线性代数概念总结

时间:2019-05-14 14:18:13下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《线性代数概念总结》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《线性代数概念总结》。

第一篇:线性代数概念总结

定理1.6 每一个m×n 矩阵总可经过有限次初等行变换化成行阶梯阵与行简化阶梯阵,且行阶梯阵中的非零行数是唯一确定的,行简化阶梯阵也是唯一确定的。

定理1.7 初等矩阵都是可逆的。且初等矩阵的逆矩阵仍是初等矩阵。

定理1.8 对矩阵Am×n 做一次初等变换相当于在矩阵Am×n 的左侧乘以相应的m阶初等矩阵;对矩阵Am×n 做一次初等列变换想到与在矩阵Am×n 右侧乘以相应的n阶初等矩阵。

定理1.9 n阶可逆矩阵的行简化阶梯阵一定是单位矩阵。

定理1.10 方正A可逆的充分必要条件是A可以写成有限个初等矩阵的乘积。

第二篇:线性代数总结

线性代数总结 [转贴 2008-05-04 13:04:49]

字号:大 中 小

线性代数总结

一、课程特点

特点一:知识点比较细碎。

如矩阵部分涉及到了各种类型的性质和关系,记忆量大而且容易混淆的地方较多。特点二:知识点间的联系性很强。

这种联系不仅仅是指在后面几章中用到前两章行列式和矩阵的相关知识,更重要的是在于不同章节中各种性质、定理、判定法则之间有着相互推导和前后印证的关系。复习线代时,要做到“融会贯通”。

“融会”——设法找到不同知识点之间的内在相通之处; “贯通”——掌握前后知识点之间的顺承关系。

二、行列式与矩阵

第一章《行列式》、第二章《矩阵》是线性代数中的基础章节,有必要熟练掌握。

行列式的核心内容是求行列式,包括具体行列式的计算和抽象行列式的计算,其中具体行列式的计算又有低阶和 阶两种类型;主要方法是应用行列式的性质及按行列展开定理化为上下三角行列式求解。

对于抽象行列式的求值,考点不在求行列式,而在于、、等的相关性质,及性质(其中 为矩阵 的特征值)。

矩阵部分出题很灵活,频繁出现的知识点包括矩阵运算的运算规律、、、的性质、矩阵可逆的判定及求逆、矩阵的秩的性质、初等矩阵的性质等。

三、向量与线性方程组

向量与线性方程组是整个线性代数部分的核心内容。相比之下,行列式和矩阵可视作是为了讨论向量和线性方程组部分的问题而做铺垫的基础性章节;后两章特征值、特征向量、二次型的内容则相对独立,可以看作是对核心内容的扩展。

向量与线性方程组的内容联系很密切,很多知识点相互之间都有或明或暗的相关性。复习这两部分内容最有效的方法就是彻底理顺诸多知识点之间的内在联系,因为这样做首先能够保证做到真正意义上的理解,同时也是熟练掌握和灵活运用的前提。解线性方程组可以看作是出发点和目标。线性方程组(一般式)还具有两种形式:(Ⅰ)矩阵形式,其中,(Ⅱ)向量形式,其中 ,向量就这样被引入了。

1)齐次线性方程组与线性相关、无关的联系

齐次线性方程组 可以直接看出一定有解,因为当 时等式一定成立;印证了向量部分的一条性质“零向量可由任何向量线性表示”。

齐次线性方程组一定有解又可以分为两种情况:①有唯一零解;②有非零解。当齐次线性方程组有唯一零解时,是指等式 中的 只能全为0才能使等式成立,而当齐次线性方程组有非零解时,存在不全为0的 使上式成立;但向量部分中判断向量组 是否线性相关无关的定义也正是由这个等式出发的。故向量与线性方程组在此又产生了联系:齐次线性方程组 是否有非零解对应于系数矩阵 的列向量组是否线性相关。可以设想线性相关无关的概念就是为了更好地讨论线性方程组问题而提出的。2)齐次线性方程组的解与秩和极大无关组的联系

同样可以认为秩是为了更好地讨论线性相关和线性无关而引入的。秩的定义是“极大线性无关组中的向量个数”,向量组 组成的矩阵 有 说明向量组的极大线性无关组中有 个向量,即 线性无关,也即等式 只有零解。所以,经过

“秩 → 线性相关无关 → 线性方程组解的判定” 的逻辑链条,由 就可以判定齐次方程组 只有零解。当 时,的列向量组 线性相关,此时齐次线性方程组 有非零解,且齐次线性方程组 的解向量可以通过 个线性无关的解向量(基础解系)线性表示。

3)非齐次线性方程组与线性表示的联系

非齐次线性方程组 是否有解对应于向量 是否可由 的列向量组 线性表示,即使等式 成立的一组数 就是非齐次线性方程组 的解。当非齐次线性方程组 满足 时,它有唯一解。这一点也正好印证了一个重要定理:“若 线性无关,而 线性相关,则向量 可由向量组 线性表示,且表示方法唯一”。性质1.对于方阵 有:

方阵 可逆ó

ó 的行列向量组均线性无关ó ó 可由克莱姆法则判断有唯一解,而 仅有零解 对于一般矩阵 则有: ó 的列向量组线性无关

ó 仅有零解,有唯一解(如果有解)

性质2.齐次线性方程组 是否有非零解对应于系数矩阵 的列向量组是否线性相关,而非齐次线性方程组 是否有解对应于 是否可以由 的列向量组线性表出。

以上两条性质可视为是将线性相关、行列式、秩、线性方程组几部分知识联系在一起的桥梁。

应记住的一些性质与结论 1.向量组线性相关的有关结论:

1)向量组 线性相关ó向量组中至少存在一个向量可由其余 个向量线性表出。2)向量组线性无关ó向量组中没有一个向量可由其余的向量线性表出。

3)若 线性无关,而 线性相关,则向量 可由向量组 线性表示,且表示法唯一。

2.向量组线性表示与等价的有关结论:

1)一个线性无关的向量组不可能由一个所含向量个数比它少的向量组线性表示。2)如果向量组 可由向量组 线性表示,则有

3)等价的向量组具有相同的秩,但不一定有相同个数的向量; 4)任何一个向量组都与它的极大线性无关组等价。3.常见的线性无关组:

1)齐次线性方程组的一个基础解系; 2)、、这样的单位向量组; 3)不同特征值对应的特征向量。4.关于秩的一些结论: 1); 2); 3); 4);

5)若有、满足,则 ; 6)若 是可逆矩阵则有 ; 7)若 可逆则有 ; 8)。

4.线性方程组的解:

1)非齐次线性方程组 有唯一解则对应齐次方程组 仅有零解;

2)若 有无穷多解则 有非零解; 3)若 有两个不同的解则 有非零解;

4)若 是 矩阵而 则 一定有解,而且当 时有唯一解,当 时有无穷多解; 5)若 则 没有解或有唯一解。

四、特征值与特征向量

相对于前两章来说,本章不是线性代数这门课的理论重点,但却是一个考试重点。其原因是解决相关题目要用到线代中的大量内容——既有行列式、矩阵又有线性方程组和线性相关,“牵一发而动全身”。本章知识要点如下: 1.特征值和特征向量的定义及计算方法 就是记牢一系列公式如、、和。常用到下列性质:

若 阶矩阵 有 个特征值,则有 ;

若矩阵 有特征值,则、、、、、分别有特征值、、、、、,且对应特征向量等于 所对应的特征向量; 2.相似矩阵及其性质

定义式为,此时满足、、,并且、有相同的特征值。

需要区分矩阵的相似、等价与合同:矩阵 与矩阵 等价()的定义式是,其中、为可逆矩阵,此时矩阵 可通过初等变换化为矩阵,并有 ;当 中的、互逆时就变成了矩阵相似()的定义式,即有 ;矩阵合同的定义是,其中 为可逆矩阵。

由以上定义可看出等价、合同、相似三者之间的关系:若 与 合同或相似则 与 必等价,反之不成立;合同与等价之间没有必然联系。3.矩阵可相似对角化的条件

包括两个充要条件和两个充分条件。充要条件1是 阶矩阵 有 个线性无关的特征向量;充要条件2是 的任意 重特征根对应有 个线性无关的特征向量;充分条件1是 有 个互不相同的特征值;充分条件2是 为实对称矩阵。4.实对称矩阵及其相似对角化

阶实对称矩阵 必可正交相似于对角阵,即有正交矩阵 使得,而且正交矩阵 由 对应的 个正交的单位特征向量组成。

可以认为讨论矩阵的相似对角化是为了方便求矩阵的幂:直接相乘来求 比较困难;但如果有矩阵 使得 满足(对角矩阵)的话就简单多了,因为此时

而对角阵 的幂 就等于,代入上式即得。引入特征值和特征向量的概念是为了方便讨论矩阵的相似对角化。因为,不但判断矩阵的相似对角化时要用到特征值和特征向量,而且 中的、也分别是由 的特征向量和特征值决定的。

五、二次型

本章所讲的内容从根本上讲是第五章《特征值和特征向量》的一个延伸,因为化二次型为标准型的核心知识为“对于实对称矩阵 存在正交矩阵 使得 可以相似对角化”,其过程就是上一章相似对角化在 为实对称矩阵时的应用。本章知识要点如下:

1.二次型及其矩阵表示。2.用正交变换化二次型为标准型。3.正负定二次型的判断与证明。

标签: 线性代数总结

.学习线性代数总结

2009年06月14日 星期日 上午 11:12

学习线性代数总结

线性代数与数理统计已经学完了,但我认为我们的学习并没有因此而结束。我们应该总结一下这门课程的学习的方法,并能为我们以后的学习和工作提供方法。这门课程的学习目标:《线性代数》是物理系等专业的一门重要的基础课,其主要任务是使学生获得线性代数的基本思想方法和行列式、线性方程组、矩阵论、二次型、线性空间、线性变换等方面 的系统知识,它一方面为后继课程(如离散数学、计算方法、等课程)提供一些所需的基础理论和知识;另一方面还对提高学生的思维能力,开发学生智能、加强“三基”(基础知识、基本理论、基本理论)及培养学生创造型能力,培养学生的抽象思维和逻辑推理能力等重要作用。同时随着计算机及其应用技术的飞速发展,很多实际问题得以离散化而得到定量的解决。作为离散化和数值计算理论基础的线性代数,为解决实际问题提供了强有力的数学工具。

我总结了《线性代数》的一些学习方法,可能有的同学会认为这已经为时过晚,但我不这么认为。从这门课程中,我们学会的不仅仅是线性代数的一些相关知识(行列式、线性方程组、矩阵论、二次型、线性空间、线性变换等方面的系统知识),更重要的是,从这门课程中我们应该掌握一种很重要的思想——学习如何去使用工具的方法。这个工具狭隘的讲是线性代数这门数学知识,但从广义地说:这个工具应该是生活中的一切工具(如电脑软件的学习方法、机器的操作方法、科学调查方法等)。在这门课程给我的感触就是:这门课告诉我们如何去学知识的方法。

我认为:学习任何一门知识的方法是:

一、明确我们要学习什么知识或者要掌握哪些方面的技能。

只能我们明白我们自己要学习什么之后,我们才会有动力去学习,在我们的大学里,有些同学不明白学习课本知识有何作用,认为学习与不学习没有什么区别,或者认为学习课本知识没有多大的作用,就干脆不学(当然我在这里没有贬低任何人的意思)。不过我认为学习好自己的专业的知识,掌握专业技能是每个大学生的天职。

二、知道知识是什么,了解相关知识的概念和定义。

这是学习的一切学习的基础,只有把握这个环节,我们的学习实践活动才能得以开展,知识是人类高度概括、总结的经验,不可能像平常说话那么通俗易懂。所以我们要想把知识学好,就得在概念上下功夫。例《线性代数》这门课程中的实二次型,那我们首先得非常清楚的知到,什么叫做实二次型。否则这一块的知识没有办法开展。

三、要知到我们学的知识可以用到何处,或者能帮我们解决什么问题。

其实这一点和第一点有点重复。但是对于我们的课本知识非常得有用,因为我们现在所学的课本知识。说句实在话,我们确实不知到能为我们生活中能解决什么问题,但如果我们知到它能用到何处,相信将来一定会有用。有一句话说得好,书到用时方恨少,说得是这个道理。总之,我们现在要为以后遇到问题而积累解决问题的方法,我们现在是在为以后的人生在打基础。

四、学习相关概念后,要学会如何去操作。

像《线性代数》这门课程,在这一点就体现得很突出。如在我们学习正交矩阵这个概念后,我们得要学会如何去求正交矩阵;再如,当我们认识了矩阵的对角化定义之后,我们得掌握如何去将一个矩阵对角化。其

实,就是学会如何去操作,这是我们掌握数学工具的使用方法的重要途径,所以这部分的工作是我们的学习中心和重点。只有掌握了这部分,我们才能在以后学习或者生活中遇到相似的问题,就有了这个工具去为我们解决实际的问题。

五、将所学习的知识反作用于生活(即将所学的知识用到实处)。

这才是我们学习的真正目的所在。一个人的解决问题的能力应该和他所掌握的知识成正比。学之所用才叫学到实处,才能发挥真正学习的作用。记得这个给我印象最深的是:在我们学C++编程时,有一道题是讲的是用一百元钱去买母鸡、公鸡、小鸡。母鸡5元钱一只,公鸡3元钱一只,小鸡3只一元,并且母鸡、公鸡、小鸡的总数为一百只,求有多少种可能。

这其实就是一道最简单的线性代数题了,设x代表小鸡,y代表公鸡,z代表母鸡:则根据题意有线性方程组

x3+3y+5z=100

x+y+z=100

解此线性方程组得

x=3z/4+75

y=-7z/4+25 z=z

用z作为循环变量控制,这个程序不到十行就可以编出来。这就说明学习知识总会有用的,只要我们去积累,只要我们现在把基础打牢,我相信以后解决问题的方法多了,大脑用活了,我们的竞争力就强了,自然在社会上有一席之地。

总之:我个人觉得学习知识很有用处。虽然就业压力在压着大家,大家为就业而奔波,但至少现在找工作不是我们的重点。把我们手头上的事做好才是最关键,我还是喜欢军训中我的那个“胖胖”所说的话:“一个萝卜,一个坑”,一步一个脚印,脚踏实地。相信我们80年后或90年后的一代能够担任起国家建设的重任和使命。

楼主 大 中 小 发表于 2008-10-10 23:50 只看该作者

线性代数超强总结.√ 关于 :

①称为 的标准基,中的自然基,单位坐标向量;

② 线性无关;

③ ; ④ ;

⑤任意一个 维向量都可以用 线性表示.√ 行列式的计算:

① 若 都是方阵(不必同阶),则

②上三角、下三角行列式等于主对角线上元素的乘积.③关于副对角线:

√ 逆矩阵的求法:

① ②

√ 方阵的幂的性质:

√ 设,对 阶矩阵 规定: 为 的一个多项式.√ 设的列向量为 , 的列向量为,的列向量为 , √ 用对角矩阵 左乘一个矩阵,相当于用 的对角线上的各元素依次乘此矩阵的行向量; 用对角矩阵 右乘一个矩阵,相当于用 的对角线上的各元素依次乘此矩阵的列向量.√ 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘,与分块对角阵相乘类似,即:

√ 矩阵方程的解法:设法化成当 时,√

和 同解(列向量个数相同),则: ① 它们的极大无关组相对应,从而秩相等;

② 它们对应的部分组有一样的线性相关性;

③ 它们有相同的内在线性关系.√ 判断 是 的基础解系的条件:

线性无关;

是 的解;

.①

零向量是任何向量的线性组合,零向量与任何同维实向量正交.②

单个零向量线性相关;单个非零向量线性无关.③

部分相关,整体必相关;整体无关,部分必无关.④

原向量组无关,接长向量组无关;接长向量组相关,原向量组相关.⑤

两个向量线性相关 对应元素成比例;两两正交的非零向量组线性无关.⑥

向量组 中任一向量

≤ ≤ 都是此向量组的线性组合.⑦

向量组 线性相关 向量组中至少有一个向量可由其余 个向量线性表示.向量组 线性无关 向量组中每一个向量 都不能由其余 个向量线性表示.⑧

维列向量组 线性相关 ;

维列向量组 线性无关.⑨

.⑩

若 线性无关,而 线性相关,则 可由 线性表示,且表示法惟一.?

矩阵的行向量组的秩等于列向量组的秩.阶梯形矩阵的秩等于它的非零行的个数.?

矩阵的行初等变换不改变矩阵的秩,且不改变列向量间的线性关系.矩阵的列初等变换不改变矩阵的秩,且不改变行向量间的线性关系.向量组等价

和 可以相互线性表示.记作: 矩阵等价

经过有限次初等变换化为.记作:

?

矩阵 与 等价

作为向量组等价,即:秩相等的向量组不一定等价.矩阵 与 作为向量组等价

矩阵 与 等价.?

向量组 可由向量组 线性表示

≤.?

向量组 可由向量组 线性表示,且,则 线性相关.向量组 线性无关,且可由 线性表示,则 ≤.?

向量组 可由向量组 线性表示,且,则两向量组等价;

?

任一向量组和它的极大无关组等价.?

向量组的任意两个极大无关组等价,且这两个组所含向量的个数相等.?

若两个线性无关的向量组等价,则它们包含的向量个数相等.?

若 是 矩阵,则 ,若,的行向量线性无关;

若,的列向量线性

无关,即: 线性无关.线性方程组的矩阵式

向量

矩阵转置的性质:

矩阵可逆的性质:

伴随矩阵的性质:

线性方程组解的性质:

√ 设 为 矩阵,若 ,则 ,从而 一定有解.当 时,一定不是唯一解.,则该向量组线性相关.是 的上限.√ 矩阵的秩的性质:

⑥ ≥ ⑦

≤ ⑧

且 在矩阵乘法中有左消去律:

标准正交基

个 维线性无关的向量,两两正交,每个向量长度为1..是单位向量

.√ 内积的性质:

① 正定性:

② 对称性:

③ 双线性:

施密特

线性无关,单位化:

正交矩阵

.√

是正交矩阵的充要条件: 的 个行(列)向量构成 的一组标准正交基.√ 正交矩阵的性质:①

是正交阵,则(或)也是正交阵;

④ 两个正交阵之积仍是正交阵; ⑤ 正交阵的行列式等于1或-1.的特征矩阵

.的特征多项式

.的特征方程

.√ 上三角阵、下三角阵、对角阵的特征值就是主对角线上的 各元素.√ 若 ,则 为 的特征值,且 的基础解系即为属于 的线性无关的特征向量.√

√ 若 ,则 一定可分解为 =、,从而 的特征值为: ,.√ 若 的全部特征值,是多项式,则:

①的全部特征值为 ;

② 当 可逆时, 的全部特征值为 , 的全部特征值为.√

与 相似

(为可逆阵)

记为:

相似于对角阵的充要条件: 恰有 个线性无关的特征向量.这时, 为 的特征向量拼成的矩阵,为对角阵,主对角线上的元素为 的特征值.√

可对角化的充要条件:

为 的重数.√ 若 阶矩阵 有 个互异的特征值,则 与对角阵相似.与 正交相似

(为正交矩阵)√ 相似矩阵的性质:①

若 均可逆

(为整数)

④,从而 有相同的特征值,但特征向量不一定相同.即: 是 关于 的特征向量, 是 关

于 的特征向量.⑤

从而 同时可逆或不可逆

√ 数量矩阵只与自己相似.√ 对称矩阵的性质:

① 特征值全是实数,特征向量是实向量;

② 与对角矩阵合同;

③ 不同特征值的特征向量必定正交; ④

重特征值必定有 个线性无关的特征向量;

⑤ 必可用正交矩阵相似对角化(一定有 个线性无关的特征向量, 可能有重的特征值,重

数=).可以相似对角化

与对角阵 相似.记为:

(称 是 的相似标准型)

√ 若 为可对角化矩阵,则其非零特征值的个数(重数重复计算).√ 设 为对应于 的线性无关的特征向量,则有:

.√ 若 , ,则:.√ 若 ,则 ,.二次型

为对称矩阵

与 合同

.记作:

()

√ 两个矩阵合同的充分必要条件是:它们有相同的正负惯性指数.√ 两个矩阵合同的充分条件是:

√ 两个矩阵合同的必要条件是: √

经过

化为 标准型.√ 二次型的标准型不是惟一的,与所作的正交变换有关,但系数不为零的个数是由

一确定的.√ 当标准型中的系数 为1,-1或0时,则为规范形.√ 实对称矩阵的正(负)惯性指数等于它的正(负)特征值的个数.√ 任一实对称矩阵 与惟一对角阵 合同.√ 用正交变换法化二次型为标准形: ①

求出 的特征值、特征向量; ②

对 个特征向量单位化、正交化;

构造(正交矩阵), ;

作变换 ,新的二次型为 , 的主对角上的元素 即为 的特征值.正定二次型

不全为零,.正定矩阵

正定二次型对应的矩阵.√ 合同变换不改变二次型的正定性.√ 成为正定矩阵的充要条件(之一成立):

正惯性指数为 ; ②的特征值全大于 ; ③的所有顺序主子式全大于 ; ④

合同于,即存在可逆矩阵 使 ; ⑤

存在可逆矩阵,使

(从而); ⑥

存在正交矩阵,使

(大于).√ 成为正定矩阵的必要条件:;

.b

b s

.k ao

y a n.c o m

内容相互纵横交错 线性代数复习小结

概念多、定理多、符号多、运算规律多、内容相互纵横交错,知识前后紧密联系是线性代数课程的特点,故考生应充分理解概念,掌握定理的条件、结论、应用,熟悉符号意义,掌握各种运算规律、计算方法,并及时进行总结,抓联系,使学知识能融会贯通,举一反三,根据考试大纲的要求,这里再具体指出如下:

行列式的重点是计算,利用性质熟练准确的计算出行列式的值。

矩阵中除可逆阵、伴随阵、分块阵、初等阵等重要概念外,主要也是运算,其运算分两个层次,一是矩阵的符号运算,二是具体矩阵的数值运算。例如在解矩阵方程中,首先进行矩阵的符号运算,将矩阵方程化简,然后再代入数值,算出具体的结果,矩阵的求逆(包括简单的分块阵)(或抽象的,或具体的,或用定义,或是用公式 A-1= 1 A*,或 A用初等行变换),A和A*的关系,矩阵乘积的行列式,方阵的幂等也是常考的内容之一。

关于向量,证明(或判别)向量组的线性相关(无关),线性表出等问题的关键在于深刻理解线性相关(无关)的概念及几个相关定理的掌握,并要注意推证过程中逻辑的正确性及反证法的使用。

向量组的极大无关组,等价向量组,向量组及矩阵的秩的概念,以及它们相互关系也是重点内容之一。用初等行变换是求向量组的极大无关组及向量组和矩阵秩的有效方法。

在 Rn中,基、坐标、基变换公式,坐标变换公式,过渡矩阵,线性无关向量组的标准正交化公式,应该概念清楚,计算熟练,当然在计算中列出关系式后,应先化简,后代入具体的数值进行计算。

行列式、矩阵、向量、方程组是线性代数的基本内容,它们不是孤立隔裂的,而是相互渗透,紧密联系的,例如 ?OA?O≠0〈===〉A是可逆阵〈===〉r(A)=n(满秩阵)〈===〉A的列(行)向量组线性无关〈===〉AX=0唯一零解〈===〉AX=b对任何b均有(唯一)解〈===〉A=P1 P2 „PN,其中PI(I=1,2,„,N)是初等阵〈===〉r(AB)=r(B)<===>A初等行变换

I〈===〉A的列(行)向量组是Rn的一个基〈===〉A可以是某两个基之间的过渡矩阵等等。这种相互之间的联系综合命题创造了条件,故对考生而言,应该认真总结,开拓思路,善于分析,富于联想使得对综合的,有较多弯道的试题也能顺利地到达彼岸。

关于特征值、特征向量。一是要会求特征值、特征向量,对具体给定的数值矩阵,一般用特征方程 ?OλE-A?O=0及(λE-A)ξ=0即可,抽象的由给定矩阵的特征值求其相关矩阵的特征值(的取值范围),可用定义Aξ=λξ,同时还应注意特征值和特征向量的性质及其应用,二是有关相似矩阵和相似对角化的问题,一般矩阵相似对角化的条件。实对称矩阵的相似对角化及正交变换相似于对角阵,反过来,可由A 的特征值,特征向量来确不定期A的参数或确定A,如果A是实对称阵,利用不同特征值对应的特征向量相互正交,有时还可以由已知λ1的特征向量确定出λ2(λ2≠λ1)对应的特征向量,从而确定出A。三是相似对角化以后的应用,在线性代数中至少可用来计算行列式及An.将二次型表示成矩阵形式,用矩阵的方法研究二次型的问题主要有两个:一是化二次型为标准形,这主要是正交变换法(这和实对称阵正交相似对角阵是一个问题的两种提法),在没有其他要求的情况下,用配方法得到标准形可能更方便些;二是二次型的正定性问题,对具体的数值二次型,一般可用顺序主子式是否全部大于零来判别,而抽象的由给定矩阵的正定性,证明相关矩阵的正定性时,可利用标准形,规范形,特征值等到证明,这时应熟悉二次型正定有关的充分条件和必要条件。

一、注重对基本概念的理解与把握,正确熟练运用基本方法及基本运算。

线性代数的概念很多,重要的有:

代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩(矩阵、向量组、二次型),等价(矩阵、向量组),线性组合与线性表出,线性相关与线性无关,极大线性无关组,基础解系与通解,解的结构与解空间,特征值与特征向量,相似与相似对角化,二次型的标准形与规范形,正定,合同变换与合同矩阵。

往年常有考生没有准确把握住概念的内涵,也没有注意相关概念之间的区别与联系,导致做题时出现错误。

例如,矩阵A=(α1,α2,„,αm)与B=(β1,β2„,βm)等价,意味着经过初等变换可由A得到B,要做到这一点,关键是看秩r(A)与r(B)是否相等,而向量组α1,α2,„αm与β1,β2,„βm等价,说明这两个向量组可以互相线性表出,因而它们有相同的秩,但是向量组有相同的秩时,并不能保证它们必能互相线性表现,也就得不出向量组等价的信息,因此,由向量组α1,α2,„αm与β1,β2,„βm等价,可知矩阵A=(α1,α2,„αm)与B=(β1,β2,„βm)等价,但矩阵A与B等价并不能保证这两个向量组等价。

又如,实对称矩阵A与B合同,即存在可逆矩阵C使CTAC=B,要实现这一点,关键是二次型xTAx与xTBx的正、负惯性指数是否相同,而A与B相似是指有可逆矩阵P使P-1AP=B成立,进而知A与B有相同的特征值,如果特征值相同可知正、负惯性指数相同,但正负惯性指数相同时,并不能保证特征值相同,因此,实对称矩阵A~BAB,即相似是合同的充分条件。

线性代数中运算法则多,应整理清楚不要混淆,基本运算与基本方法要过关,重要的有:

行列式(数字型、字母型)的计算,求逆矩阵,求矩阵的秩,求方阵的幂,求向量组的秩与极大线性无关组,线性相关的判定或求参数,求基础解系,求非齐次线性方程组的通解,求特征值与特征向量(定义法,特征多项式基础解系法),判断与求相似对角矩阵,用正交变换化实对称矩阵为对角矩阵(亦即用正交变换化二次型为标准形)。

二、注重知识点的衔接与转换,知识要成网,努力提高综合分析能力。

线性代数从内容上看纵横交错,前后联系紧密,环环相扣,相互渗透,因此解题方法灵活多变,复习时应当常问自己做得对不对?再问做得好不好?只有不断地归纳总结,努力搞清内在联系,使所学知识融会贯通,接口与切入点多了,熟悉了,思路自然就开阔了。

例如:设A是m×n矩阵,B是n×s矩阵,且AB=0,那么用分块矩阵可知B的列向量都是齐次方程组Ax=0的解,再根据基础解系的理论以及矩阵的秩与向量组秩的关系,可以有

r(B)≤n-r(A)即r(A)+r(B)≤n

进而可求矩阵A或B中的一些参数

再如,若A是n阶矩阵可以相似对角化,那么,用分块矩阵处理P-1AP=∧可知A有n个线性无关的特征向量,P就是由A的线性无关的特征向量所构成,再由特征向量与基础解系间的联系可知此时若λi是ni重特征值,则齐次方程组(λiE-A)x=0的基础解系由ni个解向量组成,进而可知秩r(λiE-A)=n-ni,那么,如果A不能相似对角化,则A的特征值必有重根且有特征值λi使秩r(λiE-A)<n-ni,若A是实对称矩阵,则因A必能相似对角化而知对每个特征值λi必有r(λiE-A)=n-ni,此时还可以利用正交性通过正交矩阵来实现相似对角化。

又比如,对于n阶行列式我们知道:

若|A|=0,则Ax=0必有非零解,而Ax=b没有惟一解(可能有无穷多解,也可能无解),而当|A|≠0时,可用克莱姆法则求Ax=b的惟一解;

可用|A|证明矩阵A是否可逆,并在可逆时通过伴随矩阵来求A-1;

对于n个n维向量α1,α2,„αn可以利用行列式|A|=|α1α2„αn|是否为零来判断向量组的线性相关性;

矩阵A的秩r(A)是用A中非零子式的最高阶数来定义的,若r(A)<r,则A中r阶子式全为0;

求矩阵A的特征值,可以通过计算行列式|λE-A|,若λ=λ0是A的特征值,则行列式|λ0E-A|=0;

判断二次型xTAx的正定性,可以用顺序主子式全大于零。

凡此种种,正是因为线性代数各知识点之间有着千丝万缕的联系,代数题的综合性与灵活性就较大,同学们整理时要注重串联、衔接与转换。

三、注重逻辑性与叙述表述

线性代数对于抽象性与逻辑性有较高的要求,通过证明题可以了解考生对数学主要原理、定理的理解与掌握程度,考查考生的抽象思维能力、逻辑推理能力。大家复习整理时,应当搞清公式、定理成立的条件,不能张冠李戴,同时还应注意语言的叙述表达应准确、简明。

线性代数中常见的证明题型有:

证|A|=0;证向量组α1,α2,„αt的线性相关性,亦可引伸为证α1,α2„,αt是齐次方程组Ax=0的基础解系;证秩的等式或不等式;证明矩阵的某种性质,如对称,可逆,正交,正定,可对角化,零矩阵等;证齐次方程组是否有非零解;线性方程组是否有解(亦即β能否由α1,α2„,αs线性表出);对给出的两个方程组论证其同解性或有无公共解;证二次型的正定性,规范形等。

《线性代数》是一门研究线性问题的数学基础课,线性代数实质上是提供了自己独特的语言和方法,将那些涉及多变量的问题组织起来并进行分析研究,是将中学一元代数推广为处理

大的数组的一门代数。

线性代数有两类基本数学构件.一类是对象:数组;一类是这些对象进行的运算。在此基础之上可以对一系列涉及数组的数学模型进行探讨和研究,从而解决实际问题.既然线性代数有自己独特的内容,我们就要用适当的学习方法面对。这里给出五点建议:

一、线性代数如果注意以下几点是有益的.由易而难 线性代数常常涉及大型数组,故先将容易的问题搞明白,再解决有难度的问题,例如行列式定义,首先将3阶行列式定义理解好,自然可以推广到n阶行列式情形;

由低而高 运用技巧,省时不少,无论是行列式还是矩阵,在低阶状态,找出适合的计算方法,则可自如推广运用到高阶情形;

由简而繁 一些运算法则,先试用于简单情形,进而应用于复杂问题,例如,克莱姆法则,线性方程组解存在性判别,对角化问题等等;

由浅而深线性代数中一些新概念如秩,特征值特征向量,应当先理解好它们的定义,在理解基础之上,才能深刻理解它们与其他概念的联系、它们的作用,一步步达到运用自如境地。

二、注重对基本概念的理解与把握,正确熟练运用基本方法及基本运算。

1、线性代数的概念很多,重要的有:

代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩(矩阵、向量组、二次型),等价(矩阵、向量组),线性组合与线性表出,线性相关与线性无关,极大线性无关组,基础解系与通解,解的结构与解空间,特征值与特征向量,相似与相似对角化,二次型的标准形与规范形,正定,合同变换与合同矩阵。

2、线性代数中运算法则多,应整理清楚不要混淆,基本运算与基本方法要过关,重要的有:

行列式(数字型、字母型)的计算,求逆矩阵,求矩阵的秩,求方阵的幂,求向量组的秩与极大线性无关组,线性相关的判定或求参数,求基础解系,求非齐次线性方程组的通解,求特征值与特征向量(定义法,特征多项式基础解系法),判断与求相似对角矩阵,用正交变换化实对称矩阵为对角矩阵(亦即用正交变换化二次型为标准形)。

三、注重知识点的衔接与转换,知识要成网,努力提高综合分析能力。

线性代数从内容上看纵横交错,前后联系紧密,环环相扣,相互渗透,因此解题方法灵活多变,学习时应当常问自己做得对不对?再问做得好不好?只有不断地归纳总结,努力搞清内在联系,使所学知识融会贯通,接口与切入点多了,熟悉了,思路自然就开阔了。

四、注重逻辑性与叙述表述

线性代数对于抽象性与逻辑性有较高的要求,通过证明题可以了解学生对数学主要原理、定理的理解与掌握程度,考查学生的抽象思维能力、逻辑推理能力。大家学习整理时,应当搞清公式、定理成立的条件,不能张冠李戴,同时还应注意语言的叙述表达应准确、简明。

总之,数学题目千变万化,有各种延伸或变式,同学们要在学习过程中一定要认真仔细地预习和复习,华而不实靠押题碰运气是行不通的,必须要重视三基,多思多议,不断地总结经验与教训,做到融会贯通。

第三篇:线性代数知识点总结汇总

线性代数知识点总结

行列式

(一)行列式概念和性质

1、逆序数:所有的逆序的总数

2、行列式定义:不同行不同列元素乘积代数和

3、行列式性质:(用于化简行列式)

(1)行列互换(转置),行列式的值不变

(2)两行(列)互换,行列式变号

(3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k乘此行列式

(4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。

(5)一行(列)乘k加到另一行(列),行列式的值不变。

(6)两行成比例,行列式的值为0。

(二)重要行列式

4、上(下)三角(主对角线)行列式的值等于主对角线元素的乘积

5、副对角线行列式的值等于副对角线元素的乘积乘

6、Laplace展开式:(A是m阶矩阵,B是n阶矩阵),则

7、n阶(n≥2)范德蒙德行列式

数学归纳法证明

★8、对角线的元素为a,其余元素为b的行列式的值:

(三)按行(列)展开

9、按行展开定理:

(1)任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值

(2)行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于0

(四)行列式公式

10、行列式七大公式:

(1)|kA|=kn|A|

(2)|AB|=|A|·|B|

(3)|AT|=|A|

(4)|A-1|=|A|-1

(5)|A*|=|A|n-1

(6)若A的特征值λ1、λ2、……λn,则

(7)若A与B相似,则|A|=|B|

(五)克莱姆法则

11、克莱姆法则:

(1)非齐次线性方程组的系数行列式不为0,那么方程为唯一解

(2)如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0

(3)若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解;如果方程组有非零解,那么必有D=0。

矩阵

(一)矩阵的运算

1、矩阵乘法注意事项:

(1)矩阵乘法要求前列后行一致;

(2)矩阵乘法不满足交换律;(因式分解的公式对矩阵不适用,但若B=E,O,A-1,A*,f(A)时,可以用交换律)

(3)AB=O不能推出A=O或B=O。

2、转置的性质(5条)

(1)(A+B)T=AT+BT

(2)(kA)T=kAT

(3)(AB)T=BTAT

(4)|A|T=|A|

(5)(AT)T=A

(二)矩阵的逆

3、逆的定义:

AB=E或BA=E成立,称A可逆,B是A的逆矩阵,记为B=A-1

注:A可逆的充要条件是|A|≠04、逆的性质:(5条)

(1)(kA)-1=1/k·A-1

(k≠0)

(2)(AB)-1=B-1·A-1

(3)|A-1|=|A|-1

(4)(AT)-1=(A-1)T

(5)(A-1)-1=A5、逆的求法:

(1)A为抽象矩阵:由定义或性质求解

(2)A为数字矩阵:(A|E)→初等行变换→(E|A-1)

(三)矩阵的初等变换

6、初等行(列)变换定义:

(1)两行(列)互换;

(2)一行(列)乘非零常数c

(3)一行(列)乘k加到另一行(列)

7、初等矩阵:单位矩阵E经过一次初等变换得到的矩阵。

8、初等变换与初等矩阵的性质:

(1)初等行(列)变换相当于左(右)乘相应的初等矩阵

(2)初等矩阵均为可逆矩阵,且Eij-1=Eij(i,j两行互换);

Ei-1(c)=Ei(1/c)(第i行(列)乘c)

Eij-1(k)=Eij(-k)(第i行乘k加到j)

★(四)矩阵的秩

9、秩的定义:非零子式的最高阶数

注:(1)r(A)=0意味着所有元素为0,即A=O

(2)r(An×n)=n(满秩)←→

|A|≠0

←→A可逆;

r(A)<n←→|A|=0←→A不可逆;

(3)r(A)=r(r=1、2、…、n-1)←→r阶子式非零且所有r+1子式均为0。

10、秩的性质:(7条)

(1)A为m×n阶矩阵,则r(A)≤min(m,n)

(2)r(A±B)≤r(A)±(B)

(3)r(AB)≤min{r(A),r(B)}

(4)r(kA)=r(A)(k≠0)

(5)r(A)=r(AC)(C是一个可逆矩阵)

(6)r(A)=r(AT)=r(ATA)=r(AAT)

(7)设A是m×n阶矩阵,B是n×s矩阵,AB=O,则r(A)+r(B)≤n11、秩的求法:

(1)A为抽象矩阵:由定义或性质求解;

(2)A为数字矩阵:A→初等行变换→阶梯型(每行第一个非零元素下面的元素均为0),则r(A)=非零行的行数

(五)伴随矩阵

12、伴随矩阵的性质:(8条)

(1)AA*=A*A=|A|E

★A*=|A|A-1

(2)(kA)*=kn-1A*

(3)(AB)*=B*A*

(4)|A*|=|A|n-1

(5)(AT)*=(A*)T

(6)(A-1)*=(A*)-1=A|A|-1

(7)(A*)*=|A|

n-2·A

★(8)r(A*)=n

(r(A)=n);

r(A*)=1

(r(A)=n-1);

r(A*)=0

(r(A)<n-1)

(六)分块矩阵

13、分块矩阵的乘法:要求前列后行分法相同。

14、分块矩阵求逆:

向量

(一)向量的概念及运算

1、向量的内积:(α,β)=αTβ=βTα

2、长度定义:

||α||=

3、正交定义:(α,β)=αTβ=βTα=a1b1+a2b2+…+anbn=04、正交矩阵的定义:A为n阶矩阵,AAT=E

←→

A-1=AT

←→

ATA=E

|A|=±1

(二)线性组合和线性表示

5、线性表示的充要条件:

非零列向量β可由α1,α2,…,αs线性表示

(1)←→非齐次线性方程组(α1,α2,…,αs)(x1,x2,…,xs)T=β有解。

★(2)←→r(α1,α2,…,αs)=r(α1,α2,…,αs,β)(系数矩阵的秩等于增广矩阵的秩,用于大题第一步的检验)

6、线性表示的充分条件:(了解即可)

若α1,α2,…,αs线性无关,α1,α2,…,αs,β线性相关,则β可由α1,α2,…,αs线性表示。

7、线性表示的求法:(大题第二步)

设α1,α2,…,αs线性无关,β可由其线性表示。

(α1,α2,…,αs|β)→初等行变换→(行最简形|系数)

行最简形:每行第一个非0的数为1,其余元素均为0

(三)线性相关和线性无关

8、线性相关注意事项:

(1)α线性相关←→α=0

(2)α1,α2线性相关←→α1,α2成比例

9、线性相关的充要条件:

向量组α1,α2,…,αs线性相关

(1)←→有个向量可由其余向量线性表示;

(2)←→齐次方程(α1,α2,…,αs)(x1,x2,…,xs)T=0有非零解;

★(3)←→r(α1,α2,…,αs)<s

即秩小于个数

特别地,n个n维列向量α1,α2,…,αn线性相关

(1)←→

r(α1,α2,…,αn)<n

(2)←→|α1,α2,…,αn

|=0

(3)←→(α1,α2,…,αn)不可逆

10、线性相关的充分条件:

(1)向量组含有零向量或成比例的向量必相关

(2)部分相关,则整体相关

(3)高维相关,则低维相关

(4)以少表多,多必相关

★推论:n+1个n维向量一定线性相关

11、线性无关的充要条件

向量组α1,α2,…,αs

线性无关

(1)←→任意向量均不能由其余向量线性表示;

(2)←→齐次方程(α1,α2,…,αs)(x1,x2,…,xs)T=0只有零解

(3)←→r(α1,α2,…,αs)=s

特别地,n个n维向量α1,α2,…,αn

线性无关

←→r(α1,α2,…,αn)=n

←→|α1,α2,…,αn

|≠0

←→矩阵可逆

12、线性无关的充分条件:

(1)整体无关,部分无关

(2)低维无关,高维无关

(3)正交的非零向量组线性无关

(4)不同特征值的特征向量无关

13、线性相关、线性无关判定

(1)定义法

★(2)秩:若小于阶数,线性相关;若等于阶数,线性无关

【专业知识补充】

(1)在矩阵左边乘列满秩矩阵(秩=列数),矩阵的秩不变;在矩阵右边乘行满秩矩阵,矩阵的秩不变。

(2)若n维列向量α1,α2,α3

线性无关,β1,β2,β3

可以由其线性表示,即(β1,β2,β3)=(α1,α2,α3)C,则r(β1,β2,β3)=r(C),从而线性无关。

←→r(β1,β2,β3)=3

←→

r(C)=3

←→

|C|≠0

(四)极大线性无关组与向量组的秩

14、极大线性无关组不唯一

15、向量组的秩:极大无关组中向量的个数成为向量组的秩

对比:矩阵的秩:非零子式的最高阶数

★注:向量组α1,α2,…,αs的秩与矩阵A=(α1,α2,…,αs)的秩相等

★16、极大线性无关组的求法

(1)α1,α2,…,αs

为抽象的:定义法

(2)α1,α2,…,αs

为数字的:

(α1,α2,…,αs)→初等行变换→阶梯型矩阵

则每行第一个非零的数对应的列向量构成极大无关组

(五)向量空间

17、基(就是极大线性无关组)变换公式:

若α1,α2,…,αn

与β1,β2,…,βn

是n维向量空间V的两组基,则基变换公式为(β1,β2,…,βn)=(α1,α2,…,αn)Cn×n

其中,C是从基α1,α2,…,αn

到β1,β2,…,βn的过渡矩阵。

C=(α1,α2,…,αn)-1(β1,β2,…,βn)

18、坐标变换公式:

向量γ在基α1,α2,…,αn与基β1,β2,…,βn的坐标分别为x=(x1,x2,…,xn)T,y=(y1,y2,…,yn)T,即γ=x1α1

+

x2α2

+

+xnαn

=y1β1

+

y2β2

+

+ynβn,则坐标变换公式为x=Cy或y=C-1x。其中,C是从基α1,α2,…,αn

到β1,β2,…,βn的过渡矩阵。C=(α1,α2,…,αn)-1(β1,β2,…,βn)

(六)Schmidt正交化

19、Schmidt正交化

设α1,α2,α3

线性无关

(1)正交化

令β1=α1

(2)单位化

线性方程组

(一)方程组的表达形与解向量

1、解的形式:

(1)一般形式

(2)矩阵形式:Ax=b;

(3)向量形式:A=(α1,α2,…,αn)

2、解的定义:

若η=(c1,c2,…,cn)T满足方程组Ax=b,即Aη=b,称η是Ax=b的一个解(向量)

(二)解的判定与性质

3、齐次方程组:

(1)只有零解←→r(A)=n(n为A的列数或是未知数x的个数)

(2)有非零解←→r(A)<n4、非齐次方程组:

(1)无解←→r(A)<r(A|b)←→r(A)=r(A)-1

(2)唯一解←→r(A)=r(A|b)=n

(3)无穷多解←→r(A)=r(A|b)<n5、解的性质:

(1)若ξ1,ξ2是Ax=0的解,则k1ξ1+k2ξ2是Ax=0的解

(2)若ξ是Ax=0的解,η是Ax=b的解,则ξ+η是Ax=b的解

(3)若η1,η2是Ax=b的解,则η1-η2是Ax=0的解

【推广】

(1)设η1,η2,…,ηs是Ax=b的解,则k1η1+k2η2+…+ksηs为

Ax=b的解

(当Σki=1)

Ax=0的解

(当Σki=0)

(2)设η1,η2,…,ηs是Ax=b的s个线性无关的解,则η2-η1,η3-η1,…,ηs-η1为Ax=0的s-1个线性无关的解。

变式:①η1-η2,η3-η2,…,ηs-η2

②η2-η1,η3-η2,…,ηs-ηs-1

(三)基础解系

6、基础解系定义:

(1)ξ1,ξ2,…,ξs

是Ax=0的解

(2)ξ1,ξ2,…,ξs

线性相关

(3)Ax=0的所有解均可由其线性表示

→基础解系即所有解的极大无关组

注:基础解系不唯一。

任意n-r(A)个线性无关的解均可作为基础解系。

★7、重要结论:(证明也很重要)

设A施m×n阶矩阵,B是n×s阶矩阵,AB=O

(1)B的列向量均为方程Ax=0的解

(2)r(A)+r(B)≤n(第2章,秩)

8、总结:基础解系的求法

(1)A为抽象的:由定义或性质凑n-r(A)个线性无关的解

(2)A为数字的:A→初等行变换→阶梯型

自由未知量分别取1,0,0;0,1,0;0,0,1;代入解得非自由未知量得到基础解系

(四)解的结构(通解)

9、齐次线性方程组的通解(所有解)

设r(A)=r,ξ1,ξ2,…,ξn-r

为Ax=0的基础解系,则Ax=0的通解为k1η1+k2η2+…+kn-rηn-r

(其中k1,k2,…,kn-r为任意常数)

10、非齐次线性方程组的通解

设r(A)=r,ξ1,ξ2,…,ξn-r

为Ax=0的基础解系,η为Ax=b的特解,则Ax=b的通解为η+

k1η1+k2η2+…+kn-rηn-r

(其中k1,k2,…,kn-r为任意常数)

(五)公共解与同解

11、公共解定义:

如果α既是方程组Ax=0的解,又是方程组Bx=0的解,则称α为其公共解

12、非零公共解的充要条件:

方程组Ax=0与Bx=0有非零公共解

←→

有非零解←→

13、重要结论(需要掌握证明)

(1)设A是m×n阶矩阵,则齐次方程ATAx=0与Ax=0同解,r(ATA)=r(A)

(2)设A是m×n阶矩阵,r(A)=n,B是n×s阶矩阵,则齐次方程ABx=0与Bx=0同解,r(AB)=r(B)

特征值与特征向量

(一)矩阵的特征值与特征向量

1、特征值、特征向量的定义:

设A为n阶矩阵,如果存在数λ及非零列向量α,使得Aα=λα,称α是矩阵A属于特征值λ的特征向量。

2、特征多项式、特征方程的定义:

|λE-A|称为矩阵A的特征多项式(λ的n次多项式)。

|λE-A

|=0称为矩阵A的特征方程(λ的n次方程)。

注:特征方程可以写为|A-λE|=03、重要结论:

(1)若α为齐次方程Ax=0的非零解,则Aα=0·α,即α为矩阵A特征值λ=0的特征向量

(2)A的各行元素和为k,则(1,1,…,1)T为特征值为k的特征向量。

(3)上(下)三角或主对角的矩阵的特征值为主对角线各元素。

△4、总结:特征值与特征向量的求法

(1)A为抽象的:由定义或性质凑

(2)A为数字的:由特征方程法求解

5、特征方程法:

(1)解特征方程|λE-A|=0,得矩阵A的n个特征值λ1,λ2,…,λn

注:n次方程必须有n个根(可有多重根,写作λ1=λ2=…=λs=实数,不能省略)

(2)解齐次方程(λiE-A)=0,得属于特征值λi的线性无关的特征向量,即其基础解系(共n-r(λiE-A)个解)

6、性质:

(1)不同特征值的特征向量线性无关

(2)k重特征值最多k个线性无关的特征向量

1≤n-r(λiE-A)≤ki

(3)设A的特征值为λ1,λ2,…,λn,则|A|=Πλi,Σλi=Σaii

(4)当r(A)=1,即A=αβT,其中α,β均为n维非零列向量,则A的特征值为λ1=Σaii=αTβ=βTα,λ2=…=λn=0

(5)设α是矩阵A属于特征值λ的特征向量,则

A

f(A)

AT

A-1

A*

P-1AP(相似)

λ

f(λ)

λ

λ-1

|A|λ-1

λ

α

α

/

α

α

P-1α

(二)相似矩阵

7、相似矩阵的定义:

设A、B均为n阶矩阵,如果存在可逆矩阵P使得B=P-1AP,称A与B相似,记作A~B8、相似矩阵的性质

(1)若A与B相似,则f(A)与f(B)相似

(2)若A与B相似,B与C相似,则A与C相似

(3)相似矩阵有相同的行列式、秩、特征多项式、特征方程、特征值、迹(即主对角线元素之和)

【推广】

(4)若A与B相似,则AB与BA相似,AT与BT相似,A-1与B-1相似,A*与B*也相似

(三)矩阵的相似对角化

9、相似对角化定义:

如果A与对角矩阵相似,即存在可逆矩阵P,使得P-1AP=Λ=,称A可相似对角化。

注:Aαi=λiαi(αi≠0,由于P可逆),故P的每一列均为矩阵A的特征值λi的特征向量

10、相似对角化的充要条件

(1)A有n个线性无关的特征向量

(2)A的k重特征值有k个线性无关的特征向量

11、相似对角化的充分条件:

(1)A有n个不同的特征值(不同特征值的特征向量线性无关)

(2)A为实对称矩阵

12、重要结论:

(1)若A可相似对角化,则r(A)为非零特征值的个数,n-r(A)为零特征值的个数

(2)若A不可相似对角化,r(A)不一定为非零特征值的个数

(四)实对称矩阵

13、性质

(1)特征值全为实数

(2)不同特征值的特征向量正交

(3)A可相似对角化,即存在可逆矩阵P使得P-1AP=Λ

(4)A可正交相似对角化,即存在正交矩阵Q,使得Q-1AQ=QTAQ=Λ

二次型

(一)二次型及其标准形

1、二次型:

(1)一般形式

(2)矩阵形式(常用)

2、标准形:

如果二次型只含平方项,即f(x1,x2,…,xn)=d1x12+d2x22+…+dnxn2

这样的二次型称为标准形(对角线)

3、二次型化为标准形的方法:

(1)配方法:

通过可逆线性变换x=Cy(C可逆),将二次型化为标准形。其中,可逆线性变换及标准形通过先配方再换元得到。

★(2)正交变换法:

通过正交变换x=Qy,将二次型化为标准形λ1y12+λ2y22+…+λnyn2

其中,λ1,λ2,…,λn

是A的n个特征值,Q为A的正交矩阵

注:正交矩阵Q不唯一,γi与λi

对应即可。

(二)惯性定理及规范形

4、定义:

正惯性指数:标准形中正平方项的个数称为正惯性指数,记为p;

负惯性指数:标准形中负平方项的个数称为负惯性指数,记为q;

规范形:f=z12+…zp2-zp+12-…-zp+q2称为二次型的规范形。

5、惯性定理:

二次型无论选取怎样的可逆线性变换为标准形,其正负惯性指数不变。

注:(1)由于正负惯性指数不变,所以规范形唯一。

(2)p=正特征值的个数,q=负特征值的个数,p+q=非零特征值的个数=r(A)

(三)合同矩阵

6、定义:

A、B均为n阶实对称矩阵,若存在可逆矩阵C,使得B=CTAC,称A与B合同

△7、总结:n阶实对称矩阵A、B的关系

(1)A、B相似(B=P-1AP)←→相同的特征值

(2)A、B合同(B=CTAC)←→相同的正负惯性指数←→相同的正负特征值的个数

(3)A、B等价(B=PAQ)←→r(A)=r(B)

注:实对称矩阵相似必合同,合同必等价

(四)正定二次型与正定矩阵

8、正定的定义

二次型xTAx,如果任意x≠0,恒有xTAx>0,则称二次型正定,并称实对称矩阵A是正定矩阵。

9、n元二次型xTAx正定充要条件:

(1)A的正惯性指数为n

(2)A与E合同,即存在可逆矩阵C,使得A=CTC或CTAC=E

(3)A的特征值均大于0

(4)A的顺序主子式均大于0(k阶顺序主子式为前k行前k列的行列式)

10、n元二次型xTAx正定必要条件:

(1)aii>0

(2)|A|>011、总结:二次型xTAx正定判定(大题)

(1)A为数字:顺序主子式均大于0

(2)A为抽象:①证A为实对称矩阵:AT=A;②再由定义或特征值判定

12、重要结论:

(1)若A是正定矩阵,则kA(k>0),Ak,AT,A-1,A*正定

(2)若A、B均为正定矩阵,则A+B正定

第四篇:线性代数复习总结

自考线性代数复习总结

概念多、定理多、符号多、运算规律多、内容相互纵横交错,知识前后紧密联系是线性代数课程的特点,故考生应充分理解概念,掌握定理的条件、结论、应用,熟悉符号意义,掌握各种运算规律、计算方法,并及时进行总结,抓联系,使学知识能融会贯通,举一反三,根据考试大纲的要求,这里再具体指出如下:

行列式的重点是计算,利用性质熟练准确的计算出行列式的值。

矩阵中除可逆阵、伴随阵、分块阵、初等阵等重要概念外,主要也是运算,其运算分两个层次,一是矩阵的符号运算,二是具体矩阵的数值运算。例如在解矩阵方程中,首先进行矩阵的符号运算,将矩阵方程化简,然后再代入数值,算出具体的结果,矩阵的求逆(包括简单的分块阵)(或抽象的,或具体的,或用定义,或是用公式A-1= 1 A*,或A用初等行变换),A和A*的关系,矩阵乘积的行列式,方阵的幂等也是常考的内容之一。

关于向量,证明(或判别)向量组的线性相关(无关),线性表出等问题的关键在于深刻理解线性相关(无关)的概念及几个相关定理的掌握,并要注意推证过程中逻辑的正确性及反证法的使用。

向量组的极大无关组,等价向量组,向量组及矩阵的秩的概念,以及它们相互关系也是重点内容之一。用初等行变换是求向量组的极大无关组及向量组和矩阵秩的有效方法。

在Rn中,基、坐标、基变换公式,坐标变换公式,过渡矩阵,线性无关向量组的标准正交化公式,应该概念清楚,计算熟练,当然在计算中列出关系式后,应先化简,后代入具体的数值进行计算。

行列式、矩阵、向量、方程组是线性代数的基本内容,它们不是孤立隔裂的,而是相互渗透,紧密联系的,例如∣A∣≠0〈===〉A是可逆阵〈===〉r(A)=n(满秩阵)〈===〉A的列(行)向量组线性无关〈===〉AX=0唯一零解〈===〉AX=b对任何b均有(唯一)解〈===〉A=P1 P2…PN,其中PI(I=1,2,…,N)是初等阵〈===〉r(AB)=r(B)<===>A初等行变换 I〈===〉A的列(行)向量组是Rn的一个基〈===〉A可以是某两个基之间的过渡矩阵等等。这种相互之间的联系综合命题创造了条件,故对考生而言,应该认真总结,开拓思路,善于分析,富于联想使得对综合的,有较多弯道的试题也能顺利地到达彼岸。

关于特征值、特征向量。一是要会求特征值、特征向量,对具体给定的数值矩阵,一般用特征方程∣λE-A∣=0及(λE-A)ξ=0即可,抽象的由给定矩阵的特征值求其相关矩阵的特征值(的取值范围),可用定义Aξ=λξ,同时还应注意特征值和特征向量的性质及其应用,二是有关相似矩阵和相似对角化的问题,一般矩阵相似对角化的条件。实对称矩阵的相似对角化及正交变换相似于对角阵,反过来,可由A的特征值,特征向量来确不定期A的参数或确定A,如果A是实对称阵,利用不同特征值对应的特征向量相互正交,有时还可以由已知λ1的特征向量确定出λ2(λ2≠λ1)对应的特征向量,从而确定出A.三是相似对角化以后的应用,在线性代数中至少可用来计算行列式及An.将二次型表示成矩阵形式,用矩阵的方法研究二次型的问题主要有两个:一是化二次型为标准形,这主要是正交变换法(这和实对称阵正交相似对角阵是一个问题的两种提法),在没有其他要求的情况下,用配方法得到标准形可能更方便些;二是二次型的正定性问题,对具体的数值二次型,一般可用顺序主子式是否全部大于零来判别,而抽象的由给定矩阵的正定性,证明相关矩阵的正定性时,可利用标准形,规范形,特征值等到证明,这时应熟悉二次型正定有关的充分条件和必要条件。

第五篇:线性代数学习总结

线性代数学习总结

----------应化11 王阳(2110904024)

时间真快,一转眼看似漫长的大一就这样在不知不觉中接近尾声。纵观一年大学的学习和生活,特别是在线代的学习过程中,实在是感慨颇多。在此,我就从老师教学和自身学习方面,谈谈自己的一点体会。

老师在教学中,也应该以一些具体的实例入手来教学,如果脱离了实际应用,只是讲抽象的概念和式子,是很难明白的,并且有实例的对照,可以加深记忆理论知识。然后要注重易混淆概念的区别,必要时应该拿出来单独讲讲,比如矩阵和行列式的区别,矩阵只是为了计算线性方程而列的一个数据单而已,并无实际意义。而行列式和矩阵有本质的区别,行列式是一个具体的数值,并且行列式的行数和列数必须是相等的。其实老师在教学过程中,应该学会轻松一点,我不希望看到老师在讲台上讲得满头大汗,而学生坐在下面听得云里雾里的场面,这就需要老师能够精选一些内容讲解,不需要都讲,而其他相关的内容让学生自己通过举一反三就得到就可以了。老师可以自己选一些经典的例子来讲,而不一定要讲书上的例子。然后对于例子中的计算,老师就可以不用算了,多叫学生动动手,增加我们的积极性,并且这样也更能发现问题。再就是线性代数的课时少,这是一个客观存在的原因,所以更要精讲。而不需全部包揽。当然,若果能通过改革,增加课时是最好不过了。这也算一点小小的建议吧。

再者,在自身学习过程中,我想说明的是,大学里的学习是不能靠其他任何人的,只能靠自己,老师只是起到一个引导作用。所以教材是我们最重要的学习资源,如果没有书本,就是天才也不可能学好。总体看来,我们使用的课本题型简单易懂,非常适合初学者学习。但它也有许多的不足之处,就个人在看这本教材时,觉得它举得实例太少了,并且例子不太全面,本来线性代数是一门比较抽象的学科,加上计算量大,学时少,所以要学好它,就只有靠自己在课余时间多加练习,慢慢领悟那些概念性的东西。然后对于教材内容的侧重点,我觉得应该放在线性方程组这一块,因为它是其他问题的引出点,不管是矩阵,行列式,还是矩阵的秩和向量空间,都是为线性方程组服务的。我们对向量组的线性相关性的讨论,还有对矩阵的秩,向量组的秩的计算,都是为了了解线性方程组的解的情况。在线性方程组的求解过程中,我们运用了矩阵的行变换来求基础解系,当然这就相当于求极大无关组。还有对线性相关和线性无关的讨论,这也关系到线性方程组的解。所以在改革中,应该拿线性方程组为应用的实例,来一步一步的解剖概念和定理。当然一些好的、典型的解题方法,也应该用具体的例子来讲解,这是一本教材必须具备的。

当然在学习过程中,我们应该具备能够整体把握老师所讲重点的能力,注意各个章节的联系。数学中的概念往往不是孤立的,理解概念间的联系既能促进新概念的引入,也有助于接近已学过概念的本质及整个概念体系的建立。如矩阵的秩与向量组的秩的联系:矩阵的秩等于它的行向量组的秩,也等于它的列向量组的秩;矩阵行(列)满秩,与向量组的线性相关和线性无关也有一定的联系。知识体系是一环扣一环,环环相连的。前面的知识是后面学习的基础,如用初等变换求矩阵的秩熟练与否,直接影响求向量组的秩及极大无关组,进一步影响到求由向量组生成的向量空间的基与维数;又如求解线性方程组的通解熟练与否,会影响到后面特征向量的求解,以及利用正交变换将二次型化为标准型等。因此,学习线性代数,一定要坚持温故而知新的学习方法,及时复习巩固,为此,老师课前的知识回顾以及学生提前预习是十分必要的。对于后来学的,应该多翻翻书看看前面是怎么说的,往往前面学习的内容是为后面做铺垫的,所以在学了后面的知识后,再看前面的知识,会对前面的知识有一个新的认识,会更好的加深对它的理解和记忆。这一点上老师您做的很好。

然后对于书上花了很大的篇幅写的matlab实验,我觉得这是好事,但是在教学中老师是不会教我们的,因为课时有限,这是情理当中的,但是作为学生,我觉得应该好好地利用书上的资源,单靠做练习的笔头功夫是难以解决实际问题的。

总的来说,在线代的学习过程中,老师你总是能够调节课堂的气氛,让大家在开心的笑声中学习,并穿插着一些为人处事的道理,这都将让我们在以后的生活和工作中受益匪浅。很高兴能在你的班上学习这门课,我想我会永远记住您那一个个宁人忍俊不禁的冷笑话。

下载线性代数概念总结word格式文档
下载线性代数概念总结.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    线性代数学习总结

    数学四 线 性 代 数 总 结 一、 行列式 1.n阶行列式的概念 a11 a12 …… a1n n阶行列式的递归定义a21 a22 …… a2n 有n ^ 2个数组成的n阶列式是一个算式,当………………......

    线性代数总结的相关知识点(精选5篇)

    线性代数总结的相关知识点: 1、排列、逆序数、行列式的定义; 2、行列式的性质; 3、行列式的计算; 4、矩阵的运算; 5、方阵的行列式; 6、伴随矩阵; 7、逆矩阵; 8、分块矩阵的运算及性......

    《线性代数》课程培训总结5篇

    《线性代数》课程培训总结 中华女子学院公共教学部滕静 我是文科院校的一名数学老师,因为刚从事这个职业,正在学习和探索的阶段,在刚过去的教学实践中也遇到了很多问题和困惑,通......

    农业气象学概念总结。

    温室效应:由于大气对太阳短波辐射吸收很少,易于让大量的太阳辐射透过而到达地面,同时大气又能强烈吸收地面长波辐射,使地面辐射不易逸出大气,大气还以逆辐射返回地面一部分能量,从......

    生态学概念总结

    生态学概念总结 1.生态危机:是指由于人类盲目活动而导致局部地区甚至整个生物圈结构和功能的失衡,从而威胁到人类的生存。 2.生态学:研究生物及环境间相互关系的科学。 3.物种:物种......

    微观经济学概念总结

    微观经济学 1. 微观经济学的研究对象 微观经济学的研究对象是个体经济单位。个体经济单位指单个消费者,单个生产者和单个市场等。 微观经济学对个体经济单位的考察,是在三个......

    保险法概念总结大全大全

    概念总结 1 保险:是投保人根据合同约定,向保险人支付保险费,保险人对于合同约定的可能发生的事故因其发生所造成的财产损失承担赔偿保险金责任,或者当被保险人死亡、伤残、疾病......

    流体力学概念总结

    第一章 绪论 1. 工程流体力学的研究对象:工程流体力学以流体(包括液体和气体)为研究对象,研究流体宏观的平衡和运动的规律,流体与固体壁面之间的相互作用规律,以及这些规律在工程......