四轴飞行器的特点 材料 制作过程

时间:2019-05-14 10:41:06下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《四轴飞行器的特点 材料 制作过程》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《四轴飞行器的特点 材料 制作过程》。

第一篇:四轴飞行器的特点 材料 制作过程

四轴飞行器的特点: 1.时尚精美、做工精湛Seraphi外观时尚精美,做工精湛,还拥集成了自身研发的飞行动力系统,并配置专业的无线电遥控系统。

2.集成易作、易维护的稳定设计

Seraphi集成易作、易维护的稳定设计,在出厂前已经设置并调试所有的飞行参数及功能,具有免安装、免调试的快速飞行模式。Seraphi 携带方便,可以搭配GoPro或者其它微型相机录制空中视频。

3.自由切换多种飞行模式

Seraphi内置自身研发的飞行控制系统,具备多种飞行模式,您可以根据不同的飞行需要以及不同的飞行环境进行实时的智能切换以达到不一样的飞行体验。

4.方向控制灵活

Seraphi具备自身研发飞控系统,方向控制灵活。在通常飞行过程中,可以根据玩家需要,进行灵活纵。

5.具备失控返航

Seraphi具备自身研发的多旋翼飞控系统的失控返航保护功能。当飞行器与遥控器之间失去联系时,飞控系统将启动失控保护功能,自动触发自动返航安全着陆功能。

6.醒目LED指示灯

Seraphi的每个旋翼下方都装有LED灯,通过指示灯的指引,可以清晰 得分辨飞机的前后方向。

7.悬挂微型相机

Seraphi内可以装配摄像头,同时机身下方有可拆卸简易相机安装座,也可以搭配其他视频拍摄电子设备。

8.双电池仓设置,飞行时间长。

组成部分:

电机电调接收 飞控机架

1.电机分为有刷电机和无刷电机,无刷是四轴的主流。它力气大,耐用。2.每个无刷电机都会标多少kv值,这个kv是外加1v电压对应的每分钟空转转速,例如:1000kv电机,外加1v电压,电机空转时每分钟转1000转。

3.同样电池容量锂电最轻,起飞效率最高。

制作材料与成本控制

1.机架 * 1(程对称十字的一个架子,淘宝上有卖,也可以自己拿其他材料来做);电调 * 4(常见有好盈、中特威、新西达等品牌,当然有兴趣的话也可以自己画板子)无刷电机 * 4(这个只能买,没法diy)螺旋桨 * 4(2个正浆,2个反浆)飞控板 * 1(常见有KK、FF、NAZA、玉兔等品牌,四轴的核心部分,资深玩家都会在这个部分下很大工夫)遥控器 * 1(最低四通道遥控器, 有推荐天地飞x什么的,不过这玩意貌似有点贵啊)电池 * 1(11.1v航模动力电池)充电器 * 1(尽量选择平衡充电器)

应该注意的问题

2.怎么配电池?

这与选择的电机、螺旋桨,想要的飞行时间相关。

容量越大,c越高,s越多,电池越重;

基本原理是用大桨,因为整体搭配下来功率高,自身升力大,为了保证可玩时间,可选高容量,高c,3s以上电池。最低建议1500mah,20c,3s。

小四轴,因为自身升力有限,整体功率也不高,就可以考虑小容量,小c,3s以下电池。

3.买多大的电调?

电调都会标上多少A,如20a,40a 这个数字就是电调能够提供的电流。大电流的电调可以兼容用在小电流的地方。小电流电调不能超标使用。

根据我简单测试,常见新西达2212加1045浆最大电机电流有可能达到了5a,为了保险起见,建议这样配置用30a 或 40a电调,说买大一点,以后还可以用到其他地方去。4.机架的轴长短有没有规定?

理论上讲,只要4个螺旋桨不打架就可以了,但要考虑到,螺旋桨之间因为旋转产生的乱流互相影响,建议还是不要太近,否则影响效率

5.电机的型号含义?

经常看人说什么2212电机,2018电机等等,到底是什么意思呢?这其实电机的尺寸。不管什么牌子的电机,具体都要对应4位这类数字,其中前面2位是电机转子的直径,后面2位是电机转子的高度。注意,不是外壳哦。

简单来说,前面2位越大,电机越肥,后面2位越大,电机越高。又高又大的电机,功率就更大,适合做大四轴。通常2212电机是最常见的配置了

6.为什么需要电调?

电调的作用就是将飞控板的控制信号,转变为电流的大小,以控制电机的转速。

7.什么是x模式和+模式?

说白了就是飞行器正对着你本人的时候是呈现X形状还是+形状,之前有介绍过四轴原理的,前进的时候后面加速前面减速两侧不变那个是针对+模式的,而如果是X模式的话,前进就需要后面两个同时加速,前面两个同时减速了。据说X模式的稳定性比+模式的稳定性要高点。

注意:考虑到飞控板上的陀螺仪安装的是固定的,所以,模式不同的话飞控板的安装方向也是不同的。

第二篇:VijayKumar_2012关于四轴飞行器的演讲稿(中英文对照)

早上好 我今天想谈谈 自主飞行沙滩球 其实,是小型飞行器,像这一个 我想和大家谈谈设计这些飞行器时的挑战 和使用这些飞行器能给我们带来的 很多用处 这些飞行器 源于无人驾驶的飞行器 但是那些都体积很大 通常上万磅重 毫无灵活型可言 它们也不是真的自主飞行的 事实上,很多这些飞行器 都是受飞行团队控制的 包括好几个飞行员 感应雷达操作员 和团队协调员

我们想设计的飞行器是这样的—— 这里有两张照片—— 是你能够在超市里买到的那种小飞行器 小型直升机,四个螺旋桨 不超过一米长 只不过几磅重 我们把它们稍微改造一下,加上感应器和处理器,它们就可以在室内飞 用不着导航系统

我现在拿着的这个飞行器 是其中之一 是两个学生做出来的 艾利克斯和丹尼尔 这个仅仅比零点一磅 稍微重一点 只需要大约十五瓦的电源 你能看到 它的直径大约只有八个英寸 让我给你们快速解释一下 这些飞行器是怎么工作的

它有四个螺旋桨 当四个螺旋桨转速相同 这个飞行器就浮在空中 当所有螺旋桨的速度提升时这个飞行器就加速升高 当然了,如果飞行器已经是倾斜的 向着地平线侧过来 就会向这个方向加速 怎么能让它侧过来呢,有两个途径 从这张照片 你能看到四号螺旋桨旋转加速 同时二号螺旋桨转速变慢 这时 飞行器就能向一边倒 反之亦然 当三号螺旋桨加速 一号减速时 飞行器就向前倒

最后 如果任意两端的螺旋桨的转速 大于另两端的螺旋桨的转速 飞行器就能原地旋转 所以装在飞行器上的处理器 基本上能判断需要执行哪些动作 然后把它们组合起来 决定给螺旋桨下什么指令 一秒钟六百次 简单地说这些飞行器就是这么工作的

这个设计的一个好处 就是小巧 这些飞行器很灵活 这里的R 是飞行器的长度 其实是半径 当半径变小时 很多物理参数都会变 最重要的一个参数是 惯性,也就是对于运动的阻力 结果是 惯性决定角速度 它是半径的五次方函数 当半径变得越来越小时 惯性越来越快地减小 另一个结果是角速度的加速度 也就是这里的希腊字母alpha 等于一除以半径 也就是半径的倒数 当半径越小时飞行器能转弯越快

这个视频清楚地显示 大家看右下角的飞行器 正在做一个三百六十度翻转 只需要不到半秒 连续翻转,稍微时间长一点 这里飞行器上用的处理器 能够从飞行器上的加速度计 和陀螺仪得到反馈信息 然后算出,就像我刚才讲的 一秒钟六百个指令 来稳定控制这个飞行器 在左边你能看到丹尼尔把飞行器抛到空中 你能看到飞行器的控制有多快 不管你怎么扔 飞行器都能恢复平衡飞回来

为什么我们要设计这种飞行器呢? 因为这样的飞行器有很多用处 你能把它们放进像这样的大楼里 作为报警器去寻找入侵者 寻找生化泄漏 或者煤气泄漏 你还能用它们 建摩天大楼呢 这里是飞行器在搬梁运柱 架构一个立方体的建筑 这里我想和大家介绍一下 这些机器人能被用来运货 当然一个问题是这些小飞行器 担不了多少重量 你可能需要很多飞行器 来搬运重物 我们新做了个实验—— 其实不那么新了—— 在日本仙台,地震后不久 我们能把这些飞行器 送进倒塌的楼房 或者核反应堆大楼 来探测放射性强度

一个根本的问题 是当这些飞行器需要自控飞行,它们自己得弄明白 怎么从一个地点到另一个地点 这就变得有点难度了 因为这些飞行器的动力学是很复杂的 事实上它们总在对付十二维的空间 这里我们用了一点小技巧 我们拿这个十二位的空间 把它们转换成平的四维空间 这个四维空间 包括了横轴,纵轴和竖轴,还有旋转轴

这些飞行器只需要 计划一件事,我们管它叫最小化加加加速度轨道 提醒大家一点点物理学这里我们有位置向量,导数,速度 和加速度 还有加加速度 还有加加加速度 这个飞行器把加加加速度最小化 基本上它的工作是 创造一个光滑优雅的运动曲线 这样来绕开障碍物 所以这个四维平面中,这个飞行器使用 最小化加加加速度轨道,然后转换回到 复杂的十二维空间飞行器必须这样做来 获得控制和执行动作 让我给大家看几个例子 这些最小化加加加速度轨道是什么样的 这是第一个视频 这个飞行器从一个地点飞到另一个地点 中间经停一下 显然这个飞行器能 飞出一个曲线轨道 还有这样的打圈的轨道 这里飞行器对抗两倍的重力 它们上方还有一个动感监控摄像机,每秒一百幅画面来告诉这些飞行器它们的位置 也能告诉这些飞行器障碍物在哪里 障碍物移动都不要紧 当丹尼尔把套圈扔到空中 飞行器就开始计算套圈的位置 试图预测怎么才能最有效地钻过去 作为一个科研人员 我们总在试图钻出重重圈套,拿到更多经费 甚至训练了我们的飞行器也来做这个(掌声)

另一个飞行器能做的事情 是当我们预先编入一些轨迹 或者它自己学着走过的,它能够记住这里大家能看到 飞行器能够(在预设轨迹上)加上一个动作 积聚动量 改变它的定向,再回到预设轨迹上来 它必须这样做因为这个窗上的缝隙 只比它的宽度大一点点 所以就像是一个跳水运动员 从跳板上起跳,聚集动量,做个旋转,两圈半 然后优雅地回到平衡 这个飞行器是自主这样做的 它知道怎么把小段的轨迹组合起来 来做这些高难度的技巧

现在我想换个话题谈谈这些小型飞行器 的不足之处,就是体积小 我已经提过 我们需要使用很多飞行器 来克服体积小的不便 一个难点是 怎么使得这些飞行器集体飞行? 我们在大自然中寻找答案 我想给大家看一个视频 是关于Aphaenogaster沙漠蚁的 在史狄文·普热特教授的实验室里,这些蚂蚁一起搬运重物 这是一个无花果 事实上无论什么东西,只要蘸上无花果汁这些蚂蚁都会把它们带回巢去 这些蚂蚁没有任何中央调控 它们是靠感应邻近的蚂蚁 它们也没有明确的交流 但是因为它们能够感应邻近的蚂蚁 也能感应抬着的重物 整群的蚂蚁有默契 这样的协调 正是飞行器需要的 当一个飞行器 被其他飞行器环绕时—— 让我们注意 I 和 J 这两个—— 当它们成群飞行时 我们希望这两个飞行器 能够监控它们之间的距离 我们需要确定这个距离是在可接受的范围里的 飞行器要检测这个变化 在控制指令中计算进去 也是每秒一百次 这个控制指令每秒会被送到马达六百次 所以这个程序 是分散化执行的 再有,如果你有很多很多飞行器 要完成集体飞行任务,能足够快地集中协调所有这些信息 是几乎不可能的加上这些飞行器只能 依靠局部的信息来决定做什么动作 也就是要靠感应邻近的飞行器 最后我们希望这些机器人 不知道它们的邻居是谁 也就是匿名飞行

下一个我想给大家展示的 是这段视频 这二十个小型飞行器 成群飞行 它们在监测邻居的位置维持群队 群队的形状还能变 它们可以在一个平面上飞 也可以上中下地飞 大家可以看到 它们能从上中下的群队变成平面的 在飞越障碍物的时候 它们能边飞边变换队形 我想强调,这些飞行器距离都很近比如这个群队,八架飞行器 相互距离不过几英寸 尽管在空气动力学上 这些螺旋桨相互干扰 它们还是能够维持平稳飞行(掌声)

现在它们会成群飞了 它们就可以合作抬重物 这里展示的是 我们能够把飞行器的能力 翻倍,翻三倍,四倍 仅仅通过让它们和邻居合作,大家可以看到 这样做的一个不便之处 就是当加大数量时—— 比如使用很多飞行器来抬一个物体 你其实是加大了惯性 这样它们就不够灵活了,这是一个代价 但是你可以增加载荷承载量

另一个我想给大家展示的用处是—— 这是在我们实验室 这是研究生昆汀·林夕的工作 他的算法程序告诉这些飞行器 怎么使用桁架结构 自动建造 一个立方体 他的算法程序告诉这些机器人 该用哪一块 什么时候用,用在哪里 从这个视频我们可以看到—— 这个视频是十倍或者十四倍速度播放的—— 大家可以看到飞行器在搭建很不一样的构架 并且,所有的运动都是自主的 昆汀仅仅是 给它们一个蓝图 也就是他想建的设计

所有这里展示的实验 所有这些演习都是靠着它们自己的动感检测摄像机完成的 那么,当它们离开实验室 来到真实世界的时候,又怎么样呢? 没有卫星导航会怎么样? 这个飞行器 其实装有一个摄像机 和一个激光测距仪,一个激光扫描仪 它可以使用这些探测装置 来描绘周围的环境的地图 这个地图包括很多细节—— 玄关,窗户 人,家具—— 还能弄清楚相对于这些东西 它自己在哪里 所以这里没有整体的协调系统 这个协调系统是靠飞行器自己来完成的它自己在哪里,前面有什么 还能利用周围环境为自己找到出路

这里我想给大家再看一段视频 这个算法程序是法兰克·沈 和南希·麦克教授编的 当这个飞行器第一次飞入一个建筑 它是怎么边飞边画地图的 这个飞行器弄明白了这些细节 开始画地图 弄明白了相对这些细节,自己在哪里,然后自我定位 全以每秒一百次的速度发生 这就给我们一个机会来控制这些算法 像我之前讲过的 所以这个机器人其实是 被法兰克遥控的 但是它自己也可以弄明白 怎么飞 假设我想放一个这样的飞行器进一幢楼 我并不知道里面是什么样的我可以让它飞进去 创造一个地图 然后飞回来告诉我里面是什么样的 所以,这个飞行器不仅仅解决了 怎么从一点到另一点的问题 还能够随时知道 最好的目标在哪里 基本上,它知道该去搜索哪里 因为那里的信息是最“未知”的 这就是它怎么填充这个地图

这里我想展示给大家 最后一个用途 当然这个技术有很多很多用途 我是个教授,我们很关心教育 这样的飞行器其实可以改变 我们的小学和中学教育 我们在南加州 离洛杉矶很近所以我不得不 放点娱乐元素进去 我想给大家看一个音乐视频 我想向你们介绍艾利克斯和丹尼尔,他们是导演兼制作(掌声)

在我播放这个视频前 我想告诉大家这是他们在过去三天做出来的 因为主持人克瑞斯给我打了个电话 在这个视频中表演的飞行器 全是靠自控表演的 你能看到九个机器人,演奏六种不同乐器 当然了,这是为了今年的TED2012特别制作的 请欣赏(音乐)(掌声)

Good morning.I'm here today to talk about autonomous, flying beach balls.No, agile aerial robots like this one.I'd like to tell you a little bit about the challenges in building these and some of the terrific opportunities for applying this technology.So these robots are related to unmanned aerial vehicles.However, the vehicles you see here are big.They weigh thousands of pounds, are not by any means agile.They're not even autonomous.In fact, many of these vehicles are operated by flight crews that can include multiple pilots,operators of sensors and mission coordinators.What we're interested in is developing robots like this--and here are two other pictures--of robots that you can buy off the shelf.So these are helicopters with four rotors and they're roughly a meter or so in scale and weigh several pounds.And so we retrofit these with sensors and processors, and these robots can fly indoors without GPS.The robot I'm holding in my hand is this one, and it's been created by two students, Alex and Daniel.So this weighs a little more than a tenth of a pound.It consumes about 15 watts of power.And as you can see, it's about eight inches in diameter.So let me give you just a very quick tutorial on how these robots work.So it has four rotors.If you spin these rotors at the same speed, the robot hovers.If you increase the speed of each of these rotors, then the robot flies up, it accelerates up.Of course, if the robot were tilted, inclined to the horizontal, then it would accelerate in this direction.So to get it to tilt, there's one of two ways of doing it.So in this picture you see that rotor four is spinning faster and rotor two is spinning slower.And when that happensthere's moment that causes this robot to roll.And the other way around, if you increase the speed of rotor three and decrease the speed of rotor one, then the robot pitches forward.And then finally, if you spin opposite pairs of rotors faster than the other pair, then the robot yaws about the vertical axis.So an on-board processor essentially looks at what motions need to be executed and combines these motions and figures out what commands to send to the motors 600 times a second.That's basically how this thing operates.So one of the advantages of this design is, when you scale things down, the robot naturally becomes agile.So here R is the characteristic length of the robot.It's actually half the diameter.And there are lots of physical parameters that change as you reduce R.The one that's the most important is the inertia or the resistance to motion.So it turns out, the inertia, which governs angular motion, scales as a fifth power of R.So the smaller you make R, the more dramatically the inertia reduces.So as a result, the angular acceleration,denoted by Greek letter alpha here, goes as one over R.It's inversely proportional to R.The smaller you make it the more quickly you can turn.So this should be clear in these videos.At the bottom right you see a robot performing a 360 degree flip in less than half a second.Multiple flips, a little more time.So here the processes on board are getting feedback from accelerometers and gyros on board and calculating, like I said before, commands at 600 times a second to stabilize this robot.So on the left, you see Daniel throwing this robot up into the air.And it shows you how robust the control is.No matter how you throw it, the robot recovers and comes back to him.So why build robots like this? Well robots like this have many applications.You can send them inside buildings like this as first responders to look for intruders, maybe look for biochemical leaks, gaseous leaks.You can also use them for applications like construction.So here are robots carrying beams, columns and assembling cube-like structures.I'll tell you a little bit more about this.The robots can be used for transporting cargo.So one of the problems with these small robots is their payload carrying capacity.So you might want to have multiple robots carry payloads.This is a picture of a recent experiment we did--actually not so recent anymore--in Sendai shortly after the earthquake.So robots like this could be sent into collapsed buildings to assess the damage after natural disasters, or sent into reactor buildings to map radiation levels.So one fundamental problem that the robots have to solve if they're to be autonomous is essentially figuring out how to get from point A to point B.So this gets a little challengingbecause the dynamics of this robot are quite complicated.In fact, they live in a 12-dimensional space.So we use a little trick.We take this curved 12-dimensional space and transform it into a flat four-dimensional space.And that four-dimensional space consists of X, Y, Z and then the yaw angle.And so what the robot does is it plans what we call a minimum snap trajectory.So to remind you of physics, you have position, derivative, velocity, then acceleration, and then comes jerk and then comes snap.So this robot minimizes snap.So what that effectively does is produces a smooth and graceful motion.And it does that avoiding obstacles.So these minimum snap trajectories in this flat space are then transformed back into this complicated 12-dimensional space, which the robot must do for control and then execution.So let me show you some examples of what these minimum snap trajectories look like.And in the first video, you'll see the robot going from point A to point B through an intermediate point.So the robot is obviously capable of executing any curve trajectory.So these are circular trajectories where the robot pulls about two G's.Here you have overhead motion capture cameras on the top that tell the robot where it is 100 times a second.It also tells the robot where these obstacles are.And the obstacles can be moving.And here you'll see Daniel throw this hoop into the air, while the robot is calculating the position of the hoopand trying to figure out how to best go through the hoop.So as an academic, we're always trained to be able to jump through hoops to raise funding for our labs, and we get our robots to do that.(Applause)So another thing the robot can do is it remembers pieces of trajectory that it learns or is pre-programmed.So here you see the robot combining a motion that builds up momentumand then changes its orientation and then recovers.So it has to do this because this gap in the window is only slightly larger than the width of the robot.So just like a diver stands on a springboard and then jumps off it to gain momentum, and then does this pirouette, this two and a half somersault through and then gracefully recovers, this robot is basically doing that.So it knows how to combine little bits and pieces of trajectories to do these fairly difficult tasks.So I want change gears.So one of the disadvantages of these small robots is its size.And I told you earlier that we may want to employ lots and lots of robots to overcome the limitations of size.So one difficulty is how do you coordinate lots of these robots? And so here we looked to nature.So I want to show you a clip of Aphaenogaster desert ants in Professor Stephen Pratt's lab carrying an object.So this is actually a piece of fig.Actually you take any object coated with fig juice and the ants will carry them back to the nest.So these ants don't have any central coordinator.They sense their neighbors.There's no explicit communication.But because they sense the neighbors and because they sense the object, they have implicit coordination across the group.So this is the kind of coordination we want our robots to have.So when we have a robotwhich is surrounded by neighbors--and let's look at robot I and robot J--what we want the robots to do is to monitor the separation between them as they fly in formation.And then you want to make sure that this separation is within acceptable levels.So again the robots monitor this error and calculate the control commands 100 times a second, which then translates to the motor commands 600 times a second.So this also has to be done in a decentralized way.Again, if you have lots and lots of robots, it's impossible to coordinate all this information centrally fast enough in order for the robots to accomplish the task.Plus the robots have to base their actions only on local information, what they sense from their neighbors.And then finally, we insist that the robots be agnostic to who their neighbors are.So this is what we call anonymity.So what I want to show you next is a video of 20 of these little robots flying in formation.They're monitoring their neighbors' position.They're maintaining formation.The formations can change.They can be planar formations, they can be three-dimensional formations.As you can see here, they collapse from a three-dimensional formation into planar formation.And to fly through obstacles they can adapt the formations on the fly.So again, these robots come really close together.As you can see in this figure-eight flight, they come within inches of each other.And despite the aerodynamic interactions of these propeller blades, they're able to maintain stable flight.(Applause)So once you know how to fly in formation, you can actually pick up objects cooperatively.So this just shows that we can double, triple, quadruple the robot strength by just getting them to team with neighbors, as you can see here.One of the disadvantages of doing thatis, as you scale things up--so if you have lots of robots carrying the same thing, you're essentially effectively increasing the inertia, and therefore you pay a price;they're not as agile.But you do gain in terms of payload carrying capacity.Another application I want to show you--again, this is in our lab.This is work done by Quentin Lindsey who's a graduate student.So his algorithm essentially tells these robotshow to autonomously build cubic structures from truss-like elements.So his algorithm tells the robot what part to pick up, when and where to place it.So in this video you see--and it's sped up 10, 14 times--you see three different structures being built by these robots.And again, everything is autonomous, and all Quentin has to do is to get them a blueprint of the design that he wants to build.So all these experiments you've seen thus far, all these demonstrations, have been done with the help of motion capture systems.So what happens when you leave your lab and you go outside into the real world? And what if there's no GPS? So this robot is actually equipped with a camera and a laser rangefinder, laser scanner.And it uses these sensorsto build a map of the environment.What that map consists of are features--like doorways, windows, people, furniture--and it then figures out where its position is with respect to the features.So there is no global coordinate system.The coordinate system is defined based on the robot, where it is and what it's looking at.And it navigates with respect to those features.So I want to show you a clip of algorithms developed by Frank Shen and Professor Nathan Michael that shows this robot entering a building for the very first time and creating this map on the fly.So the robot then figures out what the features are.It builds the map.It figures out where it is with respect to the features and then estimates its position 100 times a second allowing us to use the control algorithms that I described to you earlier.So this robot is actually being commanded remotely by Frank.But the robot can also figure outwhere to go on its own.So suppose I were to send this into a building and I had no idea what this building looked like, I can ask this robot to go in, create a map and then come back and tell me what the building looks like.So here, the robot is not only solving the problem, how to go from point A to point B in this map, but it's figuring out what the best point B is at every time.So essentially it knows where to go to look for places that have the least information.And that's how it populates this map.So I want to leave you with one last application.And there are many applications of this technology.I'm a professor, and we're passionate about education.Robots like this can really change the way we do K through 12 education.But we're in Southern California, close to Los Angeles, so I have to conclude with something focused on entertainment.I want to conclude with a music video.I want to introduce the creators, Alex and Daniel, who created this video.(Applause)So before I play this video, I want to tell you that they created it in the last three days after getting a call from Chris.And the robots that play the video are completely autonomous.You will see nine robots play six different instruments.And of course, it's made exclusively for TED 2012.Let's watch.(Music)(Applause)

第三篇:关于四轴飞行器的姿态动力学建模

龙源期刊网 http://.cn

关于四轴飞行器的姿态动力学建模

作者:邓矛

来源:《科技创新导报》2012年第09期

摘 要:四轴飞行器是许多航模爱好者的宝贝。四轴飞行器具有可以垂直升降,任意角度移动的灵活特点,并且可以在其机身上搭载不同的器件,譬如摄像头,或是机械手臂等进行功能拓展。本文尝试建立四轴飞行器的姿态动力学模型,并且从航向动力学系统及俯仰和滚转动力系统的角度对其做深入分析,希望能为四轴飞行器设计者提供一个参考。

第四篇:简历制作过程

简历制作过程

1.什么是好简历

按照岗位需求提供优势,并不需要写上自己所有的优势和奖励,也并不要把自己所有的个人信息都写上。

2.好简历的四个特点

1.2.3.4.针对岗位 突出优势 提供证据 简洁明快

3.如何让简历脱颖而出?

1.格式:简洁明快,产生视觉冲击力

2.内容:陈述事实,言简意赅,提供证据

3.结构:符合人力资源招聘员的阅读习惯

4.简历的制作小窍门:

优势强化,弱势弱化。优势放前面。

(比如说你的学校没啥名气,那你就可以不写自己的学校名,只写专业就可。)一份简历一个岗位(切记)

5.简历小技巧:

1.邮箱你一定要有,而且要注册一个专业性的个人邮箱,例如163之类的邮箱。千万别用QQ邮箱。

2.电话号码最好写成这种形式:123-4564-0567

3.简历中的封面:宁缺毋滥(要想有封面,也得是自己制作设计的,能够代表自己的风格想法的封面,就怕到时候,HR问你为什么选择这样的封面,这是你要是说是这是我在百度上考下来的,这样就不好了。所以我建议不要封面。)

4.照片:宁缺毋滥(如果要贴也一定是职业化的照片,不一定要是西装。比如你要应聘的是一名土木工程师,你可以选择穿工作服的照片也行。因为有的面试者就是因为照片被淘汰了。如果你没贴照片,你想你还挺特殊的,这样可以勾起HR的好奇心,所以反而有好处呢。)

5.求职信:宁缺毋滥(要写就得自己动手写,要能打动HR的信,要真诚。千万别百度。)

6.人力资源或者招聘者看重简历的什么

6.三小三大是HR关注的点,这些你基本都得写

三小

1.你是谁

2.你来自哪个学校

3.需要做什么工作

三大

1.2.3.4.5.6.7.8.学了什么?(与你想干的工作是不适合)干的怎么样?(这件事你做的怎么样,或得了什么奖励)你是个什么样的人 简历中要突出什么优势? 这个得看你应聘的岗位是什么类型的,大部分的岗位可以分为以下几种 知识技能型岗位(计算机,软件工程、金融、工程技术员、研发人员等)能力经验型岗位(教师、医生、营销、公关、行政、项目管理、人力资源等)态度素养型岗位(护士、文员、秘书、服务员、接待员、银行柜台员、前台经理等)

9.简历制作过程细化

建立个人信息档案

就是把自己的各个方面都列出来,建立一个表。内容大致包括:你学了什么,你会什么,你得过什么奖励,你是个什么样的人,你的特长是什么,你的爱好有哪些,你的性格等等。根据要求筛选信息

就是从上面你自己建立的库中,把能与岗位需求相对应的技能、特长、爱好、性格、奖励、能体现你适合这份工作的经历等等都可以。

对信息进行深加工

就是把上一步选出来的各种技能特点进行语言的加工,利用特有的表达方式,做到简洁明了。方法就是动词开始,例如:独立策划了、、、、活动,在活动中我怎么样了,我负责了什么,获得了什么奖,或者得到了什么好的评价,在这个过程中培养了什么能力,体现了我的什么能力等等。采用这样的格式写故事。还有的动词开始有例如:组织了什么、、、、;提高了、、、、;参与了、、、、等等。

制作高质量的简历

上面进行加工后的语言和你的特点等等进行恰当的组合。做到简洁明了,言简意赅。

1.其中还有的小诀窍就是:要按要事优先原则(按重要性优先排序)

2.尽量用数字表达。例如:得了什么奖(本院2000得奖者3人)

3.提供证据:用事实说话;用他人的评价说话;用数据说话;用结果说话;

4.如果实在是没什么奖励也可以从生活中寻找,能体现你是符合岗位要求的事或者爱好或者行为。例如岗位中要求是要有整理能力的,你可以说自己特变喜欢整理房间衣物等等。

5.就是他有什么要求,你都尽量往这方面去套,去靠。

第一步:了解岗位需求(就是知道这个岗位需要什么技能,什么能力,什么样的素质等等)

方法:

上个中网站了解。例如;

招聘网

中国人才网

应届大学生就业网

中华人才网

国家人才网

我的工作网

北京大学生就业网等

职业访谈(就是像在这个职业里面有威望的人,或者是很厉害的人,准备好问题去问他,解答你心中的疑问。)

查看有关方面的书籍

第二步提取这个岗位中的重点要求,然后列出来。再与自己的信息库区对照,看看自己的那些爱好奖项,或者自己做了什么事能与岗位的要求对应。把这些内容提取出来。

第三步把提取来的内容进行动词开始式的加工。

第四步整合成完整的简历

1.2.3.4.5.6.7.投递简历 投递简历的分类 网投 邮寄 现场 熟人递送 上门

10、递简历的小技巧

网投:

1.2.3.4.5.恰当时间每天上午8:30,下午1:30,你可以每天都发,在他的应聘时间段里。网投的简历一定要放在正文里 别用word文档,用图片文档jpg 别群发给很多公司 主题:写一句高度概括的话,千万别写简历。你可以下,具有强大沟通能力的某某(HR)求职人某某。

邮寄:

1.如果你要寄简历和求职信一起,那你的邮寄一定得写成私人信件的形式,上面可以写上尊敬的某某(HR姓名)亲启。(切记信封上不可以写上简历这样的字)

2.邮寄以挂号信或快递的形式寄出

现场:

1.如果你是去招聘现场去找工作,首先你得带着自己建立的简历库,或者电脑(笔记本)或U盘,方便自己随时改动。

2.别上去就给人递简历,你得先看看他们的要求,一点一点的对应看看,是不是和你做的简历相对应不。要是不对应,不符合,那你就马上改正(根据你的简历库里的内容,找到和现在他们要求相符的条件的时间,你的特点等等,马上改正。)

3.千万不要拿着一大堆的简历一个一个发过去,他们对这样的简历一般都是不看的,直接扔了的。

熟人递送

1.这是最好的方式,也是成功率很高的方式。因为公司里面一般在要招人时先是考虑自己的公司里有没有人可以顶替,然后是考虑公司内部的人的推荐,再然后就是去招人了,2.熟人递送,可以让他给你写一份推荐信,这个人最好在这个公司内部工作而且最好是高官要员,3.还有一个方法就是直接上门去找这个部门的部长或者是领导。当然你得带着点礼物去,这个礼物不是贿赂的礼物而是指你在没进入这个部门时就开始为这个公司工作了的证据。比如,你要进入的是这个公司的设计部门,你可以带着自己的设计去。

4.还有一个就是当你没投递一份简历出去后,最好在手机上把那个公司负责面试那人的姓名弄清楚,在手机上做好备份,接电话时要是人家来电了,你一下就能叫出人家的名字。那说明你狠关心这个公司,你的态度很好。可以留下一个好的印象。

5.总之投递简历要有诚意,要坚持有时,不要招到了拒绝你就放弃了。要放得下面子,在没工作前,面子你是没有的。有句话叫做,要想当爷爷,先得当孙子。

11、答问题的要点小结

1.在面试前你得做好一些功课,比如你的公司的老板是谁,公司的发展历史等等。

2.要能听得出问题背后的问题。比如他问你你是不是独生,你应该这样回答:是的,领导,虽然我是独生,但是我有很好的团队协作能力,比如我参加了什么团队性的活动社团等等。

3.还有就是自我介绍,千万别只说我叫什么名字,我来自哪里。就完了,你得多说点,你可以介绍自己的性格,爱好等等。

4.在最后就是当面试官对你说,你还有什么问题吗?你千万别什么问题都不提。你可

以问问

5.公司的保险,五险一金啊以及公司的提供的比例啊。也可以问问自己以后得发展啊,等等

6.你还可以直接问领导我表现怎么样,有什么地方不满的吗?你就直接问他,放下面

子,或者说不要脸了这一回。表现出自己的诚意,这样他会理解为你对这个工作很有兴趣。

7.你也可以直接问问,我还有机会可以见到您吗领导?

8.还有就是一定要表现出对这个工作的兴趣。表现出自己的自信,不知道你就是不好

意思,领导我不知道,不过领导我的学习能力很强,只要你给我机会,我一定会尽快学会。你要表现出自己的欲望。

9.还有就是当他问你的未来打算时,你要有一个具体的计划。例如:我要几年内买房,几年内把父母接过来等等。你要表现出你的报复。(领导会喜欢你这种有企图心的员工。)

10.还有就是当你在面试的过程中,你得学会用start的原则来讲故事,start是以下四

个单词的首字母,situation、task、action、result。依次是情景、任务、行动、结果。一定要按照这样的格式来讲述故事,其中情景和任务用一两句话来概括,具体要讲行动和结果。因为,面试官关注的是你负责了什么,你做的怎么样了。

11.在大二时我独自一人策划了我们院的什么什么活动。(情景、任务交代)我负责了

整个活动的设备选择,人员调配,等等(行动)。(具体点,细致点。)活动开展的很成功,引起了多家有名的报刊记者的报道。(结果)

12.讲故事时最好都按照这样的格式来讲述效果会很好。

还有一些你可以去上网查查看的东西,一个是心理学方面的。好像叫什么霍兰德心理学。这个可以帮助你了解自己。

这些都是我自己整理的,排版有点乱。你看看吧。找点事做,嗯嗯。

第五篇:制作过程心得体会

制作过程心得体会

在利用刻衣制作笔袋的过程中,让我感触颇深,也让我体会到许多动手的乐趣,将自己的想法付诸于实践。

首先,是各种材料的收集与拼接,在综合原因的基础上,添加了许多自己的创新元素,制作过程中并非地么简单,也能验生活中的发现与心灵手巧。

其次,通过这次活动充分的开发我们的思维能力和动手能力,还使我常联想到在不同学科中学到的知识和方法,无形中提升了自己的知识迁移和灵活运用能力。

随着研究的深入,我越来越发现自己原来不懂的东西很多很多,根本不应该满足于知道的那一点点,即应确立不断学习的信念,这次活动带给我们最大财富是一种追求永无止境的精神。在今后的生活中,我应该时刻提醒自己,学无止境!我相信,这次课题研究活动会给我们一生留下永恒而珍贵的记忆!

结题心得体会

通过这次的结题报告,让我收获颇多,且受益匪浅,因为此次的项目设计不仅让我明白了团结协作的小组重要性,而且更让我知道和认识了创新、环保的重要,对于我们现在的学生来说是必不可少的。

制作成功后,我看到成品心里很高兴,通过动手和思考不仅锻炼了我们的大脑,还锻炼了我们的动手能力。

开题报告心得体会

我们研究性学习开题报告主题废衣成笔袋,我们为什么会以它为本次研究性学习的主题呢?通过我们组员的调查,废衣在每个家里面最普遍的,并且人们不要的衣服都是完好无损,没有一点破烂,随着社会经济的发展,人们生活水平不断提高,在物质方面和精神享受都有很大的改变,人们在环保方面意识比较薄弱,在经济发展的同时,环境保护成了人们热议的话题,很多人都没有想到把旧衣服利用起来,这样也有利于我们环境的环保和资源的有效利用,所以环保成为了我们主题的目的。

我相信通过我们组员的团结协办,一定会把废衣成笔袋制做出来,展现给大家看。

调 查 问 卷

1、家中有大量旧衣物?

是约占90%

否约占10%

2、家中有废旧衣物的是否放置家中无用?

是约占70%

否约占30%

3、是否觉得废旧衣物放置家中浪费?

是约占90%

否约占10%

4、对废物利用是否觉得有利于保护环境?

是约占100%

否约占0%

5、是否赞同我们此次废衣成笔袋活动?

是约占80%

否约占20%

下载四轴飞行器的特点 材料 制作过程word格式文档
下载四轴飞行器的特点 材料 制作过程.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    鱼缸制作过程[本站推荐]

    鱼缸制作过程 第一步:底柜框架 材料:40*40*3mm镀锌方管 尺寸:150cm*60cm*75cm 第二步:木板包架 材料:16mm木渣板 第三步:底柜贴皮 材料:波音软片(网购) 第四步:粘底缸 材料:8mm普通浮法......

    关于四旋翼飞行器的心得

    关于四旋翼飞行器的心得 对于飞行器或者航模之类的映像,是在高中时期,学校有航模小组,经常可以看到拿着航模的学生在进行试飞,当时心中感觉“航模”是非常有意思并且“高科技”......

    制作无动力飞行器的一些感受(五篇模版)

    制作无动力飞行器的一些感受 吉林大学珠海学院机电工程系廖锐锋 田凯从10月14号开始进入实际动手制作阶段以来,到今天10月24号已经是第10天了,我们的无动力三角翼也终于初露雏......

    留言簿的制作过程

    动态站点(留言簿)的制作过程 一、安装调试ASP环境 安装IIS或将NetBox测试服务器复制到你的站点根文件夹中。 1、打开“控制面板”—选择“添加或删除WINDOWS组件” 2、选择IIS......

    个人网页制作过程

    个人网页制作过程: 制作个人网页的目的就是向大家介绍自己,我制作个人网页的过程如下 (1) 首先是熟悉并熟练一款网页制作软件的使用方法,这样制作出来的个人主 页才不会显得粗糙,......

    汽车模型制作过程报告

    汽车模型制作过程报告 一、泥模的制作 1、泥模内的支撑物 初期选择了砖头,优点是稳固坚硬,缺点是不方便上泥,砖头吸水导致泥模很快干裂。最终选择泡沫。做成车的大概形状。 2、......

    电子标的制作过程范文

    电子标制作流程 1、打开软件导入招标文件 杭州地区(0103开始导入 1单位的设置、费率(例如1、2、3接着按照平时套标书流程做… 响应主材(工料机汇总,右键)组价文件 (招标控制价)(1-6......

    沙盘游戏制作过程

    沙盘游戏的开始(一)——如何向来访者介绍沙盘 [日期:2011-11-18] 来源: 作者:申荷永 高岚 [字体:大 中 小] 沙盘游戏的过程是沙盘游戏实践的体现,其中包含着沙盘游戏的操作与要求,......