.3.教学问题诊断分析

教科书将二项式系数性质的讨论与“杨辉三角”结合起来,不仅是因为“杨辉三角”是我国古代数学重要成就之一,蕴含了丰富的内容,显示了我国古代人民的卓越智慧和才能,对学生进行爱国主义教育,激励学生的民族自豪感,而且“杨辉三角”与二项式系数的性质紧密相联,由它可以直观的看出二项式系数的性质,同时课程体系在本节课后编排了关于探究与发现“杨辉三角”中的奥妙的阅读材料,为了凸现数学史教学,更好的掌握本节知识,促进学生发展,在高中学生学习的各个领域渗透研究性学习,因此对教材内容进行了精心加工,合理调整,课前开展了探究与发现“杨辉三角”的一些规律的学习活动,课上进行展示.学生不难发现和概括二项式系数的对称性和增减性与最大值,如何证明呢?这就需要适当引导学生联系函数知识,画出n6和7的函数图象,讨论函数的性质,让学生经历再发现、再提炼、深入探究的学习过程,培育理性思维.在证明各二项式系数的和的过程中,教材中运用赋值法,求证很简略,但是让学生记住这个结论并不难,难的是在这个学习过程中如何遵循学生的认知规律,提高学生的思维能力?基于此,让学生自己归纳、猜想各二项式系数的和,运用多种方法予以求证,如:

122rrnnx1可得;(1)利用赋值法:在(1x)nC.0 nCnxCnxCnxCnx中,令(2)利用模型化思想:引入n元集合子集的个数的问题,利用分类计数原理和分步计数原理进行说明,很好的解决了上面的问题.根据以上分析,制定教学难点如下:

(1)结合函数图象,理解二项式系数的增减性与最大值时,根据n的奇偶性确定相应的分界点;

(2)利用赋值法证明二项式系数的性质.4、教法特点及预期效果分析

2010年第五届全国高中数学青年教师观摩与评比活动精品教案

数学是思维的科学,数学学习不是简单的“告诉”,而应是学生个性化的“体验”.在本节课的学习中,采用问题引导、合作探究的教学方法,设计六大教学环节:展示成果话杨辉、感知规律悟性质、联系旧知探新知、合作交流议方法、反馈升华拨思路、悬念小结再求索.倡导自主探索、独立思考、动手实践、合作交流,为学生开展数学体验,丰富学习方式,形成积极主动的、多样的学习方式创造了有利的条件和广阔的空间.在探究二项式系数的性质中,设计为探究“三部曲”:

第一步是数形结合、概括性质.通过学生画出n=6和n=7时函数图象,并观察分析其对称性和增减性与最大值,引导学生概括性质,学生有目的地动手实践,亲身参与探究活动远比目睹幻灯播放更能体验数学蕴含的规律,使抽象的数学知识直观生成.第二步是分组讨论、证明性质.在学生初步认识“杨辉三角”包含的规律及“杨辉三角”与二项式系数的关系的基础上,在画出n=6和n=7时函数图象并观察分析其对称性和增减性与最大值的情境下,采取分组讨论、交流展示的学习方式,诱发学生内在的认知冲突,激发学生沉淀的知识,培养学生解决问题的能力,让知识经历一个再发现、再创造的过程,体验到探究过程中涉及的思维策略,促进学生对内容的深刻理解,把课堂教学的“话语权”、“生成权”、“展示权”、“交流权”交给学生,用学生的“亮点”,点亮学生的智慧.第三步是师生合作、再探性质.在探究各二项式系数的和的教学中,设计探究性的问题串,运用特殊到一般的归纳思想,猜想结论,再运用赋值法证明这一性质,培养学生思维的严谨性和深刻性,引导学生挖掘问题的本质特征,同时呈现用分类和分步计数原理说明(ab)n的展开式的各二项式系数的和,引发学生的认知冲突,培养学生思维的灵活性和独创性,激发学生的探索兴趣.学生经历课前初探、课中深探、变式细探的探究过程,对“杨辉三角”及二项式系数的性质有比较深刻的认识,不断提高学生探究和解决问题的能力,促进学生数学思维发展.5.教后反思

通过本节课的教学实践,认识到多一点精心设计,就能融一份直观生成,体会到什么是由“关注知识”转向“关注学生”.在教学过程中,注意到了由“给出知识”转向“引起活动”,由“完成教学任务”转向“促进学生发展”,学生成为课堂上的真正主人.开展数学体验,丰富学习方式,师生会有共同的、积极的情感体验.成功之处:一是教学设计独到而又新颖,打破常规,不走寻常路,通过三步探究实现本节课的教学目标,突出以学生为主体,教师以引导者的身份参与其中;二是教态自然得体,2010年第五届全国高中数学青年教师观摩与评比活动精品教案

亲和力强,能很好的驾驭课堂,积极调动学生思考问题,课堂气氛活跃.改进之处:一是可考虑通过网上链接搜集一些杨辉三角包含的规律,比较学生展示的结论,让学生享受成功的喜悦,同时激发学生“再求索”的热情;二是学生展示小组讨论增减性与最大值时出现口误,以及教师板书将“各二项式系数的和”写成“各二项式的系数和”,虽然课后通过师生沟通,学生说不影响掌握本节知识,但是在以后的教学中一定要做得更好.杨辉三角与二项式系数的性质

教学点评

本节课有以下几点值得一提:

一、目标定位准确

本节课,教师在充分挖掘教学内容的内在联系,了解学生已有知识基础,充分分析学情后,确定的教学目标:理解、领悟二项式系数性质;渗透数形结合和分类讨论思想;灵活有效地运用赋值法.应该说具有具体而又准确,科学而有效的特点.随着课堂的实践得到了落实,并且将“知识目标”、“能力目标”、“情感目标”融为一体.教学目标完全符合学生“认识规律”,以递进的形式呈现:观察分析、归纳猜想、抽象概括,提炼上升;特殊——一般——特殊到一般…,课堂实践表明,这些目标,在师生共同努力及合作下是完全可以达到的.二、突出主体地位

1.放手发动学生

把课堂还给学生,一直是课改的大方向,也是新课标的原动力之一.还给学生什么呢?教师作了很好的诠释:

一是给“问题”,当然问题有预设的,也有生成的,符合从学生“思维最近发展区”出发这一根本教学原则.二是给“时间”,这体现了教师的先进教学理念,即便是教学难点“中间项系数最大”这一组合数计算讨论过程仍由学生尝试.当然,n=6,7时,离散型函数的图象起了直观引领,奠基的重要作用.不为完成任务所累,不为主宰课堂所困.三是给“机会”,让学生展示自主探索,合作交流的成果,极大地保护和激发了学生学习的热情和积极性,参与程度和激情得到了空前的提高.2.彰显理性数学

2010年第五届全国高中数学青年教师观摩与评比活动精品教案

本节课,无论是对称性,增减性(最大值),及二项式系数和的逐步生成,学生都能从“特殊到一般”的认识规律,归纳猜想到结论.但数形结合的函数思想,组合数两个性质的运用,两个计数原理的巧妙“会师”,奇数项二项式系数和等于偶数项二项式系数和,反馈升华例示中赋值法再现.这正是“数学演绎”、“理性数学”的精华,让学生找到内化和建构的多种途径.这不仅会自然增强或辐射到学生的解题能力和理性思维,更能影响和渗透到他们的终身学习和今后从事的工作中去.3.呈现合作交流

本节课每个问题的波浪式出现,我们不仅发现每个学生动手做、动眼看、动口说、动笔写、动脑想,全身心投入到学习过程中去,真正地让学生动起来,让课堂活起来,更令人吃惊的是“合作交流”发挥得淋漓尽致.于“师生合作”的源头.教师始终把自己放在和学生平等的位置上,“同欢乐,共困苦”,让学生心情愉悦地、神情自信地回答和展示自己的“成果”,这些话成果、说思路、讲道理、议方法、谈感悟等系列活动,既寄托了老师的殷切希望和拳拳爱生之心,又破除了传统的学生蹑手蹑脚演板,胆怯地来回张望,等待老师去评点乃至训斥的那种尴尬局面,展现了一种兴趣盎然、生动活泼的自主、合作、交流的课堂活动场景.三、主导水到渠成

综观整节课三个性质的呈现(教师板书的主题)毫无生涩造作,支离隔阂的痕迹.却是分块搭建,彼此衔接,宛若于活动中生成,从过程中体验,在操作中建构,水到渠成之感,这得益于教师充分挖掘和把握教材内在联系之功力和涵养,也借助于教师过渡衔接之妙:和蔼微笑的教态,激励动情的语言,豁达激情的风貌,使得课堂情境天人合一.四、增色情感价值

教材的主干内容之一“杨辉三角”就蕴含较丰富的文化价值(包括数字演变),我国古代数学成就和爱国主义情结.教学过程中,由于提及到与“帕斯卡三角”的比照,涉及到与“斐波那契数列”的联系,学生的民族自豪感,爱国主义情操不时会写在那一张张稚嫩、率真的脸上,相信对他们的精神风貌是一种陶冶,思想品质是一种升华.本节课值得改进的地方:

一是可考虑通过网上链接搜集一些“杨辉三角”包含的规律,比较学生展示的结论,让学生享受成功的喜悦,同时激发学生“再求索”的热情;二是学生展示小组讨论增减性与最大值时出现口误,以及教师板书将“各二项式系数的和”写成“各二项式的系数和”,尽管课后通过师生沟通,形成了共识,但值得在以后的教学中更好地把握好教学细节.2010年第五届全国高中数学青年教师观摩与评比活动精品教案

下载2010年第五届卡西欧杯全国高中青年教师优秀课观摩与评比活动教案-《函数模型的应用》(湖南师大附中龚红玲)word格式文档
下载2010年第五届卡西欧杯全国高中青年教师优秀课观摩与评比活动教案-《函数模型的应用》(湖南师大附中龚红玲).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐