第一篇:初一数学平行线的判定练习题
选择题
1、如图,能判定DE∥BC的条件是()A、∠E=∠DCA B、∠DCE=∠E C、∠E=∠CDE D、∠BCE=∠E
2、如图,下列说法正确的是()A、如果∠1=∠2,那么AD∥BC B、如果∠3=∠4,那么AB∥DC C、如果∠3=∠5,那么AD∥BC D、如果∠3=∠5,那么AB∥DC
3、如图,下列条件中,不能判断AD∥BC的是()A、∠1=∠3 B、∠2=∠4 C、∠EAD=∠B D、∠D=∠DCF
4、下列说法中,正确的是()A、经过一点,有且只有一条直线与已知直线平行 B、两条直线被第三条直线所截,同位角相等 C、垂直于同一条直线的两条直线互相平行 D、两条直线被第三条直线所截,如果内错角相等,则两直线平行
第二篇:初一数学平行线的判定测试题
初一数学平行线的判定测试题
一、选择题:(每小题3分,共24分)
1、下列说法正确的有〔〕
①不相交的两条直线是平行线;②在同一平面内,不相交的两条线段平行
③过一点有且只有一条直线与已知直线平行;④若a∥b,b∥c,则a与c不相交.A.1个B.2个C.3个D.4个
2、在同一平面内,两条不重合直线的位置关系可能是〔〕
A.平行或相交B.垂直或相交C.垂直或平行D.平行、垂直或相交
3.如图1所示,下列条件中,能判断AB∥CD的是()
A.∠BAD=∠BCDB.∠1=∠2;C.∠3=∠4D.∠BAC=∠ACD
(1)(2)(3)
4.如图2所示,如果∠D=∠EFC,那么()
A.AD∥BCB.EF∥BCC.AB∥DCD.AD∥EF
5.如图3所示,能判断AB∥CE的条件是()
A.∠A=∠ACEB.∠A=∠ECDC.∠B=∠BCAD.∠B=∠ACE
6.下列说法错误的是()
A.同位角不一定相等B.内错角都相等
C.同旁内角可能相等D.同旁内角互补,两直线平行
7.不相邻的两个直角,如果它们有一边在同一直线上,那么另一边相互()
A.平行B.垂直C.平行或垂直D.平行或垂直或相交
8、在同一平面内的三条直线,若其中有且只有两条直线互相平行,则它们交点的个数是〔
A、0个B、1个C、2个D、3个〕
二、填空题:(每小题4分,共28分)
1.在同一平面内,直线a,b相交于P,若a∥c,则b与c的位置关系是______.2.在同一平面内,若直线a,b,c满足a⊥b,a⊥c,则b与c的位置关系是______.3、如图,光线AB、CD被一个平面镜反射,此时∠1=∠3,∠2=∠4,那么AB和CD的位置关系是,BE和DF的位置关系是.4、如图,AB∥EF,∠ECD=∠E,则CD∥AB.说理如下:
5.在同一平面内,直线a,b相交于P,若a∥c,则b与c的位置关系是______.6.在同一平面内,若直线a,b,c满足a⊥b,a⊥c,则b与c的位置关系是______.7.如图所示,BE是AB的延长线,量得∠CBE=∠A=∠C.(1)由∠CBE=∠A可以判断______∥______,根据是_________.(2)由∠CBE=∠C可以判断______∥______,根据是_________.三、训练平台:(每小题15分,共30分)
1、如图所示,已知∠1=∠2,AB平分∠DAB,试说明DC∥AB.2、如图所示,已知直线EF和AB,CD分别相交于K,H,且EG⊥AB,∠CHF=600,∠E=•¬30°,试说明AB∥CD.四、解答题:(共23分)
1、如图所示,已知直线a,b,c,d,e,且∠1=∠2,∠3+∠4=180°,则a与c平行吗?•为¬什么?(11分)
2、如图所示,请写出能够得到直线AB∥CD的所有直接条件.(12分)
五、根据下列要求画图.(15分)
1、如图(1)所示,过点A画MN∥BC;
2、如图(2)所示,过点P画PE∥OA,交OB于点E,过点P画PH∥OB,交OA于点H;
3、如图(3)所示,过点C画CE∥DA,与AB交于点E,过点C画CF∥DB,与AB•的延长线交¬于点F.(1)(2)(3)
第三篇:初一平行线练习题
1.2.3.DF//AC.4.已知:如图,CD平分∠ACB,AC∥DE,CD∥EF,试说明EF平分∠DEB.
CADFBE
5.如图9:∵BE平分∠ABC(已知)
∴∠1=∠3()
又∵∠1=∠2(已知)
∴_________=∠2()
∴_________∥_________()
∴∠AED=_________()
6.如图:已知直线AB∥CD,直线MN分别交AB、CD于M、N两点,若ME、NF
分别是∠AMN、∠DNM的角平分线,试说明:ME∥NF。
7.已知:如图,12,3B,AC//DE,且B、C、D在一条直线上。
AE 求证:AE//BD2BCD
8.已知:如图,
CDACBA,DE平分CDA,BF平分CBA,且ADEAED。
求证:DE//FB
DF
AEB
C
第四篇:5.2.2平行线的判定练习题
5.2.2平行线的判定
(检测时间50分钟满分100分)
班级_________________姓名____________得分________
一、选择题:(每小题3分,共15分)
1.如图1所示,下列条件中,能判断AB∥CD的是()
A.∠BAD=∠BCDB.∠1=∠2;C.∠3=∠4D.∠BAC=∠ACD
A
D
ADA
E
EC
(1)(2)(3)2.如图2所示,如果∠D=∠EFC,那么()
A.AD∥BCB.EF∥BCC.AB∥DCD.AD∥EF3.如图3所示,能判断AB∥CE的条件是()
A.∠A=∠ACEB.∠A=∠ECDC.∠B=∠BCAD.∠B=∠ACE4.下列说法错误的是()
A.同位角不一定相等B.内错角都相等
C.同旁内角可能相等D.同旁内角互补,两直线平行
5.不相邻的两个直角,如果它们有一边在同一直线上,那么另一边相互()A.平行B.垂直C.平行或垂直D.平行或垂直或相交
二、填空题:(每小题3分,共9分)
1.在同一平面内,直线a,b相交于P,若a∥c,则b与c的位置关系是______.2.在同一平面内,若直线a,b,c满足a⊥b,a⊥c,则b与c的位置关系是______.3.如图所示,BE是AB的延长线,量得∠CBE=∠A=∠C.DC
(1)由∠CBE=∠A可以判断______∥______,根据是_________.(2)由∠CBE=∠C可以判断______∥______,根据是_________.三、训练平台:(每小题15分,共30分)
1.如图所示,已知∠1=∠2,AB平分∠DAB,试说明DC∥AB.A
2.如图所示,已知直线EF和AB,CD分别相交于K,H,且EG⊥AB,∠CHF=600,∠E=•30°,试说明AB∥
CD.E
AK
BCH
D
四、提高训练:(共20分)
如图所示,已知直线a,b,c,d,e,且∠1=∠2,∠3+∠4=180°,则a与c平行吗?•为什么?
de
a
bc
五、探索发现:(共22分)
如图所示,请写出能够得到直线AB∥CD的所有直接条件.A24B
C
5D
六、中考题与竞赛题:(共4分)
(2000.江苏)如图所示,直线a,b被直线c所截,现给出下c
列四个条件:•①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.说明a∥b的条件序号为()
1其中能
a
A.①②B.①③C.①④D.③④
5b
第五篇:平行线及其判定与性质练习题
平行线及其判定
1、基础知识
(1)在同一平面内,______的两条直线叫做平行线.若直线a与直线b平行,则记作______.(2)在同一平面内,两条直线的位置关系只有______、______.(3)平行公理是:。
(4)平行公理的推论是如果两条直线都与______,那么这两条直线也______.即三条直线a、b、c,若a∥b,b∥c,则______.
(5)两条直线平行的条件(除平行线定义和平行公理推论外):
①两条直线被第三条直线所截,如果______,那么这两条直线平行,这个判定方法1可简述为:______,两直线平行.
②两条直线被第三条直线所截,如果__ _,那么,这个判定方法2可简述为: ______,______. ③两条直线被第三条直线所截,如果_ _____那么______,这个判定方法3可简述为:
2、已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么____________.(____________,____________)(2)如果∠2=∠5,那么____________.(____________,____________)(3)如果∠2+∠1=180°,那么____________.(____________,____________)(4)如果∠5=∠3,那么____________.(____________,____________)(5)如果∠4+∠6=180°,那么____________.(____________,____________)(6)如果∠6=∠3,那么____________.(____________,____________)
3、已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)∵∠B=∠3(已知),∴______∥______.(______,______)(2)∵∠1=∠D(已知),∴______∥______.(______,______)(3)∵∠2=∠A(已知),∴______∥______.(______,______)(4)∵∠B+∠BCE=180°(已知),∴______∥______.(______,______)
4、作图:已知:三角形ABC及BC边的中点D,过D点作DF∥CA交AB于M,再过D点作DE∥AB交AC于N点.
5、已知:如图,∠1=∠2,求证:AB∥CD.(尝试用三种方法)
6、已知:如图,CD⊥DA,DA⊥AB,∠1=∠2,试确定射线DF与AE的位置关系,并说明你的理由.(1)问题的结论:DF______AE.
(2)证明思路分析:欲证DF______AE,只要证∠3=______.(3)证明过程:
证明:∵CD⊥DA,DA⊥AB,()∴∠CDA=∠DAB=______°.(垂直定义)又∠1=∠2,()从而∠CDA-∠1=______-______,(等式的性质)即∠3=______.∴DF______AE.(___________,___________)
7、已知:如图,∠ABC=∠ADC,BF、DE分别平分∠ABC与∠ADC,且∠1=∠3.求证:AB∥DC. 证明∵∠ABC=∠ADC,11ABCADC.2∴2()又∵BF、DE分别平分∠ABC与∠ADC,∴111ABC,2ADC.22()∵∠______=∠______.()∵∠1=∠3,()∴∠2=______.()∴______∥______.()
8、已知:如图,∠1=∠2,∠3+∠4=180°,试确定直线a与直线c的位置关系,并说明你的理由.(1)问题的结论:a______c.
(2)证明思路分析:欲证a______c,只要证______∥______.(3)证明过程:
证明:∵∠1=∠2,()∴a∥______,(_________,_________)① ∵∠3+∠4=180°
∴c∥______,(_________,_________)② 由①、②,因为a∥______,c∥______,∴a______c.(_________,_________)
9、将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°其中正确的个数是()(A)1(B)2(C)3(D)4
10、下列说法中,正确的是().(A)不相交的两条直线是平行线.
(B)过一点有且只有一条直线与已知直线平行.
(C)从直线外一点作这条直线的垂线段叫做点到这条直线的距离.
(D)在同一平面内,一条直线与两条平行线中的一条垂直,则与另一条也垂直.
11、如图5,将一张长方形纸片的一角斜折过去,顶点A落在A′处,BC为折痕,再将BE翻折过去与BA′重合,BD为折痕,那么两条折痕的夹角∠CBD= 度.
图6
12、图(6)是由五个同样的三角形组成的图案,三角形的三个角分别为36°、72°、72°,则图中共有___ 对平行线。
13、下列说法正确的是()(A)有且只有一条直线与已知直线垂直
(B)经过一点有且只有一条直线与已经直线垂直(C)连结两点的线段叫做这两点间的距离
(D)过点A作直线l的垂线段,则这条垂线段叫做点A到直线l的距离
14、同一平面内的四条直线满足a⊥b,b⊥c,c⊥d,则下列式子成立的是()A.a∥b B.b⊥d C.a⊥d D.b∥c
平行线的性质 1.基础知识
(1)平行线具有如下性质
①性质1:______被第三条直线所截,同位角______.这个性质可简述为两直线______,同位角______. ②性质2:两条平行线______,______相等.这个性质可简述为____________,______. ③性质3:____________,同旁内角______.这个性质可简述为____________,______.
(2)同时______两条平行线,并且夹在这两条平行线间的____________叫做这两条平行线的距离. 2.已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)如果AB∥EF,那么∠2=______,理由是_____________________________________.(2)如果AB∥DC,那么∠3=______,理由是____________________________________.(3)如果AF∥BE,那么∠1+∠2=______,理由是_______________________________.(4)如果AF∥BE,∠4=120°,那么∠5=______,理由是________________________.3.已知:如图,DE∥AB.请根据已知条件进行推理,分别得出结论,并在括号内注明理由.(1)∵DE∥AB,()∴∠2=______.(___________________)(2)∵DE∥AB,()∴∠3=______.(___________________)(3)∵DE∥AB(),∴∠1+______=180°.(____________________)4.已知:如图,∠1=∠2,∠3=110°,求∠4. 解题思路分析:欲求∠4,需先证明______//______.解:∵∠1=∠2,()∴______//______.(__________________)∴∠4=_____=_____°.(__________________)5.已知:如图,∠1+∠2=180°,求证:∠3=∠4. 证明思路分析:欲证∠3=∠4,只要证______//______.证明:∵∠1+∠2=180°,()∴______//______.(_________________)∴∠3=∠4.(_________,_________)6.已知:如图,∠A=∠C,求证:∠B=∠D.
证明思路分析:欲证∠B=∠D,只要证______//______.证明:∵∠A=∠C,()∴______//______.(_________,_________)∴∠B=∠D.(_________,_________)7.已知:如图,AB∥CD,∠1=∠B,求证:CD是∠BCE的平分线.
证明思路分析:欲证CD是∠BCE的平分线,只要证______//______.证明:∵AB∥CD,()∴∠2=______.(_________,_________)但∠1=∠B,()∴______=______.(等量代换)即CD是____ ________.8.已知:如图,AB∥CD,∠B=35°,∠1=75°,求∠A的度数. 解题思路分析:欲求∠A,只要求∠ACD的大小. 解:∵CD∥AB,∠B=35°,()∴∠2=∠______=______°(_________,_________)而∠1=75°,∴∠ACD=∠1+∠2=______。∵CD∥AB,()∴∠A+______=180°.(_________,_________)∴∠A=______=______.9.已知:如图,四边形ABCD中,AB∥CD,AD∥BC,∠B=50°.求∠D的度数. 分析:可利用∠DCE作为中间量过渡. 解:∵AB∥CD,∠B=50°,()∴∠DCE=∠______=______°(_________,_________)又∵AD∥BC,()∴∠D=∠______=______°(_________,_________)想一想:如果以∠A作为中间量,如何求解? 解法2:∵AD∥BC,∠B=50°,()∴∠A+∠B=______.(_________,_________)即∠A=______-______=______°-______°=______.∵DC∥AB,()∴∠D+∠A=______.(_________,_________)即∠D=______-______=______°-______°=______.10.已知:如图,已知AB∥CD,AP平分∠BAC,CP平分∠ACD,求∠APC的度数. 解:过P点作PM∥AB交AC于点M. ∵AB∥CD,()∴∠BAC+∠______=180°()∵PM∥AB,∴∠1=∠______,()且PM∥______。(平行于同一直线的两直线也互相平行)∴∠3=∠______。(两直线平行,内错角相等)∵AP平分∠BAC,CP平分∠ACD,()111______,4______22()11BACACD9022()14∴∠APC=∠2+∠3=∠1+∠4=90°()总结:两直线平行时,同旁内角的角平分线______。
11.已知:如图,已知DE∥BC,∠D∶∠DBC=2∶1,∠1=∠2,求∠E的度数.
12.问题探究:(1)如果一个角的两条边与另一个角的两条边分别平行,那么这两个角的大小有何关系?举例说明.
(2)如果一个角的两边与另一个角的两边分别垂直,那么这两个角的大小有何关系?举例说明.
13.已知:如图,AB∥CD,试猜想∠A+∠AEC+∠C=?为什么?说明理由.
14.如下图,AB∥DE,那么∠BCD=().(A)∠2-∠1(B)∠1+∠2(C)180°+∠1-∠2(D)180°+∠2-2∠1 15.如图直线l1∥l2,AB⊥CD,∠1=34°,那么∠2的度数是______.
(15题)(16题)
16.如图,若AB∥CD,EF与AB、CD分别相交于点E、F,EP与∠EFD的平分线相交于点P,且∠EFD=60°,EP⊥FP,则∠BEP=______度.
17.王强从A处沿北偏东60°的方向到达B处,又从B处沿南偏西25°的方向到达C处,则王强两次行进路线的夹角为______度.
18.已知:如图,AE⊥BC于E,∠1=∠2.求证:DC⊥BC.
19.如图,AB∥CD,FG⊥CD于N,∠EMB=,则∠EFG等于().(A)180°-(B)90°+(C)180°+(D)270°-
20.已知:如图,CD⊥AB于D,DE∥BC,EF⊥AB于F,求证:∠FED=∠BCD.
21.以下五个条件中,能得到互相垂直关系的有(). ①对顶角的平分线 ②邻补角的平分线 ③平行线截得的一组同位角的平分线 ④平行线截得的一组内错角的平分线 ⑤平行线截得的一组同旁内角的平分线(A)1个(B)2个(C)3个(4)4个
22.如图,AB∥CD,若EM平分∠BEF,FM平分∠EFD,EN平分∠AEF,则与∠BEM互余的角有().(A)6个(B)5个
(C)4个(D)3个
23.把一张对边互相平行的纸条折成如图所示,EF是折痕,若∠EFB=32°,则下列结论正确的有().
(1)∠C′EF=32°(2)∠AEC=148°
(3)∠BGE=64°(4)∠BFD=116°(A)1个(B)2个(C)3个(D)4个
24.如图,AB∥CD,BC∥ED,则∠B+∠D=______.
25.如图,DC∥EF∥AB,EH∥DB,则图中与∠AHE相等的角有__________________.26.如图,BA⊥FC于A点,过A点作DE∥BC,若∠EAF=125°,则∠B=______.(24题)
(25题)
(26题)27.已知:如图,AC∥BD,折线AMB夹在两条平行线间.
图1 图2(1)判断∠M,∠A,∠B的关系;
(2)请你尝试改变问题中的某些条件,探索相应的结论。建议:①折线中折线段数量增加到n条(n=3,4……)②可如图1,图2,或M点在平行线外侧.
28.已知:如图,∠B=∠C,AE∥BC,求证:AE平分∠CAD. 证明:
26.已知:如图,AB∥DE,CM平分∠BCE,CN⊥CM.求证:∠B=2∠DCN.
27.已知:如图,∠FED=∠AHD,∠HAQ=15°,∠ACB=70°,∠CAQ=55.求证:BD∥GE∥AH.
28.已知:如图,AD∥BC,∠BAD=∠BCD,AF平分∠BAD,CE平分∠BCD.求证:AF∥EC.
29.已知:如图,CD⊥AB于D,DE∥BC,∠1=∠2.求证:FG⊥AB.
30.已知:如图,AB∥CD,∠1=∠B,∠2=∠D.判断BE与DE的位置关系并说明理由.
31.已知:如图,△ABC.求证:∠A+∠B+∠C=180°.